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While simulation methods in the field of Computational Fluid Dynamics (CFD) are already quite advanced, 
efficient and well developed numerical approaches for optimisation and optimal control in CFD are still 
under development. Particular challenges in this context are optimisation problems with instationary flows, 
resulting in discrete nonlinear systems of equations with an extremely high number of unknowns. We give a 
short overview about current developments in the field of solvers for such situations. Our emphasis will be 
placed on special space-time multigrid based solution strategies which are able to solve the underlying 
nonlinear system of equations with linear complexity.

1 Introduction 
The optimal control of incompressible, nonstationary 
flow problems belongs to today’s most challenging 
problems in the field of optimisation. Modeling leads 
to minimisation problems whose necessary first order 
optimality conditions form the so-called Karush-
Kuhn-Tucker (KKT-) systems. These is the starting 
point for numerical solution approches. All variables 
in the KKT system are fully coupled, so that its 
discretisation leads to a very high-dimensional 
nonlinear system of equations. 

There are different discretisation and solver 
approaches available to tackle KKT systems 
numerically, and a fairly good overview can be found 
in [1] and [2]. Newer works (cf. [3], [5]) start to use 
multigrid methods to prevent performance 
degeneration for fine discretisations. The trick is to 
apply multigrid methods simultaneously in space and 
time. We will sketch this approach for the optimal 
distributed control of the nonstationary Navier-Stokes 
equations. 

2 Distributed flow control 
A typical model problem for optimisation in CFD is 
optimal distributed control of the nonstationary 
Navier-Stokes equations, which is modelled as 
follows. The spatial domain is denoted by d

(d=2,3), with boundary . For T>0, Q:=(0,T)
defines a space-time cylinder and :=(0,T)  its 
space-time boundary. With >0 a regularisation 
parameter, z:Q d a given ‘target’ function and  

y0: d d a given initial condition, we consider the 
minimisation problem 
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such that 

upyyyyt  in Q, (2a) 
0y  in Q, (2b) 
0y  on , (2c) 
0)0( yy  in , (2d) 

where )(2|||| QL  denotes the L2-norm over the space-

time cylinder Q. The aim of this problem is to find an 
optimal control u such that the flow y is as close as 
possible to the given target flow z in the mean-square 
sense.

2.1 The KKT system 
Using the Lagrange multiplier approach [3], the 
necessary optimality conditions of the above 
minimization can be formulated as a nonlinear system 
of equations: 

State, adjoint and control equation: 

upyyyyt  in Q, (3a) 
0y  in Q, (3b) 

)()( zyyy T
t   in Q, (4a) 

0  in Q, (4b) 

0u  in Q (5) 
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Boundary and initial/end time conditions 

0y  on ,

0)(,)0( 0 Tyy  in ,

In this system, :Q d denotes the so-called adjoint 
velocity and :Q  the adjoint pressure. Equation 
(3) proceeds forward in time, equation (4) backward 
in time and the control equation (5) couples the 
forward and backward equation. Therefore, the 
system represents a fully coupled boundary value 
problem in space and time. 

2.2 Space-time discretisation and hierarchy 
For the discretisation in space, we choose the finite 
element space Q2 of quadratic finite elements on 
quadritalterals for the velocities and controls. The 
pressures are discretised using discP1 , the space of 
piecewise discontinuous linear finite elements. Time 
discretisation is carried out, e.g., with the implicit 
Euler scheme. Higher-order schemes like Crank-
Nicolson are also possible, but lead to more 
complicated numerical algorithms (see [3]). 

Figure 1: Hierarchy of three space-time meshes. 
Coarse mesh (level 1) on the bottom. 

A space-time mesh hierarchy of L  levels is 
obtained as follows: 

1. Spatial discretisation: Let T1,…,TL define a 
hierarchy of meshes in space generated by regular 
refinement of a basic mesh. On each level, a finite 
element discretisation is carried out, resulting in a 
hierarchy of finite element spaces V1,…,VL for 
velocity/control and Z1,…,ZL for the pressure. 

2. Time discretisation: The time interval [0,T] is 
subdivided into N time intervals of equal length 
k=T/N with gridpoints t0=0 < t1 < … < tN=T. A time 
hierarchy is generated by bisection, so that time level 
l contains 2l-1N time intervals. 

The space-time space Wl, l=1,…,L, is defined by the 
combination of (Vl,Z1) in space and 2l-1N intervals in 
time. Figure 1 sketches a hierarchy of three space-
time levels. On the finest space WL, a solution to the 
optimal control problem (1) shall be computed. 

3 Solver design 
Different solver approaches have been developed in 
recent years to tackle the above KKT system (3)-(5) 
numerically, see [1], [3], [4], [5]. In the following, we 
sketch two types of solvers which couple Newton 
techniques for the nonlinear parts with multigrid 
techniques for the linear subproblems. 

3.1 The Newton approach 
The Newton approach is based on equation (5) 
whichwe write in operator form as 

0:)( uuF  in Q. (6) 

In this equation, = (y(u)) is a solution of the adjoint 
equation (4) and y=y(u) a solution of the primal 
equation (3). Given an initial iterate u0, the Newton 
iteration for finding the solution of (6) reads 

)()(' 1
1 nnnn uFuFuu , (7) 

which consists of three steps: 

1. Form the residual 

)( nn uFd . (8a) 

This necessitates three substeps: 

One forward iteration to solve (3) with given un;
this provides an intermediate primal velocity yn

and pressure pn.

One backward iteration to solve (4) with given 
yn; this results in an intermediate adjoint velocity 

n and pressure n.

Form 
)( nnn ud .

2. Calculate u  by solving the linear equation: 

nn duuuF )('  (8b) 
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3. Update the solution: 

uuu nn 1  (8c) 

In step (8b), ))(( uy  is the solution of the 
adjoint equation 

T
t yy )(

yyy T)(  in Q, (9a) 

0  in Q, (9b) 
0  on , (9c)
0)(T  on , (9d) 

with )(uyy  the solution of the linearised primal 
equation 

upyyyyyyt  in Q, (10a) 
0y  in Q, (10b) 
0y  on , (10c) 
0)0(y  in . (10d) 

Step (8b) is numerically expensive as a linear system 
in space and time has to be solved. This can be done 
iteratively by a multigrid approach. 

The linear solver in the Newton approach 
For the linear equation (8b), an arbitrary iterative 
algorithm based on defect corrections can be used. 
For example, given a damping parameter >0 and an 
initial guess 0u  on level L, a simple Richardson 
iteration reads 

))('(1 mnnmm uuFuuu . (11) 

Similarly, it is also possible to apply a BiCGStab or 
GMRES algorithm. All such iterative algorithms 
produce a sequence of iterates mu  that converge to 
the solution u of (8b), which is a function on the 
space-time cylinder. One has to note here that the 
creation of the defect is the expensive part: To 
calculate the matrix-vector product mn uuF )( , the 
following three steps have to be done: 

Solve the primal equation (10); this is a 
simulation of a linear equation forward in time 
and computes an auxiliary my  and mp .

Solve the adjoint equation (9); this is a 
simulation of a linear equation backward in 
time and computes an auxiliary m  and m .

In each timestep, apply the linear combination 

mmmn uuuF )( . (12) 

Multigrid in the Newton approach 
Multigrid is a special type of iterative algorithm and 
can be embedded in the above iterative structure as 
well. It builds upon the hierarchy W1,…,WL of spaces 
in space and time. The basic idea reads as follows: 

1. Take an initial guess 0u as before. 

2. Smoothing: On level L, carry out a fixed number 
of iterations with an iterative algorithm (CG, 
GMRES) as above, e.g., NSM=4 steps. This gives an 
intermediate solution NSM

mu .

3. Coarse grid correction: On level L-1, use NSM
mu

to calculate a ‘coarse grid solution’ u~ to u . Combine 
u~ and NSM

mu  to get a new approximate 1mu . More 
precisely, one applies the defect correction formula 

))('())('(: 1
11

NSM
mnnnL

NSM
mm uuFuRuFPuu

with R a suitable restriction operator from level L to 
L-1, P a prolongation operator from level L-1 to L 
and )(' 1 nL uF an approximation to the operator 

)(' nuF  on level L-1. 

This process can be carried out recursively: The 
approximate solution on level L-1 can be calculated 
by a couple of smoothing steps on level L-1 followed 
by a coarse grid correction from level L-2, etc. On 
level l=1, the iterative algorithm (CG, GMRES,…) 
has to be carried out until convergence to calculate a 
basic coarse grid solution. A good overview about 
multigrid can be found in [6] and [7].  

3.2 The SQP approach 
The above Newton approach can be interpreted as an 
elimination of the equations (3) and (4) from the KKT 
system. An iteration is carried out only in based on 
(5), using (3) and (4) as auxiliary problems. The SQP 
approach is an alternative approach which does the 
other way around, formulating an iteration in y, p, ,
 and u simultaneously. It is usually more effective 

than the Newton approach. However, the approach is 
very intrucive and requires a certain amount of 
coding, as it cannot be realised with black-box 
solvers. 
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We consider a special SQP approach which eliminates 
the control. Elimination of equation (5) leads to the 
following set of equations: 

State equation: 

1pyyyyt  in Q, (13a) 

0y  in Q, (13b) 

Adjoint equation: 

)()( zyyy T
t

  in Q, (14a) 
0  in Q, (14b) 

Boundary conditions, initial/end time conditions 
(see above). 

This equation can be expressed in operator form by 

)0,0,0,0(),,,(G py  (15) 

with G=(G1,G2,G3,G4), Gi=Gi (y,p, , ) the defects of 
(13) and (14) given by 

1
1 pyyyyG t

yG2

zyyyG T
t )(3

4G

Given an initial iterate x0:=(y0,p0, 0, 0), a Newton 
iteration has now to be applied to (15). With 
xn:=(yn,pn, n, n), this reads 

)()('1 nnnn xGxGxx . (16) 

Again, this can be decomposed into three steps: 

1. Create the residual 

)( nn xGd . (17a) 

2. Solve the linear equation 

nn dxxG )(' . (17b) 

3. Update the solution by 

xxx nn 1 . (17c) 

Here, (17b) means that ),,,( pyx  is a solution 
of the equations (9) and (10), respectively, with y=yn,
and = n.

The defect 
In contrast to the Newton approach, the creation of 
the residual as well as the solution of the linear 
equation is fundamentally different. The creation of 
the residual in (17a) is rather cheap. For a given 
iterate xn, no system has to be solved. Instead, the 
operator has to be applied to xn, which means a 
couple of matrix-vector products (for the 
Laplace/gradient/divergence operators) or an 
assembly (for the nonlinearities), respectively, in each 
timestep. 

The linear equation 
The main difficulty in this approach is the linear 
system (17b) which has to be solved for all 
primal/adjoint variables simultaneously. This system 
has a very specific form. For example, if the implicit 
Euler scheme is used for the time discretisation, one 
can write the discrete solution vector containing all 
timesteps in the form 

),...,,( 10 N
nnnn xxxx

with ),,,( i
n

i
n

i
n

i
n

i
n pyx  the solution at ti, i=0,…,N. 

A matrix-vector product like in (17b) is then carried 
out with the discrete counterpart of G’(xn), given by a 
(block) tridiagonal matrix of the form 

Np

p

dp

d

n

AM

AM
MAM

MA

x 1

1

0

)('G

The matrices Mp are weighted mass matrices, 
introduced by the implicit Euler scheme in the primal 
equation. Similarly, the matrices Md are weighted 
mass matrices from the adjoint equation. The 
diagonal blocks Ai contain for each timestep a 
(linearised) Navier-Stokes operator that represents the 
coupled equations (13) and (14), as well as weighted 
mass matrix from the timestepping scheme. 

The linear solver in the SQP approach 
As described above, applying the operator G’(xn)
corresponds in the discrete world to a matrix-vector 
product with a (block) tridiagonal matrix. Therefore, 
it is possible to use any iterative algorithm for linear 
systems (BiCGStab, GMRES) in order to solve (17b). 
For example, given an initial iterate 
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),,p,y(:x 00000  and a damping parameter >0,
a Richardson iteration reads 

))('(1 mnnmm xxGdxx . (18) 

Provided  is small enough, this should to converge 
for m  to a solution x  of (17b). Using a BiCGStab 
or GMRES algorithm however is expected to 
converge much more rapidly. 

Preconditioning 
A crucial point concerning the SQP approach is that 
one can easily derive efficient preconditioners. For 
example, the preconditioned version of the 
Richardson iteration above reads 

))('(1
1 mnnmm xxGdCxx  (19) 

with C an approximation to G’(xn). Due to the fact 
that G’(xn) can be represented as a tridiagonal matrix, 
straightforward and efficient preconditioners are the 
Block-Jacobi method, realised by 

N

J

A

A
A

A

2

1

0

C ,

the forward Block Gauß-Seidel preconditioner, 
realised by 

Np

p

p
f
GS

AM

AM
AM

A

2

1

0

C ,

the backward Block Gauß-Seidel b
GSC  (realised by 

using Md on the upper diagonal instead of Mp on the 
lower one) or combinations of these. Applying 1C
that way reduces to the application of the 1

iA  in all 
timesteps i=1,…,N. These problems, however, are 
problems in space, and efficient monolithic spatial 
multigrid solvers are available. 

Monolithic Multigrid in the SQP approach 
For an efficient application of a monolithic multigrid 
strategy, one has to carry out the discretisation of the 
KKT system (i.e., equation (15)) on all levels 1,…,L. 

Multigrid is used to solve equation (17b) as a special 
type of an iterative solution algorithm. The basic idea 
reads as follows, similar to the Newton approach. 

1. Take an initial guess 0x on level L as before. 

2. Smoothing: On level L, carry out a fixed number 
of iterations with an iterative algorithm (BiCGStab, 
GMRES) as above, e.g., NSM=4 steps. This gives an 
intermediate solution NSM

mx .

3. Coarse grid correction: On level L-1, use NSM
mx

to calculate a ‘coarse grid solution’ x~ to x . Combine 
x~ and NSM

mx  to get a new approximate 1mx . More 
precisely, one applies the defect correction formula 

))('())('(: 1
11

NSM
mnnnL

NSM
mm xxGdRuGPxx

with R a suitable restriction operator from level L to 
L-1, P a prolongation operator from level L-1 to L 
and )(' 1 nL uG an approximate solution operator for 

)(' nuG  on level L-1. 

Again, the computation of the coarse grid correction 
x~ can iteratively be carried out using a smoothing/ 
coarse grid correction strategy that involves level L-2, 
L-3, etc. On level l=1, a coarse grid solver has to be 
used, i.e., the iterative algorithm has to iterate until 
convergence. 

4 Numerical examples 
In this section, we present some numerical exmples to 
demonstrate the applicability of the proposed solver 
approaches. We consider the following test example, 
based on the Flow-Around-Cylinder benchmark 
problem from [8], see also [9]. 

The spatial domain is described by a rectangle 
without an inner cylinder, 

05.0:),2.0,2.0(\)41.0,0()2.2,0(: rBr

The boundary of this domain is decomposed into five 
parts:

),41.0,0(}2.2{:
],41.0,0[}0{:

3

1

},41.0{]2.2,0{:
},0{]2.2,0(:

4

2

).2.0,2.0(5 rB

Boundary conditions are defined as y(x,t):=(0,0) for 
542x , do-nothing boundary conditions on 
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3  and a parabolic profile with maximum inflow 
velocity Ymax=1.5 at 1 . Using =1/1000, this results 
in a Re=100 optimisation. The time interval for this 
test case is [0,T] with T=0.35 which roughly 
corresponds to one oscillation in the uncontrolled 
flow.  

Figure 2: Mesh (top), y0 (centre) and z (bottom). 

Figure 3: u at t=0.05 (top) and corresponding 
SurfaceLIC representation (centre). Bottom:  u at 
t=0.5. 

The initial flow y0 is the fully developed 
nonstationary Navier-Stokes flow, the target flow z is 
the stationary Stokes flow. Figure 2 depicts the mesh, 
the initial condition and the target flow, Figure 3 the 
control at different points in time. Table 1 gives an 
overview about the problem size. 

Space-Lev. #vertices #edges #elements
1
2
3
4

  156 
  572 

2 184 
8 528 

   286 
 1 092 
 4 264 
16 848 

  130
  520

2 080
8 320

Table 1: Mesh size for different refinement levels in 
space. 

4.1 Newton solver 
For the following tests, the described space-time 
Newton algorithm preconditioned with a space-time 

multigrid solver in the control space is chosen. The 
space-time Newton algorithm was configured to 
reduce the initial residual by six digits. The space-
time multigrid algorithm used in every Newton step 
reduced its initial residual by two digits using a V-
cycle. For smoothing, four steps of a space-time CG 
method are applied. The coarse grid solver is a CG 
solver as well which damps its initial residual by two 
digits. During the calculation of the nonlinear and 
linear residuals, forward and backward iterations 
have to be performed. Their local systems in space 
are solved such that the residual drops below 10-14.

Single-grid preconditioning 
The first test considers a simple one-level solver 
configuration, see Table 2. On different refinement 
levels in space and time the Newton algorithm with 
embedded CG solver is applied. We use the following 
notations: 

‘SLv’ = refinement level in space 
‘N’ = number of intervals in time  
Topt = time for the the optimisation. 
Tsim = time needed for the computation of the 
first forward simulation 
#NL = number of Newton iterations 

lin = sum of all iterations of the linear solver 

The number of CG iterations increases slightly with 
increasing the number of timesteps, so level-
independent convergence is nearly lost. The 
refinement in space does not seem to be relevant for 
the efficiency of the CG solver. CG only needs about 
7-10 iterations to reduce the residual by a factor of 
10-2 in every Newton iteration, which leads in this 
example to a ratio of about 30-50 between the 
simulation and the optimisation. 

SLv N Topt Tsim #NL lin
CG
NL#

sim

opt

T
T

3
3
3

 40
 80

160

 4:12:29
 9:01:58

18:38:29

 6:38 
12:17 
23:56 

5
5
5

35
43
47

7.0
8.6
9.4

38.1
44.1
46.7

2
3
4

 40
 40
 40

   42:55
 4:12:29

15:36:08

 1:09 
 6:38 
25:48 

5
5
5

36
35
36

7.2
7.0
7.2

37.1
38.1
36.3

2
3

 20
 40

   20:33
 4:12:29

 0:40 
 6:38 

5
5

32
35

6.4
7.0

31.1
38.1

Table 2: Newton with single-grid CG solver 



Multigrid-based Solution Methods for the Optimal Control of Nonstationary Flows   

Multigrid preconditioning 
Table 3 depicts results for different levels using a 
multigrid solver for the linear subproblems. For the 
coarse mesh, space level two with 20 timesteps is 
chosen.

The total number of multigrid iterations is rather 
constant or even reducing for higher levels, which is 
an advantage to the one-level solver. However, 
multigrid needs about 1.5-2.5 iterations per nonlinear 
iteration, which corresponds to 6-10 CG iterations on 
the finest level (due to four smoothing steps per 
multigrid iteration). This is rather similar to the one-
level solver test. The ratio between optimisation and 
simulation is with a factor of 50 higher than in the 
one-level case. So the additional overhead will pay 
off only for meshes with a finer mesh resolution in 
time. 

SLv N Topt Tsim #NL lin
CG
NL#

sim

opt

T
T

3
4
5

40
 80 
160 

  5:40:00 
46:03:22 

297:26:50 

   6:38
  52:24

6:13:18

4
5
5

8
9
8

2.0
1.8
1.6

51.3
52.7
47.8

Table 3: Newton with multigrid solver 

4.2 SQP solver 
In this section, the same example is calculated using 
the SQP approach. The basic test settings are the 
same. However, it is possible to use different solver 
settings here as the SQP approach allows solving 
subproblems inexactly without destroying the 
solution. 

a) The outer Newton solver is configured to reduce 
the nonlinear residual by six digits which is similar to 
the configuration of the Newton above 

b) For the inner linear solver, we apply on the one 
hand a single-grid space-time BiCGStab solver, on 
the other hand a space-time multigrid solver. Both 
reduce the residual by two digits. If a space-time 
multigrid solver is used, the coarse grid solver and the 
smoother is BiCGStab with a forward-backward 
simulation used for preconditioning. The smoother 
applies four (post-) smoothing steps. 

c) For the solver in space in each time interval, we 
apply a spatial monolithic multigrid algorithm which 
reduces its initial residual by two digits. Smoothing is 
carried out with a local pressure-Schur-Complement 
(‘VANKA’-) like technique. 

Single-grid preconditioning 
Table 4 shows the results using the single-grid 
BiCGStab solver. The time Tsim for the simulation 
was taken from the Newton approach in the control 
space, see Table 2. 

The number of nonlinear iterations is independent of 
the level. The number of iterations of the linear solver 
is depending on the time interval length, it rises 
slightly if the number of time intervals increases. The 
refinement level in space does not seem to have an 
influence to the solver efficiency. This behaviour has 
also been seen in the test for the Newton approach in 
the control space. 

Comparing optimisation and simulation, the 
optimisation only needs about 10-20 times longer 
than the simulation. So in this example, the control-
eliminated SQP approach seems to be more efficient 
than the Newton approach in the control space, 
compare Table 2. 

SLv N Topt Tsim #NL lin
CG
NL#

sim

opt

T
T

3
3
3

 40
 80
160

1:53:48
2:16:00
4:40:35

 6:38
12:17
23:56

6
6
6

31
31
33

5.2 
5.2 
5.5 

17.2
11.1
11.7

2
3
4

40
40
40

  16:12
1:53:48
7:28:09

1:09
 6:38

25:48

6
6
5

32
 31 
 26 

5.3 
5.2 
5.2 

14.0
17.2
17.4

2
3
4

20
40
80

     9:05
  1:53:48
12:09:20

  0:40
  6:38
52:19

5
6
6

25
 31 
 34 

5.0 
5.2 
5.7 

13.8
17.2
13.9

Table 4: SQP with single-grid solver 

Multigrid preconditioning 
Table 5 depicts the results in the case where a 
multigrid solver is used for preconditioning in space 
and time. 

The convergence behaviour of the multigrid-based 
approach does not depend on the refinement level in 
contrast to the single-grid approach. Concerning the 
absolute time and the ratio between optimisation and 
simulation, this approach is slightly more expensive 
than the single-grid approach. One can see a factor of 
about 20. In total, the complete approach is still only 
half as expensive in this configuration compared to 
the Newton approach in the control space, see Table 2 
and Table 3. 
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SLv N Topt Tsim #NL lin
CG
NL#

sim

opt

T
T

3
4

40
80

2:22:30 
16:41:27 

6:38 
52:24 

6
6

9
10

1.5
1.7

21.5
19.1

Table 5: SQP with multigrid solver 

5 Conclusions and Outlook 
We presented two modern approaches for the optimal 
control of nonstationary, incompressible flows. The 
methods are rather general and can in a similar way 
also be applied to other types of problems. It can be 
said that the complete approach can also be extended 
to boundary control problems. Furthermore, bounds 
in the control are usually also possible, cf. [3]. 

The basic idea is to derive a KKT system which 
models the first order necessary optimality conditions 
of a given minimisation problem. Depending on the 
approach, some equations are eliminated, and a 
Newton solver is applied to the remaining equations. 
The linear system inside of the Newton is solved with 
a space-time multigrid approach. 

The standard Newton approach in the control space 
has the advantage that it can be built upon an existing 
flow solver, as it only needs a forward and a 
backward solver for the primal/adjoint equations. The 
SQP approach on the other hand is more intrusive, but 
(due to more freedom in the choice of the stopping 
criteria) also more efficient. 

In both cases, the multigrid approach leads to level-
independent convergence rates. This means that the 
effort necessary for solving the optimisation problem 
grows linearly with the problem size, which is 
optimal. However, the additional overhead renders 
this approach only useful for very fine discretisations, 
in particular, with a lot of timesteps. 

There are even more methods available, which can be 
seen as modifications of the above two. In the 
‘reduced SQP’ approach for example, one combines 
the above two approaches (see [1]). Furthermore, 
special BFGS-based variants are also available which 
are applicable, e.g., for boundary control problems 
with only few unknowns. Numerical results for these 
approaches are, however, not yet available. 
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