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Abstract: The intent of this paper is to establish the detailed parametric study for laminar

natural convection flow along a vertical wavy plate. Typical sinusoidal surface is used to elu-

cidate the heat transport phenomena for the gas having variable thermophysical properties.

From the present analysis, we will interrogate whether the presence of roughness element

disturbs the gas flow and alter the physical characteristics associates with the wavy surface

or not? The numerical solutions are obtained after converting the governing equations into

a suitable coordinate system. The results are interpreted for the parameters which emerge

from the temperature dependent physical properties of the gases and transverse curvature of

the surface. In order to ensure the accuracy, the present numerical results are also compared

with some special cases and are found in good agreement. The key observation from the

present analysis is that the amplitude of wavy surface parameter, a contributes in reduction

of heat transfer rate.
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1 Introduction

The analysis of the variable thermophysical properties of the fluid for laminar natural

convection past an isothermal vertical wall has been reported by Sparrow and Gregg [1].

1Corresponding author.
Email: saadiasiddiqa@gmail.com
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In this paper, the authors presented the solutions of the boundary layer equations for some

special cases. After that, Brown [2] investigated the influence of the volumetric expansion

coefficient on heat transfer rate for the problem of laminar free convection. In addition,

Gray and Giogini [3] discussed the validity of the Boussinesq approximation for liquids and

gases and proposed a method for analyzing natural convection flows with fluid properties.

In this study, the authors assumed the physical properties of the fluid to be linear functions

of temperature and pressure. It is important to mention here that, Clausing and Kempka

[4] investigated the effect of variable properties on experimental basis and concluded that,

for the laminar region, the rate of heat transfer Nu will be a function of Ra, only with

reference temperature, Tf , which is taken as the average temperature in the boundary

layer. Furthermore, the analysis of instability of laminar free convection flow and then

the transition to turbulent state had been presented by Gebhart [5] and also have been

summarized in a textbook by Eckert and Drake [6]. A detailed analysis of effect of variable

thermophysical properties on laminar free convection of gas has also been presented in [8].

It is worthy to mention that all the above studies examined smooth surfaces only.

Perhaps irregular surfaces are sometimes more important in industries, for instance, solar

collectors, condensers in refrigerators, cavity wall insulating systems, grain storage con-

tainers, and industrial heat radiators are a few of the many applications of rough surfaces

through which small as well as the large scale heat transfer is encountered. Distribution

of heat transfer along a semi-infinite vertical wavy surface of Newtonian fluid were initially

discussed by Yao [9] and Moulic and Yao [10]. Keeping in view ([9]-[10]), several investi-

gations have been done by taking practical situations into account (see Ref. ([11]-[21]) and

reported significant effects of surface non-uniformities on fluid flow distribution.

In this study, an attempt has been made to report the influence of surface waviness

on natural convection boundary layer flow of the fluid having temperature dependent ther-

mophysical properties. It is assumed that the influence of variable properties of the fluid is

confined into the region near the wavy geometry and remains uniform in the main stream.

In this study, assumptions have been made that i) the viscosity and thermal conductivity as

µ ≈ Tnµ and κ ≈ Tnλ , respectively, ii) the density as inversely proportional to the absolute

temperature, and iii) specific heat at constant pressure, cp, and the Prandtl number, Pr, as
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uniform. Taking Grashof number Gr to be very large, the boundary layer approximation is

invoked leading to a set of non-similar parabolic partial differential equations whose solution

is obtained through implicit finite difference method. The detailed numerical results are

displayed in the form of skin friction coefficient, heat transfer rate, velocity and temperature

profiles by varying several controlling parameters.

2 Consideration of Variable Thermophysical Properties and

Problem Formulation

For the analysis of natural convection, the thermodynamic temperature of the fluid away

from the wavy surface of the plate, T∞, can be taken as the reference temperature. The vari-

able viscosity and thermal conductivity of the fluid is assumed to be temperature dependent

and mathematically expressed as:

µ/µ∞ = (T/T∞)nµ

κ/κ∞ = (T/T∞)nλ

(1)

while the variation in density with thermodynamic temperature at uniform pressure are

assumed as:

ρ/ρ∞ = (T/T∞)−1 (2)

or

ν/ν∞ = (T/T∞)nµ+1 (3)

where the values of nµ and nλ are taken from the analysis of Hisenrath et al. [7], which

is based on the summarized experimental values of µ and κ for several monoatomic and

diatomic gases, and also for air and water vapours.

In the present analysis, the vertical plate with transverse sinusoidal undulations is

situated in viscous incompressible fluid (see Fig. 1). In particular, we assume that the

surface profile is given by:

yw = σ(x) = a sin

(
2πx

L

)
(4)
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where a represents the amplitude of the transverse surface wave and L the characteristic

length associated with the wave. We have considered the incompressible fluid, which is

originally at rest along a vertical wavy plate. Suddenly, the surface of the plate at y = 0

is heated with temperature Tw and natural convection starts due to this. The equations

describing the complete description of the convective flow along the vertical surface can be

written in dimensional form as:

∂ρu

∂x
+
∂ρv

∂y
= 0 (5)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂µ

∂x

∂u

∂x
+
∂µ

∂y

∂u

∂y
+
ρg (T − T∞)

T∞
(6)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂µ

∂x

∂v

∂x
+
∂µ

∂y

∂v

∂y
(7)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
(8)

where (u, v), T , p, ρ, cp, κ, g and µ are respectively the velocity vector in the (x, y) direction,

temperature, pressure, density, specific heat at constant pressure, thermal conductivity, the

gravitational acceleration and dynamic viscosity of the fluid. The fundamental equations

stated above are to be solved under appropriate boundary conditions. Therefore, the bound-

ary conditions for the problem under considerations are:

u(x, yw) = v(x, yw) = T (x, yw)− Tw = 0

u(x,∞) = T (x,∞)− T∞ = 0
(9)

where T∞ symbolize the ambient fluid temperature such that Tw >> T∞. To invoke di-

mensionless equations, following variables are introduced in Eqs. (1)-(9):

X =
x

L
, Y =

y − σ(x)

L
Gr1/4, u =

ν0
L
Gr1/2U, v =

ν0
L
Gr1/4

(
V + σxGr

1/4U
)
,

P =
L2

ρν20Gr
p, θ =

T − T∞
Tw − T∞

, λ =
Tw − T∞
T∞

, Gr =
g(Tw − T∞)L3

ν2

(10)

By incorporating Eq. (10), the dimensional continuity, momentum and temperature equa-
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tions will be transformed in the underlying form:

∂U

∂X
+
∂V

∂Y
+

1

ρ

(
U
∂ρ

∂X
+ V

∂ρ

∂Y

)
= 0 (11)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ σXGr

1/4 ∂P

∂Y
+
ν

ν0
(1 + σ2X)

(
∂2U

∂Y 2
+

1

µ

∂µ

∂Y

∂U

∂Y

)
+ θ (12)

σX

(
U
∂U

∂X
+ V

∂U

∂Y

)
+ σXXU

2 = −Gr1/4 ∂P
∂Y

+
ν

ν0
σX(1 + σ2X)

(
∂2U

∂Y 2
+

1

µ

∂µ

∂Y

∂U

∂Y

)
(13)

ν0
ν

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
=

(1 + σ2X)

Pr

(
∂2θ

∂Y 2
+

1

κ

∂κ

∂Y

∂θ

∂Y

)
(14)

where, Gr and Pr are respectively the dimensionless Grashof number and Prandtl number.

As it can be noted form Eq. (12) that the pressure gradient is of order O(Gr−1/4) along

the normal Y direction, which implies that the lower order of pressure gradient along X

direction can be determined from the inviscid flow solution. However, due to the fact

that there is no externally induced free stream, this pressure gradient is taken as zero, i.e,

∂P/∂X = 0. Furthermore, Eq. (12) indicates that the term Gr1/4∂P/∂Y is of O (1) and

can be determined by the left-hand side of this equation. Thus by eliminating the term

∂P/∂Y form Eqs. (12) and (13), we will have the following form of momentum equation:

ν0
ν

(
U
∂U

∂X
+ V

∂U

∂Y
+

σXσXX(
1 + σ2X

)U2 − θ(
1 + σ2X

)) = (1 + σ2X)

(
∂2U

∂Y 2
+

1

µ

∂µ

∂Y

∂U

∂Y

)
(15)

The dimensionless form of the boundary conditions for present analysis is:

U(X, 0) = V (X, 0) = θ(X, 0)− 1 = 0

U(X,∞) = θ(X,∞) = 0
(16)

Now, we propose to integrate the above system of equations numerically. Before applying

the numerical scheme, these equations are transformed to suitable form with the help of

primitive variable formulations. To establish the solutions of the coupled equations (11),

(14), and (15) subject to the boundary conditions in (16), we switch into another system
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of equations with the help of following set of continuous transformations:

X = ξ, Y = X
1
4 η, U(X,Y ) = X

1
2U(ξ, η), V (X,Y ) = X−

1
4V (ξ, η), θ(X,Y ) = Θ(ξ, η)

(17)

The above system of equations will be mapped into the following system of parabolic partial

differential equations (after dropping bars):

1

2
U + ξ

∂U

∂ξ
− 1

4
η
∂U

∂η
+
∂V

∂η
+

1

ρ

(
ξU

∂ρ

∂ξ
+

(
V − 1

4
ηU

)
∂ρ

∂η

)
= 0 (18)

ν0
ν

[(
1

2
+

ξσξσξξ
(1 + σ2ξ )

)
U2 + ξU

∂U

∂ξ
+

(
V − 1

4
ηU

)
∂U

∂η
− Θ

(1 + σ2ξ )

]
= (1 + σ2ξ )

(
∂2U

∂Y 2

+
1

µ

∂µ

∂η

∂U

∂η

) (19)

ν0
ν

[
ξU

∂Θ

∂ξ
+

(
V − 1

4
ηU

)
∂Θ

∂η

]
=

(1 + σ2ξ )

Pr

(
∂2Θ

∂Y 2
+

1

κ

∂κ

∂η

∂Θ

∂η

)
(20)

From equations (1)-(4) combined with equations (10) and (17), we have:

1

ρ

∂ρ

∂η
= − λ

(1 + λΘ)

∂Θ

∂η
,

1

ρ

∂ρ

∂ξ
= − λ

(1 + λΘ)

∂Θ

∂ξ
(21)

1

ρ

∂µ

∂η
=

λnµ
(1 + λΘ)

∂Θ

∂η
,

1

ρ

∂κ

∂η
=

λnλ
(1 + λΘ)

∂Θ

∂η
(22)

and

ν0
ν

= (1 + λΘ)−(1+nµ) (23)

where, λ = (Tw − T∞)/T∞. Now by incorporating the equations form (21)-(23) in the

system of equations (18)-(20), we will have:

1

2
U + ξ

∂U

∂ξ
− 1

4
η
∂U

∂η
+
∂V

∂η
− λ

(1 + λΘ)

(
ξU

∂Θ

∂ξ
+

(
V − 1

4
ηU

)
∂Θ

∂η

)
= 0 (24)

(1 + λΘ)−(1+nµ)

[(
1

2
+

ξσξσξξ
(1 + σ2ξ )

)
U2 + ξU

∂U

∂ξ
+

(
V − 1

4
ηU

)
∂U

∂η
− Θ

(1 + σ2ξ )

]
=

(1 + σ2ξ )

(
∂2U

∂η2
+

λnµ
(1 + λΘ)

∂Θ

∂η

∂U

∂η

) (25)
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(1 + λΘ)−(1+nµ)

[
ξU

∂Θ

∂ξ
+

(
V − 1

4
ηU

)
∂Θ

∂η

]
=

(1 + σ2ξ )

Pr

(
∂2Θ

∂η2
+

λnλ
(1 + λΘ)

(
∂Θ

∂η

)2
)
(26)

subject to the boundary conditions:

U(ξ, 0) = V (ξ, 0) = Θ(ξ, 0)− 1 = 0

U(ξ,∞) = Θ(ξ, 0) = 0
(27)

A numerical solution for the coupled system of non linear partial differential Eqs. (24)-

(27) by a finite difference method is straightforward, since the computational grids can be

fitted to the body shape in (ξ, η) coordinates. The discretization process is carried out by

exploiting the central difference quotients for diffusion terms, and the forward difference for

the convection terms. The computational process is started at ξ = 0.0 as the singularity

at this point has been removed by the scaling. At every ξ station, the computations are

iterated until the difference of the results, of two successive iterations become less or equal

to 10−6. In order to get accurate results, we have compared the results at different grid size

in η direction and reached at the conclusion to chose ∆η = 0.003. In this integration, the

maximum value of η is taken to be 50.0. A detail description of discretization procedure

and numerical scheme is presented in [22].

Once the unknown variables of both phases are obtained, the measurable physical quantities

like local skin friction coefficient, τw, and rate of heat transfer, Qw, are used to express the

solutions of the current scenario. These quantities are much significant from engineering

point of view, as both can be served to improve specifically the efficiency and shape of

many equipments in aerodynamics. The metamathematical expressions for these physical

quantities takes the underlying form:

τw = Cf

(
Gr−3

ξ

)1/4

= (1 + λ)−(nµ+1)
√

1 + σ2ξ

(
∂U

∂η

)
η=0

Qw = Nu

(
Gr

ξ

)−1/4
= −(1 + λ)nλ

√
1 + σ2ξ

(
∂Θ

∂η

)
η=0

(28)
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In case of uniform thermophysical properties, these expressions takes the underlying for:

τw = Cf

(
Gr−3

ξ

)1/4

=
√

1 + σ2ξ

(
∂U

∂η

)
η=0

Qw = Nu

(
Gr

ξ

)−1/4
= −

√
1 + σ2ξ

(
∂Θ

∂η

)
η=0

(29)

Now the numerical results obtained for the key parameters are discussed in the section

below.

3 Numerical Results and Discussion

The prime interest of the present study is to report the influence of variable thermophysical

properties parameters, nµ, nλ and λ on heat transfer and skin friction coefficient, velocity

and temperature profiles. We performed two-dimensional simulations in order to obtain

solutions of mathematical model presented in terms of primitive variables given in Eqs.

(24-27) from the two-point implicit finite difference method. Numerical results are reported

for the overall effectiveness of variable thermophycial properties of gases moving along a

transverse geometry. As the influence of temperature dependent properties is more pro-

nounced for gases, therefore, present numerical solutions are performed by taking air (i.e.,

(Pr = 0.7, nµ = 0.68, nλ = 0.81) as a participating fluid. The parametric values for air

and other gases are taken from study of Shang and Wang ([8]), while the values of other

parameters are taken as: λ = (0.0, 1.0, 2.0) and a = (0.0, 0.1, 0.3).

In order to ensure the accuracy of our scheme and computational data, comparison is

also being made with already available published data. It should be noted that the numerical

results obtained herein, reduce to those reported by Shang and Wang ([8]) provided the

amplitude of wavy surface parameter is taken as zero. The results are compared in tabular

form and computational data is entered in Table 1 and 2 which shows quite an excellent

agreement between the two studies. Here, the calculated results for different gases agree

well with those reported in [8] (see Table 1 and 2). Besides, it is important to mention here

that, values of rate of heat transfer rates, both at the surface and in free stream region,

i.e, Nu(x,w)/(Gr(x,w))
1/4 and Nu(x,∞)/(Gr(x,∞))

1/4, for various gases at different values of
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λ are compared and summarized in Table 2. Furthermore, the present model recovers the

solutions reported by Yao [9] provided that the thermophysical properties of the gas are

taken as uniform. In [9], Keller box method is used to obtain solutions over the whole

range of axial coordinate ξ, while the present computational results are obtained from

implicit finite difference method. In-spite of different formulations and methods as well, the

computational results for Nusslet number coefficient are compared in Fig. 2 by keeping the

physical parameters as: Pr = 1.0, a = (0.1, 0.3) and (λ = nµ = nλ = 0.0). The graphical

data shows quite an excellent agreement between the two studies and this comparison also

validates our numerical scheme.

Table 1: The comparison between calculated values of − (∂Θ/∂η)η=0 and those reported in
Ref. [8].

Tw/T∞

Ar H2 Air N2

Pr = 0.622 Pr = 0.68 Pr = 0.7 Pr = 0.71
nµ = 0.72 nµ = 0.68 nµ = 0.68 nµ = 0.67
nλ = 0.73 nλ = 0.8 nλ = 0.81 nλ = 0.76

Ref. [8] Present Ref. [8] Present Ref. [8] Present Ref. [8] Present

3 0.1940 0.19388 0.1974 0.19736 0.1987 0.19868 0.2043 0.20432
5/2 0.2256 0.22559 0.2300 0.22995 0.2316 0.23160 0.2374 0.23742
2 0.2714 0.27133 0.2772 0.27719 0.2794 0.27938 0.2852 0.28518

3/2 0.3438 0.34375 0.3526 0.35254 0.3557 0.35568 0.3609 0.36091
5/4 0.3990 0.39902 0.4105 0.41045 0.4188 0.41878 0.4172 0.41715
3/4 0.6035 0.60358 0.6276 0.62769 0.6351 0.63518 0.6336 0.63374
1/2 0.8334 0.83483 0.8774 0.87793 0.8898 0.89027 0.8776 0.87810

In order to show the geometric influence of variation of amplitude of wavy surface

parameter, a, on τw and Qw, Fig. 3 is plotted. For comparison, the behavior of physical

quantities along flat vertical plate (i.e, a = 0.0) is also presented. It is evident from the

figures that both the skin friction coefficient and the rate of heat transfer are uniform all

over the plate, if the amplitude of the vertical plate is zero. The change in surface contour

is followed by raise and fall of the curves. As it can be visualize from Fig. 3, that the effect

of amplitude of the vertical surface a, on average, is to minimize both physical quantities.

But it is interesting to see that the large values of a are a major factor to increase the

amplitude of the sinusoidal waves and the maximum values of skin friction and rate of heat

transfer occur on the crests of the wavy surface while the minimum values occur on the
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Table 2: The comparison between calculated values of Nu(x,∞)/(Gr(x,∞))
1/4 and

Nu(x,w)/(Gr(x,w))
1/4 with those reported in Ref. [8].

Tw/T∞

Ar H2 Air N2

Pr = 0.622 Pr = 0.68 Pr = 0.7 Pr = 0.71
nµ = 0.72 nµ = 0.68 nµ = 0.68 nµ = 0.67
nλ = 0.73 nλ = 0.8 nλ = 0.81 nλ = 0.76

Nu(x,∞)/(Gr(x,∞))
1/4

Ref. [8] Present Ref. [8] Present Ref. [8] Present Ref. [8] Present

3 0.306 0.30572 0.336 0.33607 0.342 0.34206 0.333 0.33298
5/2 0.311 0.31139 0.338 0.33843 0.344 0.34400 0.337 0.33685
2 0.319 0.31823 0.341 0.34126 0.347 0.34635 0.341 0.34150

3/2 0.326 0.32680 0.345 0.34480 0.350 0.34929 0.347 0.34730
1 0.339 0.33830 0.350 0.34951 0.354 0.35321 0.356 0.35503

Nu(x,w)/(Gr(x,w))
1/4

3 0.353 0.35265 0.351 0.35117 0.354 0.35352 0.362 0.36157
5/2 0.350 0.35079 0.351 0.35106 0.354 0.35359 0.361 0.36081
2 0.347 0.34823 0.351 0.35085 0.354 0.35363 0.360 0.35972

3/2 0.344 0.34449 0.350 0.35043 0.354 0.35356 0.358 0.35803
1 0.339 0.33830 0.350 0.34951 0.354 0.35321 0.356 0.35503

troughs. Particularly, the rate of heat transfer is significantly affected by increasing the

fluctuations in sinusoidal waves. As it can be seen from Fig. 3(b) that the rate of heat

transfer is maximum for flat surface (a = 0.0). This may happen because the thermal

resistance increases as the fluid accumulates between the trough and crest, and ultimately

the rate of heat transfer is reduced near the leading edge.

Influence of parameter, λ on skin friction coefficient, τw and local rate of heat

transfer coefficient Qw is also presented graphically in Fig. 4. Here, the parameter λ varies

between 0 and 2, and it should be noted that λ ' 0.0 corresponds to the case for small

temperature difference between the surface and the fluid (Tw−T∞ ' 0) and indicating that

buoyancy approximation becomes valid. However, for high temperature difference variable

thermophysical properties of air are considered which depicts considerable variation in the

numerical values of local skin friction and rate of heat transfer. As it can be inferred

from Fig. 4, that both the skin friction coefficient and rate of heat transfer undergoes a

considerable decline by increasing the parameter λ. Particularly, the amplitude of the waves

representing the skin friction coefficient in Fig. 4(a) is sufficiently become small for non-zero

values of λ. This may happen because, the air with variable density and viscosity becomes
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less dense and viscous due to large temperature variations, which ultimately reduces the

frictional forces near the vicinity of wavy plate. Similar behavior is observed in Fig. 4(b),

the heat transfer rate is very low across the wavy surface for high λ which indicates that

λ acts as a retarding force for Qw. Such behavior is quite usual because the variable

thermophysical properties of air significantly affect the heat transport phenomenon. It is

important to mention here that, λ = 0.0 recovers the solutions for free convection of viscous

fluid model with uniform properties.

In order to make the comparison of skin friction coefficients and rate of heat trans-

fer of different gases, Fig. 5 is plotted. For this, numerical computations are made for

some practical examples, such that, i) air (Pr = 0.7, nµ = 0.68, nλ = 0.81), ii) O2(Pr =

0.733, nµ = 0.694, nλ = 0.86) and iii) water vapour (Pr = 1.0, nµ = 1.04, nλ = 1.185) and

these values are taken from the study of Shang and Wang [8]. It is observed from Fig. 5(a),

that the skin friction coefficient is same for air and O2, but not in case of water vapour.

The physical reason for this behavior may be apprehended to the fact that the air contains

a very small amount of water vapour, i.e, on average around 1% at sea level, and 0.4% over

the entire atmosphere. Sice, the ratio of water vapour in air is too low as compared to other

gases, therefore, the behavior of τw is not the same as that of O2 and many other gases in

air. More interestingly, the rate of heat transfer is maximum when the water vapoour are

penetrated into the mechanism (see Fig. 5(b)). Since the air is composition of all raw gases,

therefore, Qw is too low for the case of air, whereas, its shows its maximum value for water

vapour. It is important to mention here that, not only the magnitude of Qw increases for

water vapours but also the amplitude of the pure sinusoidal waveform get intensified. The

entire convective regime is hotter for the case of water vapour and the large temperature

gradient in the thermal boundary layer promotes conductive heating near the surface of the

plate.

In order to determine the influence of variable thermophysical properties of gases

on skin frcition coefficient and rate of heat transfer, Fig. 6 is plotted. For comparative

analysis, τw and Qw for air and water vapour having uniform properties are also presented.

As it can be seen from Fig. 6(a), that the skin friction is higher for the air with constant

properties and it shows reduction when the physical properties of air are taken as temper-
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ature dependent. As mentioned earlier, air get less dense and less viscous with respect to

variation in temperature, and ultimately, the frictional forces becomes less influential in the

boundary layer region. Similar behavior is recorded for the case of water vapour (see Fig.

6(a)). Furthermore, it is observed from the Fig. 6(b) that variable properties has notable

effect on heat transfer rate. More interestingly, the rate of heat transfer is more likely to

be intensified for the case of water vapour as compared to the air.

Fig. 7 is plotted to visualize the detailed scenario of velocity and temperature profile

for various values of amplitude of wavy surface a. As it can clearly seen form Fig. 7(a),

that the velocity of the air decreases significantly owing to increase in value of amplitude a.

Such behavior is expected, because when amplitude of the wavy surface increases, the air

between crust and trough of the waves undergoes more resistance to flow and hence fluid

velocity decreases. As, small values of a offers no resistance to flow and gas quickly attains

its asymptotic value in the boundary layer region. However, the parameter a has reverse

affect on temperature profile (see Fig. 7(b)). This may happens due to the fact that, the

air particles near the surface attains the thermal energy from the hotter surface of large

amplitude and ultimately give rise to the temperature of air in whole convective regime.

Thus, the large values of surface amplitude acts as a delaying factor for gas velocity as well

as temperature profiles to reach their limiting value.

Fig. 8 anticipates the influence of parameter λ on velocity and temperature profiles.

It is inferred from Fig. 8 that parameter λ has notable influence on velocity as well as on

temperature profiles of air. The plots in Fig. 8 reveals the fact that non-zero values of

λ participates in magnifying the velocity and temperature profile. Particularly, non-zero

values of λ acts like a supportive driving force that accelerates the temperature of the air

within the boundary layer region.

The effect of parameters variable thermophysical properties on velocity and temper-

ature profiles of air and water vapour is illustrated in Fig. 9. For comparison, velocity and

temperature profiles for air and water vapour with uniform properties are also presented.

It is noteworthy to mention here that, (nµ = nλ = 0.0) corresponds to the case all the

properties of the air and water vapour are taken as uniform. The curve in Fig. 9 show

that, velocity and temperature profiles for both air and water vapour shows a considerable
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incline for non-zero values of parameters nµ and nλ. For the case of uniform thermophysical

properties, the velocity as well as temperature profiles decays quickly to their asymptotical

values and approaches to zero in the free stream region.

4 Conclusion

This paper aims to compute the effects of variable thermophysical properties on natural

convection flow along a vertical wavy heated plate. The nonlinear system of boundary layer

equations are iteratively solved step-by-step by using implicit finite difference method along

with tri-diagonal solver. The problem is investigated to predict the characteristics of free

convection for the gases having non-uniform properties moving along a transverse geometry.

Computational results are shown for the physical quantities, namely, skin friction coefficient,

rate of heat transfer, velocity and temperature profiles. The solutions are established for a

range of physically important parameters which emerge from the variable thermophysical

properties of the gas together with the sinusoidal wave form geometry. It is concluded that

the heat transfer coefficient near the surface of the wavy plate is considerably reduced for

the air with variable properties.
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Fig. 2 Local Nusselt number coefficient for a = 0.1, 0.3, while Pr = 1.0 and
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Fig. 3(a) Skin friction and (b) Rate of heat transfer coefficients for
a = (0.0, 0.1, 0.3) while Pr = 0.7, nλ = 0.81, nµ = 0.68 and λ = 1.0.
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Fig. 4(a) Skin friction and (b) Rate of heat transfer coefficients for
λ = (0.0, 1.0, 2.0), while Pr = 0.7, a = 0.3, nλ = 0.81 and nµ = 0.68.
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Fig. 5 Comparison of (a) Skin friction coefficients and (b) Rates of heat
transfer of Air (Pr = 0.7, nµ = 0.68, nλ = 0.81), O2(Pr = 0.733, nµ = 0.694, nλ = 0.86)

and Water vapour (Pr = 1.0, nµ = 1.04, nλ = 1.185) while a = 0.3 and λ = 1.0.
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Fig. 6(a) Skin friction and (b) Rate of heat transfer coefficients of Air
(Pr = 0.7, nµ = (0.0, 0.68), nλ = (0.0, 0.81)) and Water vapour

(Pr = 1.0, nµ = (0.0, 1.04), nλ = (0.0, 1.185)) while a = 0.3 and λ = 1.0.
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Fig. 7(a) Velocity and (b) Temperature profiles for for a = (0.0, 0.1, 0.3) while
Pr = 0.7, nλ = 0.81, nµ = 0.68, λ = 1.0 and ξ = 10.0.
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Fig. 8(a) Velocity and (b) Temperature profiles for λ = (0.0, 1.0, 2.0), while
Pr = 0.7, a = 0.3, nλ = 0.81, nµ = 0.68 and ξ = 10.0.
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Fig. 9(a) Velocity and (b) Temperature profiles of Air
(Pr = 0.7, nµ = (0.0, 0.68), nλ = (0.0, 0.81)) and Water vapour

(Pr = 1.0, nµ = (0.0, 1.04), nλ = (0.0, 1.185)) while a = 0.3, λ = 1.0 and ξ = 10.0.
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