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Abstract We solve the V-V-P, vorticity-velocity-pressure, formulation of the sta-
tionary incompressible Navier-Stokes equations based on the least-squares finite el-
ement method. For the discrete systems, we use a conjugate gradient (CG) solver
accelerated with a geometric multigrid preconditioner for the complete system. In
addition, we employ a Krylov space smoother inside of the multigrid which al-
lows a parameter-free smoothing. Combining this linear solver with the Newton
linearization, we construct a very robust and efficient solver. We use biquadratic
finite elements to enhance the mass conservation of the least-squares method for
the inflow-outflow problems and to obtain highly accurate results. We demonstrate
the advantages of using the higher order finite elements and the grid independent
solver behavior through the solution of three stationary laminar flow problems of
benchmarking character. The comparisons show excellent agreement between our
results and those of the Galerkin mixed finite element method as well as available
reference solutions.
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1 Introduction

The least-squares finite element method (LSFEM) is a numerical method for
the solution of partial differential equations. The LSFEM is generally mo-
tivated by the desire to recover the advantageous features of Rayleigh-Ritz
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methods, as for instance, the choice of the approximation spaces is free from
discrete compatibility conditions and the corresponding discrete system is
symmetric and positive definite [20].

In this paper, we solve the incompressible Navier-Stokes (NS) equations with
the LSFEM. Direct application of the LSFEM to the second-order NS equa-
tions requires the use of quite impractical C1 finite elements [20]. Therefore,
we introduce the vorticity as a new variable to recast the NS equations to
a first-order system of equations, i.e. the vorticity-velocity-pressure (V-V-P)
system. The classical V-V-P formulation has been investigated by many au-
thors, for instance by Bochev [1], Jiang [7] and Bochev and Gungburger [20]
and with further modifications by Heys et al. [9, 6, 10]. We study the classical
V-V-P system.

As it was mentioned, the resulting LSFEM system is symmetric and positive
definite [20]. This permits the use of the conjugate gradient (CG) method and
efficient multigrid solvers for the solution of the discrete systems. In order to
improve the efficiency of the solution method, the multigrid and the Krylov
subspace method, here CG, can be combined with two different strategies.
The first strategy is to use the multigrid as a preconditioner for the Krylov
method [5]. The advantage of this scheme is that the Krylov method reduces
the error in eigenmodes that are not being effectively reduced by multigrid.
The second strategy is to employ Krylov methods as multigrid smoother. The
Krylov methods appropriately determine the size of the solution updates at
each smoothing step [26]. This leads to smoothing sweeps which, in contrast
to the standard SOR or Jacobi smoothing, are free from predefined damping
parameters.

Heys et al. studied the LSFEM solution of the Stokes equation [5] and the NS
equations [8, 9, 10] with an algebraic multigrid preconditioned CG method.
A geometric multigrid preconditioned CG solver was used by Ranjan and
Reddy [23] for the Spectral/hp LSFEM solution of the NS equations. They
demonstrated superior convergence of the multigrid solver compared to the
Jacobi preconditioning. More interestingly, Köster [14] and Wobker [26] used
preconditioned BiCGStab as smoother in a geometric multigrid method as
well as an outer solver around it to solve the Poisson equation with standard
Galerkin finite element method. They reported higher numerical stability and
lower total costs of the solution process compared to the standalone multigrid
or BiCGStab solvers.

We develop a geometric multigrid solver as a preconditioner for the CG
(MPCG) iterations to solve the V-V-P system with LSFEM. In addition, we
use a CG pre/post-smoother to obtain efficient and parameter-free smooth-
ing sweeps. We demonstrate a robust and grid independent behavior for the
solution of different flow problems with both bilinear and biquadratic finite
elements.
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Despite the advantages of the LSFEM, the lack of local mass conservation of
this method is one of its drawbacks. Different strategies have been employed
to overcome this deficiency. For very recent techniques and also an overview of
the previous efforts we refer to the works of Bochev et al. [17, 18]. One remedy
for 2D problems, which is also analyzed in this work, is to use higher order
finite elements [13]. Weighting the continuity equation more strongly [11] is
another well-known method to recover mass conservation. We show, through
the Poiseuille flow and the flow around cylinder problems, that quadratic finite
elements satisfy the mass conservation to a great extent without the need to
further weight the continuity equation.

Moreover, we show that accurate results can be obtained with V-V-P LSFEM
provided that higher order finite elements are used. We demonstrate this with
a quantitative analysis of the flow around cylinder and the lid-driven cavity
problems.

Therefore, the paper is organized as follows: in the next section we introduce
the incompressible NS equations, the continuous and the discrete least-square
principles with their properties and the designed LSFEM solver. In the next
section, we present the general MPCG solver settings and the detailed results
of three incompressible fluid flow problems. Finally, we make a conclusion in
the last section.

2 LSFEM for the Navier-Stokes Equations

2.1 Governing Equations

The incompressible NS equations for a stationary flow are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u · ∇u+∇p− ν�u = f in Ω

∇ · u = 0 in Ω

u = gD on ΓD

n · σ = gN on ΓN

(1)

along with the zero mean pressure constraint

∫
Ω

p = 0 (2)

where Ω ⊂ R
2 is a bounded domain, p is the normalized pressure p = P/ρ,

ν = μ/ρ is the kinematic viscosity, f is the source term, gD is the value
of the Dirichlet boundary conditions on the Dirichlet boundary ΓD, gN is
the prescribed traction on the Neumann boundary ΓN , n is the outward
unit normal on the boundary, σ is the stress tensor and Γ = ΓD ∪ ΓN and
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ΓD∩ΓN = ∅. The kinematic viscosity and the density of the fluid are assumed
to be constant.

The first equation in (1) is the momentum equation where velocities u =
[u , v]T and pressure p are the unknowns and the second equation represents
the continuity equation.

2.2 First-order Systems

The straightforward application of the LSFEM to the second-order NS equa-
tions requires C1 finite elements [20]. To avoid the practical difficulties in
the implementation of such FEMs, we first recast the second-order equation
to a system of first-order equations. Another important reason for not us-
ing the straightforward LSFEM is that the resulting system matrix will be
ill-conditioned [19].

Vorticity-Velocity-Pressure Formulation

A common strategy to reformulate the second-order NS equations to an equiv-
alent first-order system is to introduce the vorticity, ω, as a new variable [20].
In two-dimensional problems the vorticity is a scalar and defined as

ω = ∇× u. (3)

Using the NS equations (1) and the vorticity equation (3) we obtain the first-
order Vorticity-Velocity-Pressure (V-V-P) system of equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u · ∇u+∇p+ ν∇× ω = f in Ω

∇ · u = 0 in Ω

ω −∇× u = 0 in Ω

u = gD on ΓD

n · σ = gN on ΓN .

(4)

To obtain the V-V-P system (4), we use the following vector identity

∇×∇× u = −�u+∇(∇ · u) (5)

and the incompressibility constraint ∇ · u = 0. It is easy to show that the
first-order V-V-P equations and the NS equations are mutually equivalent [7].
Therefore, based on the analysis provided in the book by Jiang [7] and by
Ouazzi [16], we impose no extra boundary conditions for the vorticity.
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Linearization of the Convective Terms

The nonlinear convective term, u · ∇u, in the momentum equations needs
to be linearized. We linearize the convective term before applying the least-
squares technique. Therefore, we use the Newton method to approximate the
nonlinear term as follows

un+1 · ∇un+1
� un · ∇un+1 + un+1 · ∇un − un · ∇un (6)

where superscripts n and n+1 refer to the previous and the current nonlinear
iterations, respectively.

We terminate the nonlinear iterations when the relative errors, in the Eu-
clidean norm, of the unknowns drop below a certain tolerance ε

∣∣∣∣Un+1 − Un
∣∣∣∣
2

||Un+1||2
< ε , U = [u, p, ω]T . (7)

2.3 Continuous Least-Squares Principles

We define the L2-norm least-squares energy functionals based on the residuals
of the first-order system (4) as follows

J (v, q, ξ; f) = ||v · ∇v +∇q + ν∇× ξ − f ||20
+α ||∇ · v||20 + ||ξ −∇× v||20 ∀(v, q, ξ) ∈ V

(8)

and

Jν(v, q, ξ; f) =
1

ν
||v · ∇v +∇q + ν∇× ξ − f ||20
+α ||∇ · v||20 + ||ξ −∇× v||20 ∀(v, q, ξ) ∈ V

(9)

where V is the space of admissible functions

V =
{
(v, q, ξ) ∈ H1

0(Ω)×H1(Ω) ∩ L2
0(Ω)×H1(Ω)

}
. (10)

Here, α is a scaling parameter aimed to improve the mass conservation of
the LSFEM formulation [11, 21, 22]. The Jν functional, hereafter referred
to as the weighted functional, is obtained by scaling the momentum balance
equations with the inverse kinematic viscosity.

The minimization problem associated with the least-squares functionals in (8)
and (9) is to find (u, p, ω) ∈ V such that

(u, p, ω) = argmin
(v,q,ξ)∈V

J (v, q, ξ; f) (11)
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where the functional J in equation (11) refers to both the standard and the
weighted functionals.

The variational problem based on the optimality condition of the minimization
problem (11), considering the approximation in (6), is to find (u, p, ω) ∈ V
such that

A(u, p, ω;v, q, ξ) = F(v, q, ξ) ∀(v, q, ξ) ∈ V (12)

where A is a bilinear form defined on V × V → R

A(u, p, ω;v, q, ξ) := α(∇ · u,∇ · v)
+ (un · ∇u+ u · ∇un,un · ∇v + v · ∇un +∇q + ν∇× ξ)

+ (∇p+ ν∇× ω,un · ∇v + v · ∇un +∇q + ν∇× ξ)

+ (ω −∇× u, ξ −∇× v)

(13)

and F is a linear form defined on V → R

F(v, q, ξ) := (f + un · ∇un,v · ∇v +∇q + ν∇× ξ). (14)

For clarity, the bilinear and the linear forms corresponding to the weighted
functional (9) are subscripted with ν as follows:

Aν(u, p, ω;v, q, ξ) := α(∇ · u,∇ · v)
+

1

ν
(un · ∇u+ u · ∇un,un · ∇v + v · ∇un +∇q + ν∇× ξ)

+
1

ν
(∇p+ ν∇× ω,un · ∇v + v · ∇un +∇q + ν∇× ξ)

+ (ω −∇× u, ξ −∇× v)

(15)

Fν(v, q, ξ) :=
1

ν
(f + un · ∇un,v · ∇v +∇q + ν∇× ξ) (16)

Operator Form of the Problem

To analyze the properties of the least-squares problem, let us write

A(u, p, ω;v, q, ξ) =
(
L(u, p, ω),L(v, q, ξ)

)
(17)

where L is the operator given by

L =

⎛
⎜⎜⎜⎜⎝

0 ∇ ν∇×
√
α∇· 0 0

−∇× 0 I

⎞
⎟⎟⎟⎟⎠ . (18)
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Here, I is the identity tensor and ∇, ∇· and ∇× are gradient, divergence and
curl operators, respectively. It should be noted that the nonlinear terms are
omitted for simplicity.

Restricting to the C∞
0 (Ω) functions, we rewrite the bilinear form (17) as

A(u, p, ω;v, q, ξ) =
(
L∗L(u, p, ω), (v, q, ξ)

)
(19)

where L∗ is the formal adjoint of L, and the least-squares operator L∗L is given
by

L∗L =

⎛
⎜⎜⎜⎜⎝

0 −√
α∇ −∇×

−∇· 0 0

ν∇× 0 I

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 ∇ ν∇×
√
α∇· 0 0

−∇× 0 I

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

−α∇∇ ·+∇×∇× 0 −∇×

0 −∇ · ∇ 0

−∇× 0 I + ν2∇×∇×

⎞
⎟⎟⎟⎟⎠ .

(20)

We repeat the same procedure (the derivation is skipped) to obtain the fol-
lowing least-squares operator L∗

νLν corresponding to the weighted formulation

L∗
νLν =

⎛
⎜⎜⎜⎜⎝

−α∇∇ ·+∇×∇× 0 −∇×

0 − 1
ν∇ · ∇ 0

−∇× 0 I +∇×∇×

⎞
⎟⎟⎟⎟⎠ . (21)

The resulting system matrices, from equations (20) and (21), are symmetric
and positive definite. So, after discretization, we are able to use the CGmethod
to efficiently solve the system of equations. In addition, both of the least-
squares systems are differentially diagonal dominant. This property, combined
with the use of higher order finite elements, leads to efficient multigrid solver
performance [9]. Our aim is to design an efficient solver which exploits the
properties of the least-squares system with respect to both the CG and the
multigrid methods. Therefore, we use CG as the main solver and accelerate it
with the multigrid preconditioning, which is the previously mentioned MPCG
solver.

Also, we use CG as pre/post-smoother which appropriately determines the
size of the solution updates at each smoothing step [26]. Therefore, the CG
smoothing leads to efficient and particularly parameter-free smoothing sweeps.
In addition, we accelerate the smoothing process by using a SSOR precondi-
tioner, which in this context requires no damping parameter in case of sym-
metric Gauß-Seidel sweeps.
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It is worth noting that the possibility of using standard smoothers for the
solution of the NS equations is another advantage of the LSFEM over the
mixed Galerkin methods that require specially designed smoothers [24].

2.4 Discrete Least-Squares Principle

We introduce the approximation space Vh, restrict our variational problem
(12) to finite dimensional spaces, and consider the following approximation
problem

Ah(uh, ph, ωh;vh, qh, ξh) = Fh(vh, qh, ξh) ∀(vh, qh, ξh) ∈ Vh. (22)

Choosing appropriate basis functions for the finite dimensional space Vh, we
obtain a discrete system of equations for the unknown LSFEM variables,
namely (uh, ph, ωh). Here we use conforming finite elements, therefore we
set Vh ⊂ V . In addition, since the well-known LBB condition has not to
be satisfied, we use equal-order finite elements in the V-V-P least-squares
method.

3 Numerical Results and Discussions

We study three steady state flow problems, i.e. the Poiseuille flow, the
flow around cylinder and the lid-driven cavity flow, with both standard LS-
FEM and weighted LSFEM (W-LSFEM) derived from functionals (8) and
(9), respectively. We investigate the performance of the MPCG solver for
a wide range of parameters. We compare our results with the results of
the mixed finite element method (MFEM) produced by FeatFlow (see
www.featflow.de), and with available benchmark solutions in the literature.

Moreover, we study the traditional mass conservation problem of the LSFEM
through the Poiseuille flow and the flow around cylinder test cases. To in-
vestigate the mass conservation, we measure the Global Mass Conservation
(GMC) in terms of the fractional change of mass flow rate, defined as

GMC =

∫
Γi

ρ (n · u) dΓi −
∫
Γo

ρ (n · u) dΓo∫
Γi

ρ (n · u) dΓi
× 100 (23)

where Γi is the inflow boundary of the domain and Γo is any vertical section
between the inflow and the outflow boundaries, including the outflow.

Finally, we perform a quantitative analysis of the lid-driven cavity flow in the
laminar regime.

We use the following configurations for all flow simulations unless it is specif-
ically stated:
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1. Q1 (bilinear) or Q2 (biquadratic) finite elements for all unknowns

2. The MPCG solver for the solution of the linearized system of equations
with

(a) Direct Gaussian elimination (UMFPACK [4]) as coarse-grid solver

(b) SSOR-preconditioned CG smoother with 4 pre/post-smoothing steps

(c) F-cycle as the multigrid cycle

(d) All other components in the multigrid approach, that means intergrid
transfer and coarse grid correction, are quite standard and are based
on the underlying mesh hierarchy and the properties of the chosen
conforming finite elements [24]

3. Relative stopping criterion ε = 1E-6.

3.1 Poiseuille Flow

We study a laminar Poiseuille flow at Reynolds number Re = 100 in a square
domain of Ω = [0, 1] × [0, 1]. The two horizontal solid walls have no-slip
boundary conditions. The inflow velocity boundary condition is given by

[u, v] = [y(1− y), 0]. (24)

The exact pressure solution for this problem is

p(x) = 2ν(L− x) (25)

where L = 1 is the length of the domain.

Outflow Boundary Conditions

We analyze two different boundary conditions for the outflow boundary. The
first one, which comes from the exact solution for the velocity, is to set the
same boundary condition as the inflow, i.e. equation (24). This is an essential
boundary condition, so it is treated in a strong manner by filtering the sys-
tem matrix and the right-hand side vector appropriately. The other boundary
condition is to prescribe the zero-normal stress on the outflow [12, 13, 23].
The stress tensor for the incompressible fluid is defined as

σ = −pI+ ν∇u (26)

and the outflow boundary condition reads

σ · n = (−pI+ ν∇u) · n = 0 on Γout (27)
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where n is the outward unit vector normal to the outflow boundary Γout.
Considering the fact that we have a vertical outflow section, n = [1 , 0]T ,
equation (27) simplifies to

⎧⎪⎨
⎪⎩

−p+ ν
∂u

∂x
= 0 on Γout

ν
∂v

∂x
= 0 on Γout.

(28)

We incorporate the boundary conditions in equation (28) into the variational
problem (in a weak manner) using the L2-norm functionals acting on the
outflow boundary. Therefore, the energy functional in (8) changes to

Jout(v, q, ξ; f) = ||v · ∇v +∇q + ν∇× ξ − f ||20
+α ||∇ · v||20 + ||ξ −∇× v||20

+ ||(−qI+ ν∇v) · n||20,Γout
∀(v, q, ξ) ∈ V .

(29)

We use a similar treatment to add the boundary terms to the weighted func-
tional (9).

Remark 3.1 In the case of zero-normal stress boundary conditions, we ob-
tain the exact pressure, equation (25), from the LSFEM simulations. In other
words, the zero stress boundary condition helps to make the pressure field
unique. However, when we apply Dirichlet velocity boundary conditions on
the outflow, we fix the pressure in one point to make the pressure field unique.

The computational grid contains one quadrilateral element on the first level,
level 1, and finer grids are obtained based on the multilevel grid refinement. In
the multilevel refinement, every coarse grid is divided into four fine elements
by connecting the midpoints of the opposite edges [15]. Then we use the
hierarchy of the multilevel grids in our geometric multigrid preconditioner.

Using Q1 elements, we present the GMC values between the inflow and the
different vertical cross-sections of the domain for the LSFEM and the W-
LSFEM formulations in Table 1 and Table 2, respectively. The results show
that mass conservation improves with mesh refinement and is admittedly sat-
isfied throughout the domain at finer grids. The GMC values are further
reduced when a scaling parameter, α > 1, is employed at each level. In ad-
dition, the results of the Dirichlet outflow boundary condition show slightly
better mass conservation compared to those of the zero-normal stress bound-
ary condition. The results of Table 1 and Table 2 show that on coarse grids
less mass conservation is achieved with the W-LSFEM in comparison with
the standard LSFEM. However, the difference between the two formulations
becomes negligible with further grid refinement.

In the case of Q2 finite elements, the obtained velocity field is exact and the
GMC values are zero, up to the iteration error, everywhere in the domain.
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This is due to the fact that the Poiseuille flow’s parabolic velocity field can
be fully represented by the biquadratic finite element. Therefore, we skip here
the Q2 element results.

Table 1. LSFEM, absolute values of the GMC in vertical cross-sections of the
Poiseuille flow at Re = 100 with Q1 elements

α = 1.0 α = 10 α = 100
Lev. x = 0.3 x = 0.8 x = 0.3 x = 0.8 x = 0.3 x = 0.8

zero-normal stress
5 1.540063 2.435800 0.520126 0.614301 0.406549 0.416399
6 0.447549 0.722513 0.134901 0.162917 0.101985 0.104672
7 0.138748 0.238623 0.036068 0.046048 0.025626 0.026484
8 0.044002 0.082468 0.009900 0.013754 0.006470 0.006803

Dirichlet boundary condition
5 0.967960 0.858946 0.457747 0.446324 0.398668 0.397421
6 0.283028 0.250209 0.117297 0.114153 0.099898 0.099585
7 0.082833 0.074349 0.030338 0.029532 0.025029 0.024955
8 0.023621 0.022299 0.007861 0.007731 0.006275 0.006262

Table 2. W-LSFEM, absolute values of the GMC in vertical cross-sections of the
Poiseuille flow at Re = 100 with Q1 elements

α = 1.0 α = 10 α = 100
Lev. x = 0.3 x = 0.8 x = 0.3 x = 0.8 x = 0.3 x = 0.8

zero-normal stress
5 2.057919 3.740288 0.627447 0.881192 0.414364 0.438957
6 0.722934 0.140562 0.172234 0.258356 0.105095 0.113889
7 0.215425 0.433627 0.044964 0.069519 0.026494 0.029075
8 0.057796 0.119313 0.011419 0.017906 0.006644 0.007322

Dirichlet boundary condition
5 1.094678 1.100044 0.490521 0.485411 0.400358 0.399665
6 0.331548 0.348048 0.126444 0.127463 0.100521 0.100554
7 0.091683 0.098458 0.031871 0.032484 0.025170 0.025223
8 0.023839 0.025854 0.007953 0.008146 0.006291 0.006309
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3.2 Flow around Cylinder

In this section, we simulate a laminar steady state flow passed a circular
cylinder. The geometry of the benchmark configuration consists of a simple
channel of length 2.2 and height 0.41. At [x, y] = [0.2, 0.2] a cylinder with
diameter D = 0.1 is placed. The kinematic viscosity of the fluid is ν = 0.001
and Re = 20 which is defined as

Re =
UmeanD

ν
(30)

where Umean is the average velocity of the inflow stream and defined as

Umean =
2

3
Umax. (31)

We refer to [25] and www.featflow.de/en/benchmarks.html for further details
concerning this benchmark.

Boundary Conditions

The horizontal upper and lower walls and the cylinder have no-slip boundary
conditions. The inflow velocity boundary conditions are defined as

[u, v] =

[
1.2y(0.41− y)

0.412
, 0

]
. (32)

For the outflow boundary, we impose the zero-normal stress boundary condi-
tion defined in equation (27).

We present the computational mesh of the coarsest level, level 1, in Figure 1.
Correspondingly, Table 3 summarizes the information regarding the number
of elements and the number of degrees of freedom.

Fig. 1. Flow around cylinder, computational grid of level 1

To investigate the effect of the scaling parameter α, we present the GMC
values for two cross-sections (one upstream of the cylinder at x = 0.05 and
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Table 3. Mesh information for the flow around cylinder problem, the number of
elements (NE) and the number of degrees of freedom (NDoF)

NDoF
Lev. NE Q1 Q2

1 130 624 2,288
2 520 2,288 8,736
3 2,080 8,736 34,112
4 8,320 34,112 134,784
5 33,280 134,784 535,808
6 133,120 535,808 2,136,576

the other one on the outflow at x = 2.2) in Table 4 and Table 5. The Q1-
element results show that the mass conservation is not well satisfied, even for
the fine grids, throughout the domain with α = 1. The GMC values reduce
with an increase in α. Similar severe mass loss of the LSFEM, when piecewise
linear finite elements are used, has been reported by Chang and Nelson [3],
Deang and Gunzburger [11] and Bolton and Thatcher [21] for the Stokes flow
and by Bolton and Thatcher [22] for the NS equations in the literature.

The Q2-element results in Table 5 are much superior to those of the Q1-
element and the mass conservation is well satisfied in this case even for the
coarsest level with α = 1. Similar to the Poiseuille flow, the GMC values be-
come smaller when we increase α, and the difference between the two LSFEM
formulations is trivial on the fine grids.

Table 4. GMC in different vertical cross-sections of the flow around cylinder at
Re = 20 with Q1 elements

x-coordinate of the cross-section
Lev. 0.05 2.2 0.05 2.2 0.05 2.2

LSFEM
α = 1.0 α = 10 α = 100

3 7.602904 47.600894 2.411089 12.180128 1.496185 5.769657
4 3.145125 19.579627 0.830648 3.852176 0.473927 1.618546
5 1.110650 7.160065 0.253329 1.245693 0.128078 0.481929

W-LSFEM
α = 1.0 α = 10 α = 100

3 11.068663 58.389813 3.744287 18.092152 1.836556 7.385963
4 5.236971 30.295098 1.338794 6.673319 0.648462 2.472131
5 1.920968 12.032364 0.386032 2.060374 0.187898 0.777445
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Table 5. GMC in different vertical cross-sections of the flow around cylinder at
Re = 20 with Q2 elements

x-coordinate of the cross-section
Lev. 0.05 2.2 0.05 2.2 0.05 2.2

LSFEM
α = 1.0 α = 10 α = 100

3 0.217743 0.747127 0.098456 0.340778 0.030647 0.111722
4 0.032186 0.107947 0.015427 0.050872 0.009083 0.031029
5 0.004133 0.013817 0.001881 0.006068 0.001416 0.004536

W-LSFEM
α = 1.0 α = 10 α = 100

3 0.424058 1.499480 0.155576 0.542333 0.090863 0.313636
4 0.047289 0.163867 0.017809 0.059399 0.012530 0.041305
5 0.004929 0.016752 0.001962 0.006401 0.001472 0.004738

Next, we analyze the number of nonlinear iterations and the corresponding
averaged linear solver (MPCG solver) iterations and present the results for
different α in Table 6. We observe a grid-independent convergence behavior
and a constant number of iterations with grid refinement at each α, with
the optimal number of iterations obtained for α = 1. However, the number
of the linear solver iterations increases when we depart from α = 1. Using
Q2 elements, the required number of iterations for convergence is smaller for
the W-LSFEM, showing a better convergence behavior compared with the
standard LSFEM.

Table 6. The number of nonlinear iterations and the corresponding averaged num-
ber of linear solver iterations for flow around cylinder at Re = 20

LSFEM Q1 LSFEM Q2 W-LSFEM Q1 W-LSFEM Q2

α α
Lev. 1.0 10 100 1.0 10 100 1.0 10 100 1.0 10 100

3 8/2 8/2 6/3 10/3 10/6 10/10 8/3 8/3 8/3 7/3 7/4 7/6
4 8/2 8/3 6/4 10/3 10/4 10/9 8/3 8/3 8/5 7/3 7/3 7/7
5 8/2 8/2 8/4 10/2 10/3 10/7 8/3 8/3 8/5 7/3 7/6 8/8

Moreover, we calculate the lift and drag coefficients and the pressure drop
across the cylinder. For the definition of these flow parameters one should
refer to [25]. We summarize the W-LSFEM results for different α in Table 7.
The Q2-element results are much more accurate than the Q1-element results,
and those pertained to α = 1 are in excellent agreement with the benchmark
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solutions. Departing from the α = 1 case, the accuracy of the flow parameters
is degraded especially for the Q1 elements. The quadratic element results are
less sensitive to the α variations compared to the linear element results.

Table 7. W-LSFEM, flow parameters in the flow around cylinder at Re = 20

Q1 elements Q2 elements
Lev. α = 1 α = 10 α = 100 α = 1 α = 10 α = 100

Drag coefficient CD

4 4.2446633 4.9678882 4.4068603 5.5612881 5.5544254 5.4392066
5 5.0579843 5.3925772 5.0770015 5.5771424 5.5754761 5.5551275
6 5.4216095 5.5292391 5.4194334 5.5791512 5.5787593 5.5747834

Lift coefficient CL

4 0.0169573 0.0415490 0.107789 0.0103164 0.0105209 0.0115738
5 0.0142112 0.0230143 0.0578331 0.0105818 0.0105999 0.0106819
6 0.0119161 0.0143226 0.0283854 0.0106132 0.0106150 0.0106223

Pressure drop �p
4 0.0834404 0.0964543 0.0769076 0.1170801 0.1170131 0.1151433
5 0.1042858 0.1106489 0.0976744 0.1174629 0.1174541 0.1172354
6 0.1135247 0.1156183 0.1105739 0.1175109 0.1175098 0.1174848

ref. [25]: CD = 5.57953523384, CL = 0.010618948146, �p = 0.11752016697

3.3 Lid-driven Cavity Flow

We simulate the regularized lid-driven cavity flow problem in this section. The
flow domain is a unit square which has no-slip boundary conditions on the
vertical and lower horizontal walls. The upper wall, the lid, has zero verti-
cal velocity and a horizontal velocity, i.e., the lid velocity. Normally, the lid
velocity is taken to be constant which leads to the singularities on the two
upper corners of the domain. To remove these singularities, we prescribe a
regularized horizontal velocity [2], defined as

ulid = [−16x2(1− x)2, 0]. (33)

We fix the pressure in one point, p = 0, in the middle of the lower cavity wall.

In addition to the conventional local velocity profiles, we investigate two other
global quantities as defined in [2]. The first one is the kinetic energy defined
as

E =
1

2
||uh||20,Ω (34)

and the other quantity is the enstrophy defined as follows
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Z =
1

2
||wh||20,Ω (35)

where ||·||0,Ω is the L2 norm.

Here we use the same computational grid as for the Poiseuille flow problem.
We present the percent error of the horizontal velocity through the vertical
centerline of the cavity for different Re in Tables 8, 9 and 10. We obtain
the percent errors by comparing the W-LSFEM results with the converged
reference solutions of the FeatFlow solver on a highly refined grid. At each
Re, we use three different computational grids to ensure that grid-independent
results are obtained. Results show a very good agreement with the reference
solutions at all Re.

Table 8. Percent error of the horizontal velocity through the vertical centerline of
the cavity at Re = 1, W-LSFEM with Q2 elements and MFEM with Q2P1 elements

W-LSFEM on Lev. MFEM
Coord. 7 8 9 ref. value

0.1 0.07 0.01 0.00 4.702885E-02
0.2 0.01 0.00 0.00 8.265610E-02
0.3 0.01 0.00 0.00 1.146949E-01
0.4 0.02 0.00 0.00 1.441905E-01
0.5 0.01 0.00 0.00 1.654724E-01
0.6 0.09 0.01 0.00 1.638459E-01
0.7 0.16 0.05 0.00 1.114928E-01
0.8 0.80 0.27 0.00 -3.903038E-02
0.9 0.22 0.03 0.00 -3.658718E-01

In Table 11, we compare the kinetic energy values of the W-LSFEM with the
FeatFlow results for different Re. For the Q2 elements, we observe excel-
lent convergence with grid refinement and obtain very accurate kinetic energy
results for all Re. However, for higher Reynolds numbers, Re = 1000, the
accurate kinetic energy value is obtained at a relatively finer grid, i.e. level
9. The W-LSFEM results for Q1 elements are in good agreement with the
reference solution only for Re = 1. For higher Re, both the asymptotic con-
vergence and the accuracy of the results are affected significantly as compared
to the Q2 element results.

We compare the accuracy of the Q2 element results of the W-LSFEM with
those of Bruneau and Saad [2], obtained with a finite difference method, and
also the MFEM reference results for the kinetic energy and the enstrophy. We
make this comparison at Re = 1000 and summarize the results in Table 12.
Both global quantities W and Z converge to the MFEM reference solution
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Table 9. Percent error of the horizontal velocity through the vertical centerline
of the cavity at Re = 400, W-LSFEM with Q2 elements and MFEM with Q2P1

elements

W-LSFEM on Lev. MFEM
Coord. 7 8 9 ref. value

0.1 0.75 0.05 0.00 9.447373E-02
0.2 0.50 0.03 0.00 1.817027E-01
0.3 0.11 0.01 0.00 2.335708E-01
0.4 0.30 0.03 0.00 1.967821E-01
0.5 0.68 0.05 0.00 1.040445E-01
0.6 6.35 0.81 0.05 5.466929E-03
0.7 0.68 0.04 0.00 -8.760763E-02
0.8 0.30 0.01 0.00 -1.682347E-01
0.9 0.52 0.06 0.00 -2.365439E-01

Table 10. Percent error of the horizontal velocity through the vertical centerline
of the cavity at Re = 1000, W-LSFEM with Q2 elements and MFEM with Q2P1

elements

W-LSFEM on Lev. MFEM
Coord. 7 8 9 ref. value

0.1 4.57 0.37 0.04 1.787746E-01
0.2 6.10 0.24 0.02 2.767111E-01
0.3 11.35 0.40 0.02 2.128689E-01
0.4 21.37 0.82 0.06 1.275674E-01
0.5 24.31 0.85 0.07 5.190039E-02
0.6 43.34 2.19 0.12 -2.592104E-02
0.7 28.17 1.32 0.09 -1.093997E-01
0.8 18.72 0.89 0.06 -1.985532E-01
0.9 10.37 0.50 0.04 -2.637121E-01

with grid refinement. Also, Table 12 shows that our least-squares solution is
more accurate than the solution provided by Bruneau and Saad [2].

4 Conclusion

We used the least-squares FEM to solve the vorticity-velocity-pressure for-
mulation of the incompressible NS equations. Equal order bilinear and bi-
quadratic finite elements are used for the discrete systems. We developed
an efficient multigrid-preconditioned CG solver for the solution of the sym-
metric and positive definite least-squares systems. Also, a preconditioned
CG smoother is used inside of the multigrid solver to obtain parameter-free
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Table 11. Convergence of the kinetic energy for the regularized cavity problem,
comparison between W-LSFEM and MFEM

W-LSFEM MFEM

Lev. Q1 Q2 Q̃1Q0 Q2P1

Re = 1
7 1.767995E-02 1.862353E-02 1.860621E-02 1.862439E-02
8 1.831566E-02 1.862432E-02 1.861982E-02 1.862438E-02
9 1.853055E-02 1.862438E-02 1.862324E-02 1.862438E-02

Re = 400
7 3.556316E-02 2.133053E-02 2.148649E-02 2.131707E-02
8 3.104720E-02 2.131581E-02 2.136484E-02 2.131547E-02
9 2.394639E-02 2.131537E-02 2.132812E-02 2.131529E-02

Re = 1000
7 1.714473E-02 2.552796E-02 2.409799E-02 2.277778E-02
8 2.962952E-02 2.287704E-02 2.305179E-02 2.276761E-02
9 3.334635E-02 2.277389E-02 2.282649E-02 2.276582E-02

Table 12. Convergence of the kinetic energy E and the enstrophy Z for the reg-
ularized cavity problem at Re = 1000, comparison between W-LSFEM with Q2

elements, MFEM with Q2P1 elements and the finite difference method in [2]

Method grid E Z

W-LSFEM
64× 64 0.025528 4.806740
128× 128 0.022877 4.827331
256× 256 0.022774 4.830225

MFEM
64× 64 0.022778 4.829535
128× 128 0.022768 4.830403
256× 256 0.022766 4.830499

Ref. [2]
64× 64 0.021564 4.645800
128× 128 0.022315 4.771100
256× 256 0.022542 4.812300
512× 512 0.022607 4.824300

smoothing. We used higher order finite elements to enhance mass conservation
of the least-squares method for the inflow-outflow problems. In addition, we
have shown that higher order finite elements should be used in order to achieve
accurate results with the LSFEM. We studied the accuracy and the perfor-
mance of the proposed methodology through the solution of the Poiseuille flow,
flow around cylinder and the lid-driven cavity problems. Excellent agreement
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is obtained between the LSFEM and classical mixed finite element approaches
as well as the available benchmark solutions in the literature.
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