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Abstract

Numerical solvers based on population balance equations (PBE) coupled with 

flow equations are a promising approach to simulate liquid/gas–liquid 

dispersed flows which are very commonly observed in the nature and in 

industrial processes. Our aim is to discuss the challenges for the numerical 

solution of the coupled equation systems and to present detailed numerical 

recipes whose main ingredients are the method of classes, positivity-preserving 

linearization and the high-order FEM-AFC schemes, additional to our in-house 

flow solver software package FEATFLOW. We study liquid-liquid flows 

through a static mixer and dispersed phase systems in a flat bubble column 

with the accordingly developed computational tool. The suggested recipes were 

validated by comparing the numerical results against experimental data so that

we present a novel approach to the numerical simulation of bubbly flows at 

moderate gas holdups, which involves highly accurate numerical techniques 

and is computationally efficient and robust.

Keywords: Population balance equations, Computational fluid dynamics, 

Bubble columns, Dispersed flows, Numerical methods. 

1  Introduction

Dispersed two-phase flows are one of the most common flow types observed both in the 

nature and in industrial processes. It can be the motion of clouds, the movement of a smoke 

plume, or the dynamics of fluids in processes which are interesting to food, petroleum, 

chemical, pharmaceutical and many other industries; they are all governed by the same 



physical laws. Even though the dispersed phase systems are encountered so often in daily life 

and in the industrial processes worth billions of Euros, our understanding of the physical laws 

governing the dispersed phase systems is still quite limited and indeed, it is not due to lack of 

interest in this research field but “simply” due to the fact that the physical phenomena are 

highly complex and tangled. 

In practical applications, a single droplet size model, as reported by numerous

researchers [1, 2], cannot properly describe the interfacial interactions between the phases; 

therefore, population balance equations (PBE) are employed to describe the evolution of the 

secondary phase in the internal coordinate(s) and in time. The first efforts which can be 

related to concepts of population balances appeared at chemical engineering applications in 

the 1960s, and there has been since then an intensive ongoing research in this field by 

researchers of many different backgrounds. 

PBE are integro-partial differential equations, exhibit analytical solutions for very few 

cases only which are mostly not able to describe the applications in practice, and the use of 

appropriate numerical techniques is unavoidable in order to deal with practical problems. 

There are several numerical methods satisfying the necessary requirements with respect to 

robustness and realizability: the quadrature method of moments (QMOM) [3, 4], the direct 

quadrature method of moments (DQMM) [5], parallel parent and daughter classes (PPDC) [6] 

and the method of classes (MC) [7, 8]. Among these techniques, a moment based method 

PPDC and a sectional method MC are in our focus. 

The dynamics of bubble columns has been a very interesting topic to researchers in the 

field of CFD for the last several decades and many different methods have been developed. 

Numerical simulation of flow fields in bubble columns is possible by adopting the Euler-

Lagrange or Euler-Euler approaches. For practical reasons, e.g., high numerical efforts and

computational costs which are related to tracking and calculating the motion of each bubble 

individually in the flow field, the former method is restricted to be applied on lean dispersions

only while the later method requires less effort in both numerics and computation. 

Nevertheless, both of the methods lead to the same results if the problems are handled with 

adequate computational effort as it has been reported by Sokolichin et al. [9]. We followed 

Sokolichin et al. and adopted the Euler-Euler approach to describe the two-phase system. 



In the Euler-Euler approach, one should employ one of the following models: mixture 

model, two- and multi-fluid model; and solving the continuity equation for two-/multi-fluid 

models is very troublesome because the continuity has to be satisfied with the numerical 

solutions of the weakly coupled phase velocities, that exhibit a great numerical challenge for 

Navier-Stokes solvers [10], especially for segregated ones. The choice of the fluid model is 

not independent of how the PBE are coupled to the flow part. One-way coupled CFD-PBE 

models can not comprehensively describe the dynamics of bubble columns. Therefore, a two-

way coupled CFD-PBE model is required and beginning from the employed discretization 

method for the internal coordinate, each adopted approach influences the decision on the fluid 

model.

The PBE do not need to be solved on the same computational grid (in space and in 

time) with the flow equations due to excessive computational costs. The first attempt to

reduce the required computational afford may be the compartment method [11] which is 

based on the idea of dividing the computational domain into very large units, namely 

compartments, and solving the PBE in each compartments with the averaged values of fluid 

variables. This method can be employed to simulate the liquid–liquid dispersions in stirred 

tanks for which certain regions have quasi-steady flow behavior whereas for the applications 

like bubble columns, i.e., when the interaction of the phases should be considered in a two-

way direction, the compartment method is not good anymore and the PBE must be solved for 

the flow problem’s number of degrees of freedom, considering the number of required 

compartments is on the order of 10, this requires a great computational effort. Moreover, now 

the non-linear scalar transport problem needs to be solved for the dispersed phase. And, all 

these add up to an enormous computational effort hence the use of efficient numerical 

techniques are of predominant importance.

A comprehensive PBE-CFD model involves a two- or multi-fluid model for the 

momentum balance [12]. If all the bubbles are assumed to share the same velocity field, only 

one momentum equation is solved for the dispersed phase, that is very common in case of a 

moment based method to be adopted to solve PBE, it is also used with MC [13-14].

Nevertheless, within both methods there have to be solved additional convection-diffusion-

reaction (CDR) problems. These problems are either transport of the low-order moments or 

certain property (properties) of classes (multi-dimensional PBE) and the number scales with 

the required number of moments or the employed number of classes. Nevertheless, multi-fluid 

models can be more preferable when MC is chosen; then, a separate momentum equation is 



solved for each class. There are three main difficulties which are inherited from multi-fluid 

models independent of PBE: (i) how to satisfy the continuity equation, (ii) excessive 

computational costs of the matrix assembly, (iii) determining the interphase forces. Moreover, 

not only solving a large number of transport problems is challenging, another problem is to 

determine the appropriate advection velocity, especially for the moment based methods [15,

16]. The size of the second difficulty can be understood better, if it is considered that each 

class is a separate phase, for each one the discrete convection operator has to be assembled, 

and the cost of assembling the convection matrix is much more than solving the associated 

linear equation with the CDR problem.

The third difficulty should be considered in detail since it is the coupling term between 

the momentum equations. There are three main interphase forces, the virtual mass force 

( VMf ), the lift force ( Lf ) and the drag force ( Df ), and in our case we only work on the drag 

force. The drag force seems to be the only force which has significant influence and clear 

definition even tough there are various definitions of the drag coefficient. On the other hand, 

VMf is not influential and can be freely neglected for the sake of reducing the computational 

cost, and Lf has extremely deviating formulations; moreover, it is frequently abused for 

fitting numerical results to experimental data [2, 17]. 

We preferred a simplified model and tackled the problem within the Euler-Euler 

approach. The dispersed system is considered as a mixture and a single momentum equation 

is solved for the fluid in the framework of the mixture model and the algebraic slip relation is 

employed to recover the gas phase velocity. Discretized PBE with MC are coupled to 

turbulent flow equations in a two-way fashion. While the hydrodynamic variables are 

coupling the PBE equation to flow solutions, the formulation of the drag force requires the 

solution of PBE. The turbulence is modeled with the standard k turbulence model and 

buoyancy induced turbulence. Buoyancy is handled with a relaxed Boussinesq approximation. 

Then, the continuity equation is solved with the constant density assumption and the local gas 

holdup is calculated regarding the ideal gas law. We assume that all the bubbles share the 

same velocity field and this velocity is obtained by using the Sauter mean diameter of the 

population within the algebraic slip relation. 



2  Mathematical model and numerical approaches

The developed complete mathematical model is based on an Euler-Euler approach and 

consists of three parts: (i) the hydrodynamic core, a model to solve the “incompressible” 

Navier-Stokes equations; (ii) the simplified two-fluid model based on an analog of 

Boussinesq approximation for natural convection problems; (iii) PBE to describe the size 

distribution of the dispersed phase, the schematic view of how these models are connected is 

given in Figure 1.

Figure 1: Sketch of the coupling effects inside the complete model.

The second part restricts the model to be valid for bubbly flows with moderate gas 

holdups (up to 10%). Under such circumstances, “incompressible” Navier-Stokes equations 

are enriched with an extra buoyancy force term, by what the gas-liquid mixture is 

characterized as a weakly compressible fluid. Consequently, the dispersed phase system can 

be considered as space-sharing interpenetrating continua. The major advantage of this 

approach is that the computational cost is independent of the number of bubbles to be 

simulated. 

Replacing the effective density L
~ by the liquid density L except for the 

gravitational force leads to the Navier-Stokes equations for the liquid phase as described in 

the following: 
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where Tu+u=D(u) and the effective viscosity T C k 2

is a function of the turbulent 

kinetic energy k and its dissipation rate . The continuity equation of the gas phase and the

evolution of the turbulent quantities are described by the following equations,
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where the production terms 2|
2

TT
k u+u|=P and slipkk upC=S are due to the 

shear and bubble-induced turbulence (BIT), respectively. The involved constants ,09.0C

1.31.01.921.44 21 =,=,=C,=C k for the standard k model are known with high 

precision, whereas the BIT parameters ]10.01[ ,Ck and ]1.921[ ,C are highly problem-

dependent. 

After decomposition of the interphase force term responsible for momentum 

exchange between the present two phases and using the assumptions introduced by 

Sokolichin et al. [17, 19], the momentum balance of the gas phase reduces to: 
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and the gas velocity (2.6) can be given with the following definitions of the slip velocity (2.7)

and the drift velocity (2.8) as, 
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We should remark that driftu is not calculated explicitly but is accounted for the 

dispersion. DC (2.7) is adopted from the study by Bannari et al. [13] in which several other 

formulations of DC are comprehensively discussed; even though the chosen value of DC

does not provide the most accurate results, it has the advantage that it yields to a linear 



formulation of slipu (2.7) after some manipulation of the equation (2.7). With other 

formulations of DC which involve slipu , additional nonlinearity arises; those demand even 

more computational efforts. Since our focus is mostly on investigating the couplings between 

PBE and equations of fluid dynamics, we have chosen the constant drag coefficient in (2.7) 

which has proven to yield sufficiently accurate results [20]. The implementation is realized 

such that in further studies, any other desired definition of DC can be easily adopted with an 

explicit treatment without changing any other part of the developed computer program but the 

respected subroutine.

The term r (radii of bubbles) which appears in the definition of the WC (2.5) linearization 

parameter in the formulation of slipu couples the system to the PBE. One common practice is 

to adopt a certain value for r and having a model without PBE; however, this is not a general 

solution, even though it may lead to acceptable results for specific cases. Moreover, even it 

can be considered that slipu has a certain value depending on the initial and boundary 

conditions, so that the model is simplified. In general, slipu has the opposite direction of the 

gradient of the pressure, and the square of its magnitude is proportional to the magnitude of 

the pressure gradient unless DC is a function of slipu . The adopted algebraic slip relation can 

easily provide a specific advection velocity for each class; nevertheless, this would lead to a 

stronger coupling of PBE and the flow part. Then, PBE had to be solved in the same outer 

loop with the CFD part, see Figure 2, and this would result in much higher computational 

costs since it would require solving the PBE several times in one time step. Assuming that the 

local variation of bubble sizes is not significantly changing during one sufficiently small 

time step, we say that bubbles forming one ensemble can be advected with a 

certain local advection velocity which we obtain by using the Sauter mean diameter

( 32d 3
ii dN 2

ii dN ), that accurately represents bubbles’ sizes in an ensemble. So that, by 

advecting all the bubble classes within a common velocity field we do not only solve PBE and 

equations of the fluid dynamics in a segregated fashion but we avoid assembling a discrete 

convective operator for each class. If we take into account that assembly of discrete transport 

operators takes much more time than solving the associated linear problem, the extend of the 

gain in computational effort will be more obvious. 

We wish to investigate the effect of size distribution of the bubbles by obtaining a 

representative size of bubble ensembles, which is the Sauter mean diameter; consequently, we 



incorporate our fluid model with PBE which can be given as, 
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Equation (2.9) is an integro-partial differential equation which describes how the dispersed 

phase evolves in time, space and size coordinate, in its discrete form it exhibits strong internal 

and external couplings (see c4, c6 and c7 in Figure 1). The external couplings are due to the 

turbulent diffusivity and the velocity which are given with TT / and uG. The internal 

couplings will be more apparent when the discrete counterpart of (2.9) is given. One 

important remark here is about the treatment of the diffusivity; as the air bubbles are accepted 

to be non-diffusive in water, there should be no diffusion in our model; however, since the 

fluid dynamics is described with RANS model, the turbulent viscosity arises which is 

responsible for the diffusive term in (2.9). Hence, the system is highly convection dominant, 

high-resolution positivity preserving schemes are required for accuracy purposes and we 

employ an implicit high order finite elements method with TVD type limiters with positivity 

preserving linearization so that the overshoots and undershoots are avoided, for details 

see [2, 21–23].

The discrete counterpart of the population balance equation (2.9) is carried out with 

the fixed pivot technique in method of classes. The fixed pivot volume of the classes is 

initialized by specifying the volume of the smallest “resolved” class min and the 

discretization factor q , such that 

1i
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where n is the number of classes. The class width i is defined by the difference of the 
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Following equation (2.12), the discrete internal coordinate can be sketched as in Figure 2.



Figure 2: Discrete internal coordinate with MC.

The discretized transport equation (2.9) of the i -th class’ number density probability, 

if , in a discretized form reads 
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where B
ji,r and C

kj,r are the breakage and coalescence kernels, respectively, which will close 

PBE (2.13). In the literature, there are many published studies on modeling of breakage and 

coalescence kernels, Chen et al. presents a detailed comparison of several important kernels 

[24], and we adopted the coalescence and breakage kernels from Lehr et al. [25], that we 

conclude as more favorable in our previous study [21]. The main reasons that we have chosen 

these pair of kernels are: the convergence behavior with the number of parent classes, their 

accuracy and the applicability in a wide range of operating conditions, a detailed study is 

given in [21].

A last point worth to be discussed is the implementation of boundary conditions which is 

not a trivial subject; we follow the prescriptions by Kuzmin et al. [2]. At the inflow boundary 

all velocity components and turbulent quantities, k and , are prescribed. At the outlet ‘do-

nothing’ boundary condition is employed which states that all the normal gradients of all 

variables vanish. The walls are modeled with the free-slip boundary condition which requires 

the computation of walls’ normal which can be cumbersome in case of the walls are not 

aligned with the chosen coordinate system. The gas inflow rate can be incorporated as a 

source into the gas phase continuity equation, and bubbles are introduced at the inflow having 

a size of 1 mm which corresponds to the median class 4th/6th class for 7/11 classes. For the 

further implementation details of boundary and initial conditions, and the wall functions, we 

encourage the reader to refer to the following studies [2, 30, 31].

Hereby, we have completed our discussion on the mathematical model and the 

numerical approaches and now we can present our computational recipe which explains step 

by step our approach to the solution of the described mathematical model within the time 



step nt towards 1nt .

1. Solve the Navier-Stokes equations. 
2. Obtain the gas velocity. 
3. Solve the transport equation for the effective gas

density/ holdup .

4. Solve the coupled equations of the k – model. 
5. Check the convergence criteria for the outer-loop (1–4) for 

the solution of the CFD equations, 
5.1. YES: pass the necessary values to population balance 

model and progress to solve PBE, go to 6. 
5.2. NO: go on with the next iteration in the outer-loop,

go to 1.
6. Solve internally the coupled PBE in the outer-loop 

6.1. Calculate the sink and source terms for PBE. 
6.2. Solve the transport problem for each class.

7. Check the convergence criteria for the outer-loop (6),

7.1. YES: calculate 32d of the population and pass it to the 
fluid dynamics part, 2, for 1+nt .

7.2. NO: go on with the next iteration in the outer-loop, 
go to 6.1.

Our implementation strategies of the internal and external couplings, which are 

sketched in Figure 1, within our computational recipes give rise to the nested iterations which 

are shown in Figure 3 which is important to see how the couplings are handled and how our 

recipes are implemented within the nested iteration strategy; moreover, it gives an idea about 

the computational demand of our accordingly developed computational tool.

As a summary, our computational approach shall be explained with all details for one 

time step: At time step nt one should first solve the Navier-Stokes equations which are 

modified with the Boussinesq approximation, (2.1)–(2.2). To solve these equations the 

employed numerical methods are: FEM on unstructured grid, Pressure-Schur-Complement 

approach which yields to the c2 external coupling, the loop with the l indices (loopl). Since 

the Burgers equations for the velocity components are solved in a decoupled fashion, which 

resulted in the c1 internal coupling. The obtained linear equations for the velocity and 

pressure unknowns are solved with an efficient geometrical multigrid solver in a defect 

correction loop, loopm. Then, the transport equation for the total gas holdup, , is solved with 

the obtained gas velocity being computed with 32d from the PB part. Since this equation and



Figure 3: Developed computational algorithm consisting of nested iteration loops.

the other scalar transport equations in our model are convection dominated, an SOR-solver on 

the finest computational grid is employed with an Algebraic Flux Correction (AFC) scheme 

additional to the positivity-preserving linearization in order to ensure valid non-negative 

solutions. Then the coupled system of k equations is analogously solved in lloop . So far, 

the steps 1–4 have been realized. Since all the involved equations are strongly coupled, steps 

1–4 have to be performed in the first outermost coupling loop. We consider that the coupling 

between PBE and CFD is weak, i.e., we assume that the size distribution of the bubbles has 

been changing negligibly while we are computing the fluid dynamics; so that, the slip velocity 

remains constant in the first outermost coupling and we can solve PBE later. This assumption 

reduces the computational cost considerably so that we are able to numerically simulate our

problems with the developed sequential computational tool. Once we obtained the converged 

solution of the CFD part, we progress with the solution of the PBE. First the sink and source 

terms are computed with MC, step 6.1, then the related terms are incorporated into the 

transport equation of l , which is solved analogously to the previous scalar transport 

equations. Since the values of the classes strongly depend on each other, the equations have to 

be solved non-linearly in the second outermost coupling loop. When the converged solution 



of PBE is obtained, the corresponding 32d field of the population is calculated and passed to 

the CFD part for the computation of the slip velocity in the next time step 1+nt , and the 

discretization of the equations in time is obtained according to the Crank-Nicolson method. 

Figure 4: Values of turbulent dissipation rate (left) and droplet ensembles with  32d (right).

3 Results and discussions

The developed computational tool was firstly used to simulate oil-in-water dispersions which 

is described with a one-way coupled PBE–CFD model. This model, its numerical treatment 

and the verified results are presented in the studies by Bayraktar et al. [21, 26]. Here we show 

a sample result from these studies, and later we present our results concerning the numerical 

simulation of Becker’s experiment [18].

Table 1: Physical properties of the phases

Physical properties Water Oil

(kg m-3) 1000 847

(kg m-1s-1) 1 10-3 32 10-3

(N m-1) 72 10-3 21 10-3

32d (m) – 1 10-3

Static mixers have a broad application field in various industrial processes. We study 

the Sulzer static mixer SMVTM both experimentally and numerically for various volume ratios



of the phases and different volumetric flow-rates. The physical properties of the phases are 

given in Table 1. This case is for the 10% holdup of the oil, the inflow is prescribed as a flat 

velocity profile with value 1m/s, see Figure 5. The turbulent dissipation rate field and droplet 

population with 32d being in between 0.62 mm and 0.63 mm are visualized in Figure 4. Once 

we obtained the 32d field, we calculate the average 32d of the oil droplets at the outlet and 

compare them with the experimental results in Figure 5; for details of the computations we 

refer to Bayraktar et al. [26].

Figure 5: Comparison of experimental and numerical results on a coarse (15 classes, left) and   
fine grid (35 classes, right) in the internal coordinate.

The agreement in the numerical and the experimental results was the main motivation 

for us to extend our work with the two-way coupled CFD-PBE model and to study Becker’s 

experiment. Becker et al. conducted experiments on the motion of bubble swarms in a 

partially aerated flat rectangular bubble column [18]. With the choice of a flat geometry the 

3D flow field can be almost exactly characterized by 2D flow structures; so that, the 

observations of the flow field and measuring the relevant variables are easier and more 

accurate than doing it for 3D structures. 

We simulate the bubble column within a computational domain 

)0.080()1.50()0.50( ,,,= m and on a Cartesian mesh of 6,912 hexahedral finite elements 

which result in 322848 degrees of freedom (dof) for velocity (Rannacher-Turek element, 

nonconforming trilinear 1
~Q FE [27] ), 6912 dof for pressure (piecewise-constant 0Q FE), 

9125)112( + dof for k equations additional to PBE (conforming trilinear 1Q FE). The 

circular gas sparger with 0.06 m diameter is located at the point )0.040.000.15( ,, and the 

prescribed volumetric flow rate is 1.6 l/min.



We prefer to start simulating breakage and coalescence on a developed flow field; 

hence, we obtain a developed flow field with a constant slip velocity 0.2=|u| slip m/s in the 

opposite direction to gravity as Kuzmin et al. have done [2, 28]. After time 10=t s, we start 

to simulate the flow field with the population balance model coupled and the initial bubble 

size 1=d mm which corresponds to the linearization parameter approximated by Kuzmin et 

al., 4105WC kg m-3s-1is chosen.

Figure 6: Simulation results for the computational domain with 6,912 elements.

The simulation results are similar to the observations in the experiments, the 

meandering bubble swarm is numerically simulated until time 15=t s, see Figure 6. In the 

experiments it is observed that the flow field does not tend to be steady in the long term. Our 

numerical simulations show that after the 15th second the bubble swarms approaches to the 



near side wall at 30=t s; then, it leads to a quasi-steady flow field at 60=t s, see Figure 6.

Although, these results are more unsteady compared to the simulations without PBE, they are 

not yet satisfactory; however, we think that a computation that is performed on a finer spatial 

grid can yield to more agreeable results.

The slip velocity is one of the most influential variables on the flow field of the gas 

phase and challenging, and it requires that the gradient of the pressure is recovered. If the 

flow field is resolved on a finer grid, it can be recovered better; so, we homogeneously refined 

our hexahedral grid and obtained a grid of 55,296 hexahedral elements. The results which 

were obtained with this grid are able now to simulate the unsteady meandering bubble swarm 

even in the long run, see Figure 7.

Figure 7: Simulation results with the fine computational grid.

We could numerically simulate the observed motion of bubble swarm in experiments; 

the numerical simulation predicts a qualitatively similar meandering behavior. A great 

challenge, to obtain a “non-diffusive” numerical scheme so that the dynamic behavior of 

bubbly flows can be numerically simulated for long-runs, is achieved within an efficient 

implementation of PBE coupled to CFD. In Table 2, the required computational time by 

different part of the PBE-CFD solver is presented for 60 s of the flow simulation which is 

performed on the coarse computational grid with 7 classes. The simulation is performed 

within a sequential computation on the AMD Opteron 250 CPU with 2.4 GHz frequency. The 

additional cost due to the incorporation of PBE is affordable and the required computational 

time remains on the same order with or without the PBE. The computation on the fine gird 

requires approximately 10 times larger computational time (approx. 1 week), which is at the 



edge of acceptable computational time for us. Therefore, although the Navier Stoke solver and 

the population balance solvers are efficiently parallelized within the domain decomposition 

method, a computation on a finer grid which would be good for the completeness of the 

results is currently not possible with our state-of-art turbulent-flow solver; and we leave it as a 

future task in our coming studies, particularly in combination with hardware-oriented 

techniques and GPU computing.

Table 2: Computational time required for the solution of different part of the model.
(NS: Navier-Stoke Equ. ont. Equ.; MP: Multiphase.)

Model Time (s) Time ( %)
NS 33500 55.4

4270 7.1
KE 13200 21.8
PBE 9475 15.7

13745 22.8

4 Conclusions

PBE coupled with CFD simulations leads to agreeable results on a reasonably fine 

computational grid. The highly nonlinear coupled-model is very demanding with respect to

computational efforts and, hence, requires very accurate and efficient numerical methods. The 

method of classes has shown to be a good choice, being able to describe the population with

few classes, 7, that adds up to an affordable computational cost. The modified k models, 

e.g., Chien’s Low-Reynolds number k turbulence model [21], should be tested since the 

resolved flow field was mildly turbulent. The spatial discretization is of great importance: 

both considering the employed finite element spaces and the mesh size. Positivity preserving 

linearization and high-order stabilization schemes are very crucial to avoid undershoots and 

overshoots. In this manner, a parallel implementation of a Q2/P1 solver for the incompressible 

multi-fluid model and a parallel high-order FEM–AFC solver with Q1 elements for scalar 

transport equations (the PBE and the turbulence equations) is very promising to simulate 

bubbly flows. Moreover, simulations will be more comprehensive if the motion of the water 

surface is resolved with a surface tracking or surface capturing method, e.g., level set method 

[29]. In case of highly turbulent bubbly flows where the dispersion can exhibit a wide 

distribution in the internal coordinate, the method of classes might be less efficient; then, 

other methods, e.g. DQMOM, QMOM, can be employed. 



Acknowledgments

Dr. Dimitri Kuzmin’s studies in the field of bubbly flows are highly acknowledged. The 

authors like to thank Sulzer Innotec, Sulzer Markets and Technology AG for supporting 

Evren Bayraktar with a doctoral scholarship. The support by the LiDOng team at the ITMC at 

TU Dortmund is gratefully acknowledged.

Symbols used

C turbulence model constants (with subscript)

d diameter of bubbles

f number density probability function 

f BV bubble/droplet volume fraction 
f 1 , f 2 , f damping functions 
g gravitational acceleration 
k turbulent kinetic energy 
N number of classes 
P production term due to shear,
P pressure
Q discretization factor 
R kernel 
S production term due to BIT
u velocity 
'u fluctuating velocities 

Greek letters 
void fraction 
class width 

turbulent dissipation rate 
density 

T eddy viscosity 

turbulence model constants (with subscript)

T turbulent Schmidt number 

volume 



Subscripts
D drag
G Gas
K turbulent kinetic energy related
i,j,k class indices (in the context of PBE)
L liquid 

turbulent dissipation rate related
W linearization coefficient
L liquid 
T turbulent

Superscripts
B,C Breakage, coalescence
L,U lower, upper limit of classes
~ Daughter bubble/droplet

source, sink
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