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Abstract

In this paper, we discuss solution techniques of Newton-multigrid type for the resulting
nonlinear saddle-point block-systems if higher order continuous Galerkin-Petrov (cGP(k))
and discontinuous Galerkin (dG(k)) time discretizations are applied to the nonstation-
ary incompressible Navier-Stokes equations. In particular for the cGP(2) method with
quadratic ansatz functions in time, which lead to 3rd order accuracy in the L2-norm and
even to 4th order superconvergence in the endpoints of the time intervals, together with the
finite element pair Q2/P

disc
1 for the spatial approximation of velocity and pressure leading

to a globally 3rd order scheme, we explain the algorithmic details as well as implementation
aspects. All presented solvers are analyzed with respect to their numerical costs for two
prototypical flow configurations.

Keywords: Continuous Galerkin-Petrov method, discontinuous Galerkin method,
incompressible Navier-Stokes equations, Newton-multigrid solver

1. Introduction

To perform nonstationary simulations of incompressible flows, one of the main aims is
to find time stepping schemes which allow relatively large time step sizes to gain accu-
rate results at minimum numerical cost. Here, higher order methods are often essential in
order to achieve highly accurate results on computationally feasible grids. A well-known
approach to solve time dependent problems with higher order accuracy is the Galerkin
method, see for instance [1]. In [2, 3, 4], we have analyzed a special class of time dis-
cretizations of variational type, called continuous Galerkin-Petrov (cGP) schemes, which
show highly accurate results, particularly in comparison to standard one-step schemes like
Crank-Nicolson and also discontinuous Galerkin (dG) time discretizations. To be precise:
The cGP(2) approach with quadratic ansatz functions in time leads to 3rd order accurate
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results in each time point and even to 4th order accuracy in the endpoints of the time inter-
vals. This fully implicit A-stable method requires the solution of a nonlinear saddle-point
block-system in each time step which consists of two coupled generalized Navier-Stokes
equations. Therefore, fourth order in time can be obtained while the number of equa-
tions is only doubled in comparison to classical second order one-step schemes. However,
to realize an efficient scheme which requires less CPU time for achieving comparable ac-
curacy, also solvers of optimal complexity, that means O(N) with N denoting the total
number of unknowns in space, are necessary. Candidates for such solvers are Newton-like
methods with superlinear convergence behaviour for treating the nonlinear problems while
multigrid-Krylov solvers are preferred choices for solving the auxiliary linear subproblems.

In this paper, we present corresponding solution techniques which are based on the
classical Newton method for solving the resulting nonlinear systems while the associated
linear subproblems are treated by using a monolithic (geometrical) multigrid solver which
exploits the characteristics of the underlying Q2/P

disc
1 finite element spaces (for the spatial

discretization) for the construction of the grid transfer routines. As smoothing operator,
we extend the classical ideas of local pressure Schur complement techniques, resp., Vanka-
like methods, which treat all flow variables simultaneously, but locally on smaller patches
as for instance the mesh cells. In the final step, these simple schemes are used as precon-
ditioners in a corresponding Krylov-space method (here: GMRES) which acts as a more
robust smoother in the presented multigrid framework. We explain the algorithmic details
and implementation aspects and analyze the resulting efficiency w.r.t. the convergence be-
havior as well as the observed temporal accuracy, for different mesh sizes in space and
time, and for two prototypical flow configurations with benchmarking character. The cor-
responding test cases are the classical flow around cylinder problem and the flow through a
Venturi pipe. These test cases show the high potential of the presented methodology. On
the one hand, the described Newton-multigrid solvers lead to computational costs which
are approximately three times higher per time step compared to a standard scheme like
Crank-Nicolson. On the other hand, much larger time steps (a factor of 5-10 in our test
configurations) can be used to guarantee the same temporal accuracy as the second or-
der Crank-Nicolson scheme. As a main result, the resulting cGP (2)−Q2/P

disc
1 scheme is

optimal for 2D simulations in that sense that one global refinement step, which leads to
appr. 8 times more unknowns in space and time, requires appr. 8 times more CPU time
while at the same time the accuracy in space and time is improved by a factor of appr. 8,
too (remark: in 3D, the corresponding ‘optimal’ approach would need 4th order accurate
results in space and time).

The paper is organized as follows: Section 2 describes the discretization of the Navier-
Stokes equations in space and time by using Galerkin methods. The resulting discretized
block-systems for different time discretization schemes are presented in Section 3. In
Section 4, we explain the solution techniques for the resulting discrete problems. Besides
the (classical) Newton scheme, we propose a multigrid method for the solution of the linear
subproblems in Section 5. Finally, Section 6 presents the numerical results for a couple
of test problems to analyze the temporal accuracy, resp., the efficiency of the discussed
solution methods. In Section 7, the paper is concluded with a discussion of the results.
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2. FEM discretization in space and time

For a domain Ω ⊂ R
d, we consider the nonstationary incompressible Navier-Stokes

equations, i.e. we want to find for each time t ∈ [0, T ] a velocity field u(t) : Ω → R
d and a

pressure field p(t) : Ω → R such that

∂tu− ν�u+ (u · ∇)u+∇p = f, in Ω× (0, T ],
div u = 0 in Ω× (0, T ],

u = g on ∂Ω× (0, T ],
u(x, 0) = u0(x) in Ω for t = 0,

(1)

where ν denotes the viscosity, f the body force and u0 the initial velocity field at time
t = 0. For simplicity, we restrict to the case d = 2 and we assume homogeneous Dirichlet
conditions at the boundary ∂Ω of a polygonal domain Ω (for other choices see [5]). To
make this problem well-posed in the case of pure Dirichlet boundary conditions, we have
to look for the field p(t) at each time t in the subspace L2

0(Ω) ⊂ L2(Ω) of functions with
zero integral mean value.

For the time discretization, we decompose the time interval I = (0, T ] into N disjoint
subintervals In := (tn−1, tn], where n = 1, . . . , N and 0 = t0 < t1 < · · · < tN−1 < tN = T.
Thus, the value of the time-discrete approximation uτ at time tn is always defined as the
In-value (i.e. the left-sided value in case of discontinuous approximation) uτ(tn) := u− :=
uτ|In(tn). The symbol τ denotes the time discretization parameter and is also used as
the maximum time step size τ := max1≤n≤N τn, where τn := tn − tn−1. Then, for the
subsequent continuous and discontinuous Galerkin time stepping schemes, we approximate
the solution u by means of a function uτ which is piecewise polynomial with respect to
time. In case of the cGP(k)-method, we are looking for uτ in the discrete time-continuous
space (with V = (H1

0 (Ω))
2)

Xk
τ
:= {u ∈ C(I,V) : u

∣∣
In

∈ Pk(In,V) ∀ n = 1, . . . , N}, (2)

where

Pk(In,V) :=
{
u : In → V : u(t) =

k∑
j=0

Ujtj , ∀ t ∈ In, U
j ∈ V, ∀ j

}
. (3)

Moreover, we introduce the discrete time-discontinuous test space

Yk−1
τ

:= {v ∈ L2(I,V) : v
∣∣
In

∈ Pk−1(In,V) ∀ n = 1, . . . , N} (4)

consisting of piecewise polynomials of order k − 1 which are (globally) discontinuous at
the end points of the time intervals. Similarly, we will use for the time-discrete pressure pτ
an analogous ansatz space X̃k

τ
, where the vector valued space V is replaced by the scalar

valued space Q = L2
0(Ω), and an analogous discontinuous test space Ỹ k−1

τ
.

In case of the dG(k−1)-method, we are looking for uτ in the time-discontinuous discrete
space Yk−1

τ
. Next, we describe separately the cGP(k) and dG(k − 1)-method.
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2.1. cGP(k)-method
In order to derive the time discretization, we multiply the equations in (1) with some

suitable In-supported test functions and integrate over Ω × In. To determine uτ|In and
pτ|In we represent them by the polynomial ansatz

uτ|In(t) :=
k∑

j=0

Uj
nφn,j(t), pτ|In(t) :=

k∑
j=0

P j
nφn,j(t), (5)

where the ”coefficients” (Uj
n, P

j
n) are elements of the function spaces V×Q and the poly-

nomial functions φn,j ∈ Pk(In) are the Lagrange basis functions with respect to the k + 1
nodal points tn,j ∈ In satisfying the conditions

φn,j(tn,i) = δi,j, i, j = 0, . . . , k (6)

with the Kronecker symbol δi,j . For an easy treatment of the initial condition, we set
tn,0 = tn−1. Then, the initial condition is equivalent to the condition

U0
n = uτ|In−1

(tn−1) if n ≥ 2 or U0
n = u0 if n = 1. (7)

The other points tn,1, . . . , tn,k are chosen as the quadrature points of the k-point Gaussian
formula on In which is exact if the function to be integrated is a polynomial of degree less
or equal to 2k − 1. We define the basis functions φn,j ∈ Pk(In) of (5) via affine reference
transformations (see [4, 3] for more details). Now, we can describe the time discrete In-
problem of the cGP(k)-method [4, 6]:

Find on the interval In = (tn−1, tn] the k unknown pairs of ”coefficients” (Uj
n, P

j
n) ∈

V ×Q, j = 1, . . . , k, such that for all i = 1, . . . , k, it holds for all (v, q) ∈ V ×Q

k∑
j=0

αi,j

(
Uj

n,v
)
Ω
+

τn

2
a(Ui

n,v) +
τn

2
n(Ui

n,U
i
n,v) +

τn

2
b(v, P i

n) = τn

2 (f(tn,i),v)Ω

b(Ui
n, q) = 0

(8)

with U0
n := uτ(tn−1) for n > 1, U0

1 := u0 and (·, ·)Ω denotes the usual inner product in
(L2(Ω))d. The bilinear forms a(·, ·) and b(·, ·) onV×V andV×Q, respectively, are defined
as

a(u,v) :=

∫
Ω
∇u · ∇v dx ∀ u,v ∈ V, b(v, p) := −

∫
Ω
∇ · v p dx, (9)

and the trilinear form n(·, ·, ·) on V ×V ×V is given as n(w,u,v) :=
∑d

i=1 ns(w, ui, vi)
where

ns(w, ui, vi) :=

∫
Ω
(w · ∇ui)vi dx ∀ w ∈ V, ui, vi ∈ H1

0 (Ω). (10)

A typical property of this cGP(k)-variant is that the initial pressure P 0
n of the ansatz (5)

does not occur in this formulation. In order to achieve superconvergence for the pressure
approximation at the discrete time levels tn, special interpolation techniques using two
neighbored time intervals can be applied (see [3]).

In the following subsections, we specify the constants αi,j of the cGP(k)-method for the
cases k = 1 and k = 2, and for comparison we describe explicitly the well-known dG(1)
approach (see [3] for more details).
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2.1.1. cGP(1)-method.
We use the one-point Gaussian quadrature formula with t̂1 = 0 and tn,1 = tn−1 +

τn

2
.

Then, we get α1,0 = −1 and α1,1 = 1 (see [4, 3]). Thus, problem (8) leads to the following
problem for the ”one” pair of unknowns U1

n = uτ(tn−1 +
τn

2
) and P 1

n = pτ(tn−1 +
τn

2
): Find

(U1
n, P

1
n) ∈ V ×Q such that for all (v, q) ∈ V ×Q it holds(

U1
n,v

)
Ω
+ τn

2 a(U1
n,v) +

τn

2 n(U1
n,U

1
n,v) +

τn

2 b(v, P 1
n ) = τn

2 (f(tn,1),v)Ω +
(
U0

n,v
)
Ω

b(U1
n, q) = 0.

(11)

Once we have determined the solution U1
n at the midpoint tn,1 of the time interval In, we

get the solution at the next discrete time point tn simply by linear extrapolation based on
the ansatz (5), i.e.,

uτ(tn) = 2U1
n −U0

n, (12)

where U0
n is the initial value at the time interval (tn−1, tn] coming from the previous time

interval In−1 or the initial value u0.
If we would replace f(tn,1) by the mean value (f(tn−1) + f(tn))/2, which means that

we replace the one-point Gaussian quadrature of the right hand side by the trapezoidal
rule, the resulting cGP(1)-method is equivalent to the well-known Crank-Nicolson scheme.
The cGP(1)-method is accurate of order 2 in the whole time interval as it is known for
the Crank-Nicolson scheme. Concerning the pressure approximation, one observes that
the second order accuracy holds only in the midpoints of the time intervals. By means of
linear interpolation between the midpoints of two neighboring time intervals we get second
order accuracy also at the discrete time levels tn.

2.1.2. cGP(2)-method.
Here, we use the 2-point Gaussian quadrature formula with the points t̂1 = − 1√

3
and

t̂2 =
1√
3
. Then, we obtain the coefficients

(αi,j) =

(
−
√
3 3

2
2
√
3−3
2√

3 −2
√
3−3
2

3
2

)
i = 1, 2, j = 0, 1, 2. (13)

Consequently, on the time interval In, we have to solve for the two ”unknowns”

(Uj
n, P

j
n) =

(
uτ(tn,j), pτ(tn,j)

)
∈ V×Q with tn,j := (tn−1+tn+τnt̂j)/2 for j = 1, 2.

The corresponding coupled system reads

α1,1

(
U1

n,v
)
Ω
+ τn

2 a(U1
n,v) +

τn

2 n(U1
n,U

1
n,v) + α1,2

(
U2

n,v
)
Ω
+ τn

2 b(v, P 1
n ) = �1(v)

α2,1

(
U1

n,v
)
Ω
+ α2,2

(
U2

n,v
)
Ω
+ τn

2 a(U2
n,v) +

τn

2 n(U2
n,U

2
n,v) +

τn

2 b(v, P 2
n ) = �2(v)

b(U1
n, q) = 0

b(U2
n, q) = 0,

(14)

which has to be satisfied for all (v, q) ∈ V ×Q with

�i(v) =
τn

2
(f(tn,i),v)Ω − αi,0

(
U0

n,v
)
Ω

i = 1, 2. (15)
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Once we have determined the solutions U1
n,U

2
n at the Gaussian points in the interior of

the interval In, we get the solution at the right boundary tn of In by means of quadratic
extrapolation from the ansatz (5), i.e.,

uτ(tn) = U0
n +

√
3(U2

n −U1
n), (16)

where U0
n is the initial value at the time interval In. The cGP(2)-method is accurate of

order 3 in the whole time interval and superconvergent of order 4 in the discrete time points
(see [4, 3]).

2.2. dG(k − 1)-method

Here, the time-discrete velocity and pressure solution is determined in the solution space
(uτ, pτ) ∈ Yk−1

τ
× Ỹ k−1

τ
, where k ≥ 1. The ansatz for (uτ, pτ) on interval In is then analog

to (5) with the difference that the sum starts with j = 1 and the scalar basis functions
φn,j are polynomials of order k − 1. In this paper, we will concentrate only on the case
k = 2, i.e. on the well-known dG(1)-method. We can derive the following constants for
i, j ∈ {1, 2} (see again [4] and [3])

(αi,j) =

(
1

√
3−1
2

−
√
3−1
2 1

)
, (di) =

( √
3+1
2

−
√
3+1
2

)
. (17)

Then, on the time interval In, one has to determine the two ”unknowns” (Uj
n, P

j
n) ∈ V×Q

as the solution of the following coupled system

α1,1

(
U1

n,v
)
Ω
+ τn

2 a(U1
n,v) +

τn

2 n(U1
n,U

1
n,v) +

τn

2 b(v, P 1
n ) + α1,2

(
U2

n,v
)
Ω

= �1(v)

α2,1

(
U1

n,v
)
Ω
+ α2,2

(
U2

n,v
)
Ω
+ τn

2 a(U2
n,v) +

τn

2 n(U2
n,U

2
n,v) +

τn

2 b(v, P 2
n ) = �2(v)

b(U1
n, q) = 0

b(U2
n, q) = 0

(18)

which has to be satisfied for all (v, q) ∈ V ×Q with �i(·) defined by

�i(v) =
τn

2
(f(tn,i),v)Ω + di

(
U0

n,v
)
Ω

i = 1, 2. (19)

After solving the above system, we obtain uτ and pτ at time tn by means of the following
linear extrapolation

uτ(tn) =

√
3 + 1

2
U2

n −
√
3− 1

2
U1

n and pτ(tn) =

√
3 + 1

2
P 2
n −

√
3− 1

2
P 1
n . (20)

The dG(1)-method is of order 2 in the whole time interval and superconvergent of order 3
in the discrete time points (see [4, 3]).

After discretizing the Navier-Stokes equations (1) in time (see [2]), we now discretize
the resulting ”In-problems” in space by using the finite element method [1, 7, 8, 9]. In
our numerical experiments, the finite element spaces Vh ⊂ V and Qh ⊂ Q are defined
by biquadratic and discontinuous linear finite elements, respectively, on a quadrilateral
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mesh Th covering the computational domain Ω. Each ”In-problem” for the cGP(k) or the
dG(k − 1)-approach has the structure:

For given U0
n ∈ V, find (Uj

n, P
j
n) ∈ V ×Q, j = 1, . . . , k, such that

k∑
j=1

αi,j

(
Uj

n,v
)
Ω
+

τn

2
a(Ui

n,v) +
τn

2
n(Ui

n,U
i
n,v) +

τn

2
b(v, P i

n) = �i(v)

b(Ui
n, q) = 0,

(21)

which has to be satisfied for all i = 1, . . . , k and all (v, q) ∈ V ×Q with

�i(v) :=
τn

2
(f(tn,i),v)Ω + di

(
U0

n,v
)
Ω

(22)

where αi,j and di are the constants described above and di = −αi,0 in case of cGP(k) .

For the space discretization, all (Uj
n, P

j
n) ∈ V ×Q are approximated by finite element

functions (Uj
n,h, P

j
n,h) ∈ Vh ×Qh, respectively, and the fully discrete ”In-problem” reads:

For given U0
n,h ∈ Vh, find (Uj

n,h, P
j
n,h) ∈ Vh ×Qh, j = 1, . . . , k, such that it holds

k∑
j=1

αi,j

(
Uj

n,h,vh

)
Ω
+

τn

2
a(Ui

n,h,vh) +
τn

2
n(Ui

n,h,U
i
n,h,vh) +

τn

2
b(vh, P

i
n,h) = �i(vh)

b(Ui
n,h, qh) = 0

(23)

for all (vh, qh) ∈ Vh ×Qh and all i = 1, . . . , k.

Once we have solved this system, we have computed for each time t ∈ In a finite element
approximation uτ,h(t) ∈ Vh of the time discrete solution uτ(t) ∈ V which is defined by
an analogous ansatz to (5) where the Uj

n ∈ V are replaced by the discrete functions
Uj

n,h ∈ Vh.
In the following, we will write problem (23) as a nonlinear algebraic block system.

Let Sh ⊂ H1
0 (Ω) denote the scalar finite element space for the velocity components of

Uj
n,h = (U j

n,h, V
j
n,h) ∈ Vh = S2

h and let φμ ∈ Sh, μ = 1, . . . , mh, denote the scalar finite

element basis functions of Sh. Then, we define the nodal vector Uj
n = (U j

n, V
j
n) ∈ R

2mh of
Uj

n,h = (U j
n,h, V

j
n,h) ∈ Vh such that

U j
n,h(x) =

mh∑
μ=1

(U j
n)μφμ(x), V j

n,h(x) =

mh∑
μ=1

(V j
n)μφμ(x) ∀ x ∈ Ω. (24)

Similarly for the pressure, let ψμ ∈ Qh, μ = 1, . . . , nh, denote the finite element basis

functions and P j
n ∈ R

nh the nodal vector of P j
n,h ∈ Qh such that

P j
n,h(x) =

nh∑
μ=1

(P j
n)μψμ(x) ∀ x ∈ Ω. (25)
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Furthermore, we introduce the mass matrix M ∈ R
mh×mh , the discrete Laplacian matrix

L ∈ R
mh×mh , the gradient matrices Bi ∈ R

nh×mh , i = 1, 2, as

Mν,μ := (φμ, φν)Ω , Lν,μ := a(φμ, φν), (Bi)ν,μ := b(φμe
i, ψν), (26)

and the right hand side vectors F i
n, G

i
n ∈ R

mh, i = 1, . . . , k, with the components

(F i
n)ν :=

(
f(tn,i), φνe

1
)
Ω
, (Gi

n)ν :=
(
f(tn,i), φνe

2
)
Ω
. (27)

Next, for a given nodal vector w = (w1,w2) ∈ R
2mh , which generates an associated discrete

velocity field wh(w) ∈ Vh, we define the matrix N(w) ∈ R
mh×mh as

N(w)ν,μ := ns(wh(w), φμ, φν), with wh(w) :=

mh∑
j=1

(
w1

j

w2
j

)
φj . (28)

Using the block-matrices and block-vectors

M =

[
M 0
0 M

]
, L =

[
L 0
0 L

]
, N(w) =

[
N(w) 0

0 N(w)

]
, B =

[
B1

B2

]
, Fi

n =

[
F i
n

Gi
n

]
, (29)

the fully discrete ”In-problem” is equivalent to the following nonlinear k× k block system:

For given U0
n ∈ R

2mh, find Uj
n ∈ R

2mh and P j
n ∈ R

nh, j = 1, . . . , k, such that for all
i = 1, . . . , k, it holds

k∑
j=1

αi,jMUj
n +

τn

2
LUi

n +
τn

2
N(Ui

n)U
i
n +

τn

2
BP i

n = diMU0
n + τn

2 Fi
n,

BTUi
n = 0.

(30)

The vector U0
n is defined as the finite element nodal vector of the fully discrete solution

uτ,h(tn−1) computed from the previous time interval [tn−2, tn−1] if n ≥ 2 or from a finite
element interpolation of the initial data u0 if n = 1. In the case of higher Reynolds
numbers, we apply additionally an edge oriented FEM stabilization (EOFEM) [10] for the
convective term. This means that we replace the trilinear form n(w, ·, ·) by a modified form
nh(w, ·, ·) such that, in (30), differences will appear only in the nonlinear matrix N(w).

In the following, we will present the resulting block systems for the cGP(1), cGP(2)
and dG(1) method which are used in our numerical experiments.

3. Block-systems for the cGP and dG-methods

Here, we present the corresponding block systems for the cGP(1), cGP(2) and dG(1)
methods, respectively.
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3.1. cGP(1)-method

The 3× 3 block system on the time interval In reads:

For given initial velocity U0
n = (U 0

n, V
0
n), find U1

n = (U 1
n, V

1
n) and a pressure P 1

n such
that ⎡

⎣A(u, v) 0 Bu

0 A(u, v) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣uv
p

⎤
⎦ =

⎡
⎣Ru

Rv

0

⎤
⎦ (31)

where
A(u, v) = M +

τn

2
L +

τn

2
N(u, v), Bu = B1, Bv = B2, (32)

with the abbreviations
u = U1

n, v = V 1
n, p =

τn

2
P 1

n (33)

and the convection matrix N(u, v) denoting the matrix N(w) defined in (28) with the nodal
vector w := (u, v) ∈ R

2mh . The right hand side vectors Ru and Rv are given by

Ru = τn

2 F 1
n +MU0

n, Rv = τn

2 G1
n +MV 0

n. (34)

Once we have determined the solution U1
n = (U1

n, V
1
n) we compute the nodal vector U0

n+1 =
(U0

n+1, V 0
n+1) of the fully discrete solution uτ,h at the time tn by using the following linear

extrapolation

uτ,h(tn) ∼ U0
n+1 = 2U 1

n − U0
n, vτ,h(tn) ∼ V 0

n+1 = 2V 1
n − V 0

n. (35)

3.2. cGP(2)-method

The 6× 6 block system on the time interval In reads:

For given initial velocity U0
n = (U0

n, V
0
n), find U1

n, U
2
n, V

1
n, V

2
n and P 1

n, P
2
n such that⎡

⎣A(u, v) 0 Bu

0 A(u, v) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣uv
p

⎤
⎦ =

⎡
⎣Ru

Rv

0

⎤
⎦ (36)

where

A(u, v) =

[
3M + τnL+ τnN(u1, v1)

(
2
√
3− 3

)
M(

−2
√
3− 3

)
M 3M + τnL+ τnN(u2, v2)

]
, (37)

Bu =

[
B1 0
0 B1

]
, Bv =

[
B2 0
0 B2

]
(38)

with the abbreviations

u =

[
u1

u2

]
=

[
U1

n

U2
n

]
, v =

[
v1

v2

]
=

[
V 1

n

V 2
n

]
, p =

[
p1

p2

]
=

[
τnP

1
n

τnP
2
n

]
(39)
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The right hand side vectors Ru and Rv are given by

Ru =

[
R1

u

R2
u

]
=

[
τnF

1
n + 2

√
3MU0

n

τnF
2
n − 2

√
3MU0

n

]
, Rv =

[
R1

v

R2
v

]
=

[
τnG

1
n + 2

√
3MV 0

n

τnG
2
n − 2

√
3MV 0

n

]
. (40)

The nodal vectors U i
n and V i

n, i = 1, 2, are associated with the finite element approximations
uτ,h(tn,i) and vτ,h(tn,i), respectively, where tn,i denotes the i-th integration point of the 2-point
Gaussian quadrature rule on the time interval In. Once they have been computed, we get the
nodal vector U0

n+1 = (U0
n+1, V

0
n+1) of the fully discrete solution uτ,h at the time tn by using the

following quadratic extrapolation

uτ,h(tn) ∼ U0
n+1 = U0

n +
√
3(U2

n − U1
n), vτ,h(tn) ∼ V 0

n+1 = V 0
n +

√
3(V 2

n − V 1
n). (41)

3.3. dG(1)-method

The analogous 6× 6 block system on the time interval In reads:

For given initial velocity U0
n = (U0

n, V
0
n), find U1

n, U
2
n, V

1
n, V

2
n and P 1

n, P
2
n such that⎡

⎣A(u, v) 0 Bu

0 A(u, v) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣uv
p

⎤
⎦ =

⎡
⎣Ru

Rv

0

⎤
⎦ (42)

where

A(u, v) =

[
2M + τnL+ τnN(u1, v1)

(√
3− 1

)
M(

−
√
3− 1

)
M 2M + τnL+ τnN(u2, v2)

]
(43)

and Bu, Bv, u, v, p are defined as in (38) and (39). The right hand side vectors Ru and Rv are
given by

Ru =

[
R1

u

R2
u

]
=

[
τnF

1
n +

(√
3 + 1

)
MU0

n

τnF
2
n +

(
−
√
3 + 1

)
MU0

n

]
, Rv =

[
R1

v

R2
v

]
=

[
τnG

1
n +

(√
3 + 1

)
MV 0

n

τnG
2
n +

(
−
√
3 + 1

)
MV 0

n

]
. (44)

Again the nodal vectors U i
n and V i

n, i = 1, 2, are associated with the finite element approximations
uτ,h(tn,i) and vτ,h(tn,i), respectively, where tn,i denotes the i-th integration point of the 2-point
Gaussian quadrature rule on the time interval In. Once they have been computed, we get the
nodal vector U0

n+1 = (U 0
n+1, V

0
n+1) and P 0

n+1 of the left side limit of the fully discrete solution
uτ,h at the time tn by using the following linear extrapolation

u−
τ,h(tn) ∼ U0

n+1 =
√
3+1
2 U2

n −
√
3−1
2 U1

n,

v−
τ,h(tn) ∼ V 0

n+1 =
√
3+1
2 V 2

n −
√
3−1
2 V 1

n .
(45)
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4. Nonlinear Solver

For all introduced time-space discretization schemes described before, a nonlinear system of
algebraic equations of the following type has to be solved for each time interval:⎡

⎣A(u, v) 0 Bu

0 A(u, v) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣uv
p

⎤
⎦ =

⎡
⎣Ru

Rv

0

⎤
⎦ (46)

The nonlinear system (46) can be characterized as a saddle point problem which will be solved
either by means of a standard fixed point iteration or by the Newton method. We will denote this
solution approach as the outer nonlinear iteration. In each outer iteration step, a coupled linear
system has to be solved. The linear subproblems are treated by using a monolithic geometrical
multigrid solver with a smoother based on blocking of all cell unknowns and with canonical FEM
grid transfer operators. In addition, the coarse grid problem can be solved by using a direct solver
or by a preconditioned GMRES method.

4.1. General nonlinear outer iteration

On an actual time interval In = (tn−1, tn], we define the start iterate (u0, v0, p0) of the
nonlinear iteration by means of the known solution at time tn−1 from the previous time interval
for n > 1 or from the space-discrete initial solution for n = 1. In the case of cGP(2) or dG(1),
we define also the start iterates of the second components u2, v2 and p2 in (39) as the solution
at time tn−1. For a given old iterate (u�, v�, p�), we perform the following three steps to compute
the new iterate (u�+1, v�+1, p�+1):

1. Compute the defect vector containing the nonlinear residual for (u�, v�, p�)⎡
⎣dudv
dp

⎤
⎦ =

⎡
⎣Ru

Rv

0

⎤
⎦−

⎡
⎣A(u�, v�) 0 Bu

0 A(u�, v�) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣u�v�
p�

⎤
⎦ . (47)

2. Solve an auxiliary (linear) subproblem with the defect vector as right hand side⎡
⎣Auu(u�, v�) Auv(u�, v�) Bu

Avu(u�, v�) Avv(u�, v�) Bv

BT
u BT

v 0

⎤
⎦
⎡
⎣Δu�
Δv�
Δp�

⎤
⎦ =

⎡
⎣dudv
dp

⎤
⎦ , (48)

where Auu, Auv, Avu, Avv are chosen due to the fixed-point iteration or the Newton method.

3. Update the iterate to obtain (u�+1, v�+1, p�+1)⎡
⎣u�+1

v�+1

p�+1

⎤
⎦ =

⎡
⎣u�v�
p�

⎤
⎦+ω�

⎡
⎣Δu�
Δv�
Δp�

⎤
⎦ , (49)

where ω� is a damping parameter which is in most of the cases set to 1 (see [11] for adaptive
strategies). The last iterate (u�+1, v�+1, p�+1) for the nonlinear iteration, depending on the stop-
ping criterion, is accepted for the solution. In our numerical simulations, the nonlinear iteration
is stopped if the L2-norm of the nonlinear residual drops down below a given tolerance (here:
10−10).
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4.2. Fixed-point iteration

For the fixed-point iteration, the matrices Auu, Auv , Avu, Avv in (48) are given by

Auu(u�, v�) := Avv(u�, v�) := A(u�, v�), (50)

Auv(u�, v�) := Avu(u�, v�) := 0. (51)

4.3. Newton method

Applying the standard Newton method yields the following block matrices

Auu(u�, v�) := A(u�, v�) + S(k)
uu (u�, v�), (52)

Avv(u�, v�) := A(u�, v�) + S(k)
vv (u�, v�), (53)

Auv(u�, v�) := S(k)
uv (u�, v�), (54)

Avu(u�, v�) := S(k)
vu (u�, v�), (55)

where k ∈ {1, 2} denotes the order of the underlying time discretization cGP(k) or dG(k − 1),

respectively, and S
(k)
αβ correspond to the additional terms from the linearization of the nonlinear

convection term (u� ·∇u�). In the following, we present explicitly for each time discretization the
blocks of the full Newton matrix N in (48), i.e.,

N :=

⎡
⎢⎣A(u�, v�) + S

(k)
uu (u�, v�) S

(k)
uv (u�, v�) Bu

S
(k)
vu (u�, v�) A(u�, v�) + S

(k)
vv (u�, v�) Bv

BT
u BT

v 0

⎤
⎥⎦ . (56)

In the case of the cGP(1)-method, we have

A(u, v) = M +
τn

2
L +

τn

2
N(u, v), Bu = B1, Bv = B2, (57)

and (
S(1)
uu (ũ, ṽ)

)
ν,μ

=
τn

2
((∂xũh)φμ, φν)Ω ,

(
S(1)
uv (ũ, ṽ)

)
ν,μ

=
τn

2
((∂yũh)φμ, φν)Ω , (58)(

S(1)
vu (ũ, ṽ)

)
ν,μ

=
τn

2
((∂xṽh)φμ, φν)Ω ,

(
S(1)
vv (ũ, ṽ)

)
ν,μ

=
τn

2
((∂y ṽh)φμ, φν)Ω , (59)

where, ũh ∈ Sh and ṽh ∈ Sh denote the finite element functions associated with the nodal vectors
ũ and ṽ, respectively. For the cGP(2)-method, we have

A(u, v) =

[
3M + τnL+ τnN(u1, v1)

(
2
√
3− 3

)
M(

−2
√
3− 3

)
M 3M + τnL+ τnN(u2, v2)

]
, (60)

Bu =

[
B1 0
0 B1

]
, Bv =

[
B2 0
0 B2

]
, (61)

S
(2)
αβ (ũ, ṽ) =

[
2S

(1)
αβ (ũ, ṽ) 0

0 2S
(1)
αβ (ũ, ṽ)

]
∀ α, β ∈ {u, v} (62)
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with S
(1)
αβ (ũ, ṽ) defined in (58) and (59). In the case of the dG(1)-method, the matrix block A(u, v)

is

A(u, v) =

[
2M + τnL+ τnN(u1, v1)

(√
3− 1

)
M(

−
√
3− 1

)
M 2M + τnL+ τnN(u2, v2)

]
(63)

and the other matrix blocks of N in (56) are the same as for the cGP(2)-method.

Remark 1. If the edge oriented jump stabilization (see [10]) is used, then the corresponding
velocity matrix block A(u, v) in (46) is updated as follows

Ã(u�, v�) = A(u�, v�) + J, (64)

where the matrix J corresponds to additional ”jump terms” in the weak formulation. This matrix
J has the following form for the cGP(1) and cGP(2)-method (and analogously for the dG(1)-
method), respectively,

cGP(1): J = (Jλ,μ), Jλ,μ =
∑
E

max{γ∗νhE , γh2E}
∫
E

[∇φμ]E [∇φλ]E dσ, (65)

cGP(2): J =

[
(Jλ,μ) 0

0 (Jλ,μ)

]
, (66)

where the sum in (65) is taken over all inner edges E of the mesh. ν, hE denote the viscosity and
the length of edge E. The parameters γ and γ∗ have no significant influence on the accuracy of the
results and the solution is stable and accurate for a large range of parameters. In our case, these
parameters are set to 0.1 and 0, respectively. The jump [.]E is defined as [ψ]E = ψ+ −ψ−, where
ψ+, ψ− indicate the values of the discontinuous function ψ coming from the elements K+,K−

sharing the interior edge E.

5. Linear solver

The resulting linear systems (48) on each time interval [tn−1, tn], which are 6×6 block systems
in the case of the cGP(2) and dG(1) approach and 3×3 block systems for the cGP(1)-method, are
treated by using a geometrical multigrid solver with a smoother based on an element loop where,
for each element, simultaneously all unknowns are updated that belong to this element. This type
of smoother is also called ”local pressure Schur complement smoother” in [11] or ”Vanka-type
smoother” in [12] (which can be additionally applied as preconditioner in a GMRES method to
make this method more robust).

5.1. Geometric Multigrid Methods

The fundamental concept of multigrid techniques is to exploit different mesh levels of the
underlying problem in order to reduce different frequencies of the error by applying a relatively
cheap smoother on each grid level. For switching between successive mesh levels, one applies a
restriction and prolongation operator with computational costs that are even cheaper than for
the smoother and that are only proportional to the number of unknowns. A typical feature
of multigrid methods is that they have a convergence rate which is nearly independent of the
mesh size and that the computational costs per iteration are only proportional to the number of
unknowns.
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In the following, we present the standard multigrid algorithm that we have used in our
computations. Independently from the previous notation we denote in the sequel the global
system matrix assembled on mesh level k ∈ {1, . . . , L} (and consisting of several block-matrices)
by Ak ∈ R

Nk×Nk whereNk denotes the total number of all degrees of freedom on level k. Similarly,
we denote by uk, fk ∈ R

Nk the global solution and right hand side vector such that the problem
that occurs on mesh level k has the form

Akuk = fk. (67)

Furthermore, let
Ikk−1 : R

Nk−1 → R
Nk and Ik−1

k : RNk → R
Nk−1

denote the prolongation and restriction operator, respectively, acting between level k − 1 and
k. Then, the k-level geometric multigrid algorithm for solving (67) is described recursively in
Algorithm 1.

Algorithm 1 Geometric multigrid algorithm.

The k-level iteration: unewk = MG(k,Ak, u
old

k , fk, ν1, ν2, μ)

case k = 1: unew1 is the exact solution

unew1 = A−1
1 f1

case k > 1: Perform the following four steps:

1. Pre-smoothing: Compute uν1k by applying ν1 smoothing iterations, i.e.,

uik = Sku
i−1
k ∀ i = 1, . . . , ν1 with u0k = uoldk .

2. Restriction and correction: Compute the restricted residual

fk−1 = Ik−1
k (fk −Aku

ν1
k )

and compute the correction uμk−1 by applying μ cycles on level k−1 starting with u0k−1 = 0,
i.e.,

uik−1 = MG(k − 1, Ak−1, u
i−1
k−1, fk−1, ν1, ν2, μ) ∀ i = 1, . . . μ.

3. Prolongation and step length control: Interpolate the correction onto grid level k to obtain

uν1+1
k , i.e.,

uν1+1
k = uν1k + αkI

k
k−1u

μ
k−1,

where αk may be a fixed value or chosen adaptively to minimize the error uν1+1
k − uk in an

appropriate norm [11].

4. Post-smoothing: Compute unewk = uν1+ν2+1
k by applying ν2 smoothing iterations to uν1+1

k ,
i.e.,

uν1+i+1
k = Sku

ν1+i
k ∀ i = 1, . . . , ν2.

Each application of MG(k, . . . ) is called a cycle on level k. Sufficiently many cycles on the
finest grid level L are required to obtain a good approximate solution of a linear subproblem
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ALuL = fL within the outer nonlinear iteration. The multigrid iteration is terminated if a
prescribed convergence criterion is reached. In our numerical tests, the multigrid iteration is
stopped if the L2-norm of the relative residual is smaller than 10−6 or the absolute residual drops
down below 10−15. In the case when the number of coarse grid cycles is chosen as μ = 1, we will
speak of a V-cycle and in the case μ = 2 of a so-called W-cycle. Another interesting case lies in
between, the so called F-cycle, which we use in our application [11]. The numbers ν1, ν2 ∈ N of
pre-smoothing and post-smoothing steps, respectively, is typically small, for instance between 1
and 4. Moreover, the coarsest grid should be coarse enough in order to keep the numerical costs
for the exact solver small. The key ingredients in the multigrid methods are the smoother as well
as the restriction and prolongation operators, which we will sketch in the following sections for
the resulting 6× 6, resp., 3× 3 block-systems.

5.2. Smoother based on blocked cell unknowns

The efficiency and robustness of the multigrid method is essentially influenced by the choice
of the smoother. In our numerical study, we employ a block-Gauß-Seidel type smoother where in
an element loop, for each element, simultaneously the block of all unknowns that belong to this
element cell is updated. Thus, the information which has been updated in previous elements,
influences immediately all velocity and pressure degrees of freedom (for all required time points
of the time interval) in the neighbored mesh cells. This type of smoother was originally proposed
by Vanka [13] for the solution of Navier-Stokes equations discretized with the finite difference
method and is therefore often called ”Vanka-type smoother” [12, 14]. In [11] it has been analyzed
as ”local Multilevel Pressure Schur Complement smoother”, and it can be additionally accelerated
by embedding this approach as preconditioner in an outer GMRES method.

To describe this smoother, we have to introduce some notation. Let Th denote the set of all
element cells K on the actual mesh level, Ih the index set of all global degrees of freedom in the
coupled system to be solved, Ih(K) the index set of all global degrees of freedom that belong to
mesh cell K ∈ Th and Î the index set of all local degrees of freedom that belong to the reference
element K̂. In any implementation of a finite element method, one has to store information about
the following mapping

dof : Th × Î → Ih, μ = dof(K, μ̂) ∈ Ih(K) ∀ μ̂ ∈ Î , (68)

where, for a given element K ∈ Th and a given local degree of freedom belonging to K with
the number μ̂ ∈ Î, the uniquely assigned global number μ of this degree of freedom is given by
dof(K, μ̂). Let us assume that the coupled global linear system on the actual mesh level to which
a smoothing iteration has to be applied is given in the form

Au = f. (69)

Then, for a given element K ∈ Th, we define the local matrix AK ∈ R
n̂×n̂ as

(AK)ν̂,μ̂ := Adof(K,ν̂),dof(K,μ̂) ∀ ν̂, μ̂ ∈ Î = {1, . . . , n̂}, (70)

where n̂ denotes the number of all local degrees of freedom on the reference element (velocity
and pressure for all required time points on the actual time interval). Furthermore, we need a
K-local restriction operator

RK : RN → R
n̂, (RKd)μ̂ := ddof(K,μ̂) ∀ μ̂ ∈ Î = {1, . . . , n̂}, (71)
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which assigns to a given global defect vector d ∈ R
N the local block-vector RKd ∈ R

n̂ that
contains all components of d that are associated with all degrees of freedom that belong to
element K. Finally, we need a K-dependent extension operator

EK : Rn̂ → R
N , (EKvK)μ :=

{
(vK)μ̂ if ∃ μ̂ ∈ Î : μ = dof(K, μ̂),

0 if μ �∈ Ih(K),
(72)

where, to a local correction vector vK ∈ Rn̂ a global correction vector v = EKvK ∈ RN is assigned
which would update only those components in a global vector that are associated with unknowns
belonging to element K.

Now, we are in the position to define in an exact mathematical way the action of the smoothing
operator S : RN → R

N applied to an approximation u0 ∈ R
N of the solution u of the linear system

(69). We assume a certain numbering of mesh cells, i.e., let Th = {Ki, i = 1, . . . ,NEL}. Then,
we define Su0 := uNEL, where uNEL is successively computed by means of the following iteration
over all elements Ki of the mesh:

ui = ui−1 +ωEKi
(AKi

)−1 RKi

(
f −Aui−1

)
∀ i = 1, . . . ,NEL. (73)

Here, ω > 0 is a relaxation parameter and is set toω = 1 in our numerical tests. The computation
of the local correction vector vK = (AK)−1dK in (73) is implemented by applying an optimized
direct solver (e.g., from the BLAS routines) to the local system AKvK = dK . Thus, the high
performance of modern hardware architectures can be fully exploited within the smoothing steps.
Concerning the size of the local problems, we have on each element K, in case of the used
conforming LBB-stable Q2/P

disc
1 element pair, 18 degrees of freedom for the velocity and 3 for

the pressure per required time point on the current time interval. Therefore, the dimension n̂ of
the local system is 21 if the cGP(1) or Crank-Nicolson method is applied and 42 in the case of
the cGP(2) or dG(1)-method. Figure 1 shows the location of the local degrees of freedom of the
Q2/P

disc
1 element pair on the reference element for the time discretizations cGP(1) and cGP(2).

Q2/P
disc
1

cGP(1) =

{
U 1

n, V
1
n

� P 1
n,

∂P 1

n

∂x
,
∂P 1

n

∂y

�

cGP(2) =

{
U 1

n, V
1
n, U

2
n, V

2
n

� P 1
n,

∂P 1

n

∂x
,
∂P 1

n

∂y
, P 2

n,
∂P 2

n

∂x
,
∂P 2

n

∂y

�

Figure 1: Location of the degrees of freedom for the Q2/P
disc
1

element pair.

5.3. Restriction and prolongation

In the following, we describe in more detail the prolongation and restriction operator Ikk−1 :

R
Nk−1 → R

Nk and Ik−1
k : RNk → R

Nk−1 , respectively, which transfer information between the
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coarse grid level k − 1 and the fine level k in Algorithm 1. We use the so-called canonical grid
transfer routines based on the FEM space which treat all solution components separately. In
the case of conforming Q2 finite elements, the prolongation operator is constructed by using a
biquadratic interpolation. Let vi, i = 1, . . . , 9, denote the nodal values of a velocity component
on a coarse grid cell KH of level k − 1 and wi the corresponding values on a refined son-element
Kh ⊂ KH of grid level k as shown in Figure 2 (left) (see [15, 16] for the details). Then, the nodal
values w1, w2 and w9 are computed as (see also Figure 2 (left))

w1 := v1, w2 :=
1

8
(3v1 + 6v2 − v3), (74)

w9 :=
1

64
(9v1 + 18v2 − 3v3 − 6v4 + v5− 6v6 − 3v7 + 18v8 + 36v9). (75)

The remaining nodal values wi are computed similarly. The restriction is then set up as the
adjoint of the prolongation operator, i.e., the matrices associated to Ikk−1 and Ik−1

k are exactly
transposed to each other. Next, we describe the construction of the prolongation operator for
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Figure 2: Prolongation for Q2 with biquadratic interpolation (left) and P1 with linear interpolation (right).

the discontinuous P1 element approximating the pressure which is done by linear interpolation.
To this end, we suppose that v0, v1, v2 denote the 3 nodal values (consisting of the value of the
function and its derivatives w.r.t. x and y, respectively, at the barycenter) that determine the
P1-pressure function on a coarse grid cell KH at mesh level k − 1. Furthermore, let w0, w1, w2

denote the corresponding values for a son-cell Kh ⊂ KH on the fine grid level k as shown in
Figure 2 (right). Then, the nodal values wi are computed as

w0 := v0 −
1

2
v1 −

1

2
v2, w1 := v1 w2 := v2. (76)

Here, the values of w1, w2 will remain the same v1, v2, respectively, since the derivative of linear
function is always constant. Again, the restriction operator is defined as the adjoint of the
prolongation operator.

6. Numerical Results

In [2], we performed nonstationary simulations for two special flow configurations, namely,
flow around cylinder and flow through a Venturi pipe, to demonstrate the temporal accuracy
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and efficiency of the presented higher order time discretization schemes for the incompressible
Navier-Stokes equations. Thus, we have continued the work started in [17], where different time
stepping schemes were analyzed for these classes of problems. The test problem flow around
cylinder corresponds to the classical benchmark in [18]. Here, the main difficulty is to compute
the right nonstationary behavior of the flow pattern with periodic oscillations and examine the
ability of different time discretization schemes to capture the dynamics of the flow. As a second
test case, we consider the nonstationary flow for a high Reynolds number through a Venturi
pipe which has many real life and industrial applications. In this section, we mainly analyze the
behavior of the nonlinear and linear solvers for the presented problems.

6.1. Accuracy Results

In this subsection, we demonstrate the accuracy and the numerical cost of our proposed higher
order space-time discretization scheme cGP(2)-Q2/P

disc
1 . To this end, we consider the Stokes

problem on the domain Ω := (0, 1)2 and with ν = 1. The prescribed velocity field u = (u1, u2) is

u1(x, y, t) := x2(1− x)2
[
2y(1− y)2 − 2y2(1− y)

]
sin(10πt),

u2(x, y, t) := −
[
2x(1 − x)2 − 2x2(1− x)

]
y2(1− y)2 sin(10πt),

and the pressure distribution is

p(x, y, t) := −(x3 + y3 − 0.5)(1.5 + 0.5 sin(10πt)).

The initial data is u0(x, y) = u(x, y, 0).

We apply the time discretization scheme cGP(2) with an equidistant time step size τ = T/N .
To measure the error (in time), we use the standard L2-norm ‖ · ‖2 := ‖ · ‖L2(I,L2(Ω)) of the time
discretization error u(t) − uh,τ(t) for the velocity over the time interval I = [0, 1]. Here, the
error consists of both temporal and spatial discretization errors due to the chosen finite element
space as none of the finite element spaces fully captures the corresponding solutions. In order to
analyze the errors explicitly, we first consider the fixed space mesh size h� and reduce the time
step size, respectively, the time step size τ is fixed and we reduce the spatial mesh size. We
present in Table 1, 2 and 3, for different space mesh levels, the full discretization error u − uh,τ
of the velocity in the L2-norm and the total number ”#DOFs” together with the required CPU-
time. The CPU-times are measured in seconds for the nonlinear solver implemented within the
solver package FEAT2 (www.featflow.de) and the simulations are performed on a Dual-Core AMD
Opteron 8220 with eight CPUs at 2.8GHz.

From Table 1 to 3, we observe that for a fixed mesh size h� = 2−(�−1) and τ → 0, the space
error becomes dominant for sufficiently small time step sizes τ < τ0(h�). We indicate by means
of an underline that row in the column block of grid level � which corresponds to the last suitable
time step size τ0(h�).

We see that in the standard L2-norm ‖ · ‖2,L the error of the cGP(2)-method behaves, for
fixed mesh size h�, like O(τ3) as long as τ ≥ τ0(h�) whereas it starts to stagnate for τ < τ0(h�).
If we look at the error norms for the sequence of space-time meshes with (τ, h) = (τ0(h�), h�),
� = 4, 6, 8, we observe that the error decreases by a factor of about 8 if we increase the level � by
one. This indicates an asymptotic behaviour of the form

‖u− uτ,h‖L ≤ C(τ3 + h3)
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� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor CPU Factor

4 10 4.40E-04 15400 14.58
4 20 1.12E-04 3.94 30800 2.00 24.47 1.68
4 40 1.99E-05 5.63 61600 2.00 45.73 1.87
4 80 1.51E-05 1.31 123200 2.00 85.66 1.87
4 160 1.51E-05 1.00 246400 2.00 167.38 1.95
4 320 1.51E-05 1.00 492800 2.00 326.81 1.95

Table 1: Full discretization error for fixed space mesh level (� = 4), total number of unknowns and CPU-

time for the cGP(2)-Q2/P
disc
1

scheme.

� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor CPU Factor

6 10 4.40E-04 230440 241.84
6 20 1.11E-04 3.97 460880 2.00 424.03 1.75
6 40 1.31E-05 8.49 921760 2.00 796.51 1.88
6 80 1.62E-06 8.07 1843520 2.00 1509.06 1.89
6 160 3.11E-07 5.21 3687040 2.00 2875.87 1.91
6 320 2.39E-07 1.30 7374080 2.00 5414.28 1.88
6 640 2.37E-07 1.01 14748160 2.00 10760.68 1.99

Table 2: Full discretization error for fixed space mesh level (� = 6), total number of unknowns and CPU-

time for the cGP(2)-Q2/P
disc
1

scheme.

where ‖·‖L stands for ‖·‖2,L. This asymptotic behaviour is optimal with respect to the quadratic
polynomial ansatz of the cGP(2)-method in time and the quadratic ansatz of the Q2-element in
space.

� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor CPU Factor

8 10 4.40E-04 3625000 3576.66
8 20 1.11E-04 3.97 7250000 2.00 6040.72 1.69
8 40 1.31E-05 8.49 14500000 2.00 11217.90 1.86
8 80 1.60E-06 8.15 29000000 2.00 22530.31 2.01
8 160 2.01E-07 7.97 58000000 2.00 44870.56 1.99
8 320 2.53E-08 7.93 116000000 2.00 29567.10 1.46
8 640 4.85E-09 5.22 232000000 2.00 159293.34 1.77
8 1280 3.73E-09 1.30 464000000 2.00 272482.16 1.71

Table 3: Full discretization error for fixed space mesh level (� = 8), total number of unknowns and CPU-

time for the cGP(2)-Q2/P
disc
1

scheme.
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Next, we repeat the tests for the different space mesh levels with fixed time step size. Table 4
and 5 show the results for the fixed time step size τ = 1/40 and τ = 1/160, respectively.

� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor CPU Factor

2 40 8.33E-04 4960 2.84
3 40 1.18E-04 7.07 16800 3.39 11.25 3.96
4 40 1.99E-05 5.94 61600 3.67 45.73 4.06
5 40 1.32E-05 1.51 235680 3.83 189.67 4.15
6 40 1.31E-05 1.01 921760 3.91 796.51 4.20
7 40 1.31E-05 1.00 3645600 3.96 2806.51 3.52
8 40 1.31E-05 1.00 14500000 3.98 11217.90 4.00
9 40 1.31E-05 1.00 57835680 3.99 43985.14 3.92

Table 4: Full discretization error for fixed time step size (τ = 1/40), total number of unknowns and

CPU-time for the cGP(2)-Q2/P
disc
1

scheme.

� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor CPU Factor

2 160 8.37E-04 19840 7.73
3 160 1.18E-04 7.11 67200 3.39 39.29 5.08
4 160 1.51E-05 7.81 246400 3.67 167.38 4.26
5 160 1.91E-06 7.91 942720 3.83 682.75 4.08
6 160 3.11E-07 6.13 3687040 3.91 2875.87 4.21
7 160 2.03E-07 1.53 14582400 3.96 10993.84 3.82
8 160 2.01E-07 1.01 58000000 3.98 44870.56 4.08
9 160 2.01E-07 1.00 231342720 3.99 169389.32 3.78

Table 5: Full discretization error for fixed time step size (τ = 1/160), total number of unknowns and

CPU-time for the cGP(2)-Q2/P
disc
1

scheme.

From Table 4, we see that for a fixed time step size τ = 1/40 and h� = 2−(�−1) → 0, the time
error becomes dominant for sufficiently small mesh sizes. Table 5 shows a similar behavior for
τ = 1/160. We indicate again by means of an underline that row in the column block of grid
level � which corresponds to the last suitable mesh size.

Next, we present in Table 6 the full discretization error u − uh,τ of the velocity for the
corresponding method in the L2-norm, the total number ”#DOFs” of all unknowns occurring
on the space mesh (i.e., on each time interval) and the required CPU-time in seconds where the
mesh and time step size have been chosen as

h = 2−(�−1), τ =
1

5
2−(�−2), � = 2, 3, . . . .

It can be seen from Table 6 that the full (space-time) discretization error is reduced by a
factor of 8 if we increase the level � by one (leading to eight times more space-time unknowns),
whereas the numerical cost in terms of the CPU-time increase only by a factor of 8, too, which
due to the optimal complexity of the multigrid solver is a big advantage for this higher order
method.
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� 1/τ ‖u− uh,τ‖2,L Factor #DOFs Factor # MG CPU Factor

4 20 1.12E-04 30800 5.0 24.47
5 40 1.32E-05 8.48 235680 7.65 6.0 189.39 7.74
6 80 1.62E-06 8.15 1843520 7.82 5.5 1509.06 7.97
7 160 2.03E-07 7.97 14582400 7.91 4.5 11526.30 7.64
8 320 2.53E-08 8.02 116000000 7.95 6.0 89967.44 7.81

Table 6: Full discretization error, total number of unknowns, number of multigrid iterations and CPU-time
for the cGP(2)-Q2/P

disc
1

scheme.

6.2. Nonstationary flow around cylinder

The flow configuration related to the ’flow around cylinder’ configuration [18], which is con-
sidered here, can be found at www.featflow.de/en/benchmarks/cfdbenchmarking.html. The
examined accuracy of the benchmark crucially depends on the following quantities

FD =

∫
S

(ρν
∂ut
∂n

ny − pnx)dS, and particularly FL = −
∫
S

(ρν
∂ut
∂n

nx + pny)dS

representing the total forces in the horizontal and vertical directions, respectively. Figure 3

Figure 3: Coarse mesh for flow around cylinder.

Lev. #EL #DOF(total)
2 520 5 928
3 2 080 23 296
4 8 320 92 352

Figure 4: Size of the different systems in space.

shows the initial coarse mesh (level 1), which will be uniformly refined, and Figure 4 presents for
different space mesh levels the number ’#EL’ of elements and the total number ’#DOF’ of all
space degrees of freedom which are needed to represent the discrete velocity and pressure solution
based on the Q2/P

disc
1 element pair at one fixed time point.

In order to compare the accuracy of the higher order time discretization, the flow is started in
each computation from the same developed solution at time t0, and the simulation is performed
until T=10 for various uniform time step sizes τn := τ. After T=10, all quantities of interest
have been plotted and analyzed in detail in [2]. In Table 7, we recall from [2], for different
given space levels and time discretization schemes, the maximum allowed time step sizes that
guarantee comparable accurate results with an error of approx. 0.3% per time period at a given
space level (see [2] for the details). We can see that the corresponding time step size required for
the cGP(2)-method is 1.5 times larger than for the dG(1)-method and 5 times larger than for the
cGP(1)-method. The numerical costs for the cGP(2)-method per time step are nearly the same
as for the dG(1)-method. So, we can roughly expect that the cGP(2)-method is 1.5 times faster
than the dG(1)-method to gain a certain accuracy if the corresponding solvers show a convergence
behaviour which is more or less independent of the time step size. Concerning the comparison
to the cGP(1)-method, it depends on the question how much more computing time is needed to
solve the (nonlinear) 6x6 block systems for one time step of the cGP(2)-method compared to the
time for solving the (nonlinear) 3x3 block systems for the cGP(1)-method. In the following tables
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Lev cGP(1) dG(1) cGP(2)
2 1/100 1/30 1/20
3 1/100 1/30 1/20
4 1/100 1/30 1/20

factor 5 1.5 1

Table 7: Maximum allowed time step sizes with deviation of approx. 0.3% per time period.

which demonstrate the associated solution behaviour, we always underline, for each column of
a time discretization method, the one element which corresponds to the maximal possible time
step size that is necessary to ensure the required accuracy with respect to Table 7.

In order to measure and compare the efficiency of the nonlinear solvers for the presented time
discretization schemes, we show the averaged number ’#NL’ of nonlinear iterations per time step
for the fixed-point and Newton method for different (space) mesh levels. We stop the nonlinear
iteration if the L2-norm of the nonlinear residual drops down below 10−10. Table 8 shows that, for

Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 11.82 13.18 11.18 4.18 4.73 5.00
1/15 9.00 9.88 8.62 3.94 4.06 4.06
1/20 8.00 8.24 7.14 3.81 4.00 4.00
1/25 7.00 7.04 7.00 3.04 3.69 4.00
1/30 6.03 7.00 6.03 3.03 3.03 3.03
1/50 5.02 5.02 5.02 3.00 3.02 3.02
1/100 4.01 4.01 4.01 2.01 2.01 2.01
1/200 3.00 3.00 3.00 2.00 2.00 2.00

Table 8: Averaged number of nonlinear iterations per time step at space level=3.

the fixed-point iteration as well as for the Newton method, almost the same number of nonlinear
iterations are required for the different time discretization schemes.

Moreover, as expected, the number of iterations decreases only slightly if we reduce the time
step size. Furthermore, the Newton method converges 2-3 time faster as compared to the fixed-
point method due to its superlinear convergence. Table 9 and 10 demonstrate the same behavior
for the space level 4 and 5, respectively.

Summarizing, the number of nonlinear steps associated with the maximum allowed time step
sizes to gain the accuracy with an error of approx. 0.3% per time period for the cGP(2) and dG(1)-
method (see Table 7) require only approx. 2 times more than the cGP(1)-method, respectively.
Moreover, this factor is eventually improved by using the Newton method.

Next, we analyze the behavior of the multigrid solver for the solution of the linear subproblems
within the different time discretization schemes. To this end, we present the averaged number
’#MG’ of multigrid iterations per nonlinear step. Here, our multigrid solver uses for smoothing
ν1 = ν2 = 4 pre- and post-smoothing steps of a preconditioned GMRES method where the
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Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 10.09 11.64 10.18 4.00 4.09 4.91
1/15 8.00 8.69 7.94 3.94 4.06 4.00
1/20 7.00 7.05 7.00 3.05 4.00 4.00
1/25 6.04 6.04 6.00 3.04 3.04 3.04
1/30 5.65 6.00 5.48 3.03 3.03 3.03
1/50 4.02 5.00 4.24 3.00 3.00 3.00
1/100 3.01 4.00 3.98 2.01 2.01 2.01
1/200 3.00 3.00 3.00 2.00 2.00 2.00

Table 9: Averaged number of nonlinear iterations per time step at space level=4.

Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 9.00 10.27 9.00 4.00 4.09 4.55
1/15 7.00 7.69 7.00 3.56 4.00 4.00
1/20 6.00 6.05 6.00 3.05 3.38 3.90
1/25 5.04 6.00 5.04 3.04 3.04 3.04
1/30 5.00 5.03 5.00 3.00 3.03 3.03
1/50 4.02 4.02 4.02 2.02 3.00 3.00
1/100 3.01 3.01 3.01 2.01 2.01 2.01
1/200 2.00 3.00 3.00 2.00 2.00 2.00

Table 10: Averaged number of nonlinear iterations per time step at space level=5.
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preconditioner is the application of one step of the operator Sk (”Vanka”) on the actual grid level
k explained in Section 5.2. The multigrid solver stops if the L2-norm of the relative residual is
smaller than 10−6 or the absolute residual drops down below 10−15.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 11.92 11.75 10.91 10.80 10.80 10.60
1/15 11.67 11.40 10.89 11.25 10.80 10.20
1/20 11.62 11.11 11.00 11.25 11.25 10.75
1/25 11.71 11.38 11.43 11.25 11.00 11.00
1/30 11.71 11.86 11.57 11.00 11.00 11.00
1/50 12.17 12.00 11.83 11.67 11.25 11.00
1/100 12.40 12.00 11.60 11.67 11.67 11.00
1/200 12.25 12.00 12.00 11.67 11.33 11.00

Table 11: Averaged number of multigrid iterations per nonlinear step at space level=3.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 10.80 10.64 10.20 10.50 10.00 9.60
1/15 10.75 10.67 10.50 10.25 9.80 10.00
1/20 10.71 10.75 10.71 10.00 10.25 10.25
1/25 10.57 11.00 11.00 10.00 10.25 10.25
1/30 11.00 11.00 11.00 9.75 10.25 10.25
1/50 11.00 11.20 11.60 10.33 10.67 10.67
1/100 12.00 12.00 12.00 11.33 11.33 11.33
1/200 12.50 12.50 12.50 11.67 12.00 12.00

Table 12: Averaged number of multigrid iterations per nonlinear step at space level=4.

From the Table 11 to 13, we see that the multigrid solver requires almost the same number
of iterations for the different presented time discretization schemes. Moreover, the number of
multigrid iterations remains fairly constant if we increase the refinement level of the space mesh.
There is also no noticeable increase in the number of iterations if we decrease the time step which
is due to the incompressibility constraint. This means that the behavior of the multigrid solver
is very robust and almost independent of the mesh size, the time step size and the used time
discretization method.

Finally, we summarize in Table 14 the corresponding numerical costs that are necessary for
each method in order to obtain the accuracy with an error of approx. 0.3% per time period as
described in Table 7. These numerical costs include the time step size, the averaged number #NL
of nonlinear steps per time step, the averaged number #MG of multigrid iterations per nonlinear
iteration and the total CPU-time in seconds.
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Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 9.56 9.36 9.11 9.79 9.20 9.00
1/15 10.14 9.75 9.43 9.50 9.50 9.25
1/20 10.00 9.86 9.67 9.50 9.50 9.25
1/25 10.00 10.00 9.50 9.25 9.50 9.25
1/30 10.20 10.00 9.80 9.67 9.50 9.00
1/50 10.00 10.00 10.00 9.67 9.67 9.67
1/100 9.75 10.50 11.00 9.67 10.00 10.33
1/200 11.00 11.67 12.00 9.50 11.00 11.33

Table 13: Averaged number of multigrid iterations per nonlinear step at space level=5.

quantity Fixed-point Newton
cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

�t 1/100 1/30 1/20 1/100 1/30 1/20
averaged #NL 3.0 5.0 6.0 2.0 3.0 3.9
averaged #MG 9.7 9.8 9.6 9.6 9.5 9.2

total CPU-time 582790 729574 464168 407315 464307 356868

Table 14: Summary of numerical costs at space level=5 which are necessary for cGP(1), dG(1) and cGP(2)
to achieve the comparable accuracy (0.3% per period).

6.3. Nonstationary flow through a Venturi pipe

The test configuration for the flow through a Venturi pipe which is considered in this section,
has been already used in [11, 17] (see [2] for more details). The aim of this simulation is
to control the flux through the upper channel. Beside this interesting flow quantity, we have
also compared the accuracy of all the presented time discretization schemes by computing the
velocity and the pressure at various points (see [2]). Figure 6 gives an overview of the size of
the problem on different space mesh levels. Since we have a high Reynolds number flow here, we
employ as a stabilization method the edge oriented jump FEM approach (see [10] and Remark 1)
with the parameters γ = 0.1 and γ∗ = 0.0. In order to compare the accuracy of different time

Figure 5: Coarse mesh for the Venturi pipe flow

Lev. #EL #DOF(total)
3 384 4 466
4 1 536 17 378
5 6 144 68 546
6 24 576 272 258

Figure 6: Size of the different systems in space.

discretizations, the flow is started on each mesh level from the corresponding Stokes solution
at time t = 0, and the simulation is performed until T=30 using different time discretization
methods for different time step sizes τ. After T=30, all the quantities of interest have been
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plotted and analyzed in detail in [2]. A detailed analysis regarding the temporal accuracy in [2]
has shown that the cGP(2)-method captures the dynamics of the flow at quite large time step sizes
as expected. The results on different mesh levels look somewhat more different due to the higher
Reynolds number. As in the test case before, we have determined in the same way the maximum
allowed time step sizes which lead to very similar results in the ”picture norm”. Table 15 shows
these time step sizes for different space mesh levels (see again [2] for more details).

Lev cGP(1) dG(1) cGP(2)
3 1/50 1/20 1/6
4 1/50 1/20 1/8
5 1/100 1/20 1/15

factor ≈ 6 ≈1.5 1

Table 15: Maximum allowed time step sizes which lead (almost) to same results (from [2]).

Now we analyze the solver for the Venturi pipe flow similar to the example ”flow around
cylinder”. Again, we show the averaged number of nonlinear iterations per time step for the
fixed-point and Newton method for different space mesh levels. We apply the same stopping
criterion as in the previous example for the nonlinear and linear solver, respectively,

Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 10.36 10.91 9.64 3.09 3.36 3.45
1/15 8.56 9.19 8.50 3.06 3.06 3.06
1/20 7.67 8.14 7.62 3.05 3.05 3.05
1/25 7.04 7.58 7.00 2.77 3.04 3.04
1/50 5.80 5.90 5.75 2.08 2.53 2.55
1/100 4.72 4.88 4.77 2.01 2.01 2.01
1/200 4.00 4.00 4.00 2.00 2.00 2.00

Table 16: Averaged number of nonlinear iterations per time step at space level=3.

From Table 16 to 18, we see again that, for the fixed-point iteration as well as for the Newton
method, almost the same number of iterations is required for every time discretization scheme.
Moreover, for a fixed space mesh level, the number of nonlinear iterations slightly decreases if
the time step size is reduced, as expected. Concerning the number of nonlinear iterations, it
is noticed that the Newton method is more efficient than the fixed point iteration which shows
almost the same behavior as in case of the flow around cylinder example. These results indicate
that the nonlinear solver is also robust with respect to the underlying flow configuration.

Next, we analyze the behavior of the multigrid solver for the solution of the linear subproblems.
Here, the multigrid solver is using the same settings as in the example with the flow around a
cylinder. In Table 19 to 21, we present the averaged number of multigrid iterations per nonlinear
step for solving the corresponding linear block systems for the space mesh levels 3-5. We
observe again that the multigrid solver requires almost the same number of iterations for the

26



Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 10.27 11.09 9.91 3.27 3.73 3.73
1/15 8.56 9.25 8.75 3.06 3.06 3.06
1/20 7.76 8.52 7.95 3.05 3.05 3.05
1/25 7.12 7.73 7.31 3.04 3.04 3.04
1/50 5.63 5.80 5.57 2.12 2.47 2.49
1/100 4.33 4.50 4.38 2.01 2.01 2.01
1/200 3.60 3.81 3.76 2.00 2.00 2.00

Table 17: Averaged number of nonlinear iterations per time step at space level=4.

Fixed-point Newton
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#NL #NL #NL #NL #NL #NL

1/10 9.64 10.64 9.73 3.27 3.73 3.73
1/15 8.31 9.00 8.62 3.06 3.06 3.06
1/20 7.52 8.24 7.76 3.05 3.05 3.05
1/25 6.96 7.58 7.23 3.04 3.04 3.04
1/50 5.39 5.55 5.41 2.06 2.24 2.25
1/100 4.01 4.24 4.01 2.01 2.01 2.01
1/200 3.00 3.27 3.16 2.00 2.00 2.00

Table 18: Averaged number of nonlinear iterations per time step at space level=5.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 9.45 10.45 10.80 10.00 11.25 11.50
1/15 9.89 10.70 10.33 10.25 11.00 11.00
1/20 9.89 10.56 10.38 10.25 11.00 11.00
1/25 10.38 10.38 10.00 10.75 11.00 11.00
1/50 9.83 10.50 10.33 10.67 10.25 10.50
1/100 10.20 10.60 10.20 10.67 10.67 10.33
1/200 10.40 10.40 10.00 10.67 10.67 10.33

Table 19: Averaged number of multigrid iterations per nonlinear step at space level=3.
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Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 9.50 9.91 10.00 10.50 10.00 10.40
1/15 10.11 10.30 10.33 10.00 11.25 11.00
1/20 10.25 10.56 10.38 10.50 11.50 10.75
1/25 10.12 10.50 10.43 10.75 11.25 11.00
1/50 10.83 10.50 10.17 11.00 10.50 10.25
1/100 11.00 10.80 11.20 11.00 11.33 11.00
1/200 10.80 10.20 10.40 11.00 11.00 10.67

Table 20: Averaged number of multigrid iterations per nonlinear step at space level=4.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

#MG #MG #MG #MG #MG #MG

1/10 10.67 11.20 10.20 12.00 11.80 10.60
1/15 10.38 11.11 10.62 11.00 12.00 11.75
1/20 10.00 11.38 11.29 10.75 12.00 11.50
1/25 10.43 12.00 11.14 10.75 12.00 12.00
1/50 11.00 12.17 11.17 11.33 12.00 11.00
1/100 11.80 11.20 11.00 11.00 11.33 10.67
1/200 12.25 11.50 11.25 12.00 11.00 11.00

Table 21: Averaged number of multigrid iterations per nonlinear step at space level=5.
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presented time discretization schemes. Moreover, the number of multigrid iterations remains
almost constant for increasing space mesh level. There is also no noticeable increase in the
number of iterations if we decrease the time step. Comparing with the results in the flow around
cylinder example we observe a similar solver behavior as for the Venturi pipe flow. This indicates
that our multigrid solver is also robust with respect to the underlying flow configurations. At the
end, similar to the flow around cylinder example, we summarize in Table 22 the corresponding
computational costs in terms of CPU time that are needed for each method to obtain the required
accuracy as described in Table 15.

quantity Fixed-point Newton
cGP(1) dG(1) cGP(2) cGP(1) dG(1) cGP(2)

�t 1/100 1/20 1/15 1/100 1/20 1/15
averaged #NL 4.0 8.2 8.6 2.0 3.0 3.0
averaged #MG 11.8 11.3 10.6 11.0 12.0 11.7

total CPU-time 1501952 1645490 1153457 724233 633672 433118

Table 22: Summary of numerical costs at space level=5 which are necessary for cGP(1), dG(1) and cGP(2)
to achieve the required accuracy.

7. Conclusion

We have presented the details of efficient solution techniques for solving the nonlinear block-
systems resulting from the continuous Galerkin-Petrov and discontinuous Galerkin time dis-
cretization schemes of higher order for the nonstationary incompressible Navier-Stokes equations
(in 2D). The spatial discretization is carried out by using biquadratic finite elements for velocity
and discontinuous linear elements for the pressure on a (general) quadrilateral mesh. The result-
ing discretized block-systems of nonlinear equations which can be characterized as saddle point
problems are treated by using the fixed-point iteration or particularly the Newton method as
outer iteration. The associated linear subproblems are solved by means of a monolithic multigrid
method with a GMRES smoother which is preconditioned by an elementwise block Gauß-Seidel
(Vanka-like) iteration where, for each element cell, simultaneously all unknowns are updated that
belong to this cell.

We have analyzed the behaviour of the nonlinear and linear solvers for the presented time
discretization schemes cGP(1), cGP(2) and dG(1) applied to two prototypical CFD test problems.
The numerical results have shown that, for both nonlinear solution variants, almost the same
number of nonlinear iterations is required for the different time discretization schemes. Moreover,
the number of nonlinear iterations decreases slightly (for the Newton method) by reducing the
time step size as expected. Furthermore, the Newton method converges 2-3 times faster compared
to the fixed-point iteration due to its superlinear convergence behaviour. In an analogous way,
we have also analyzed the behaviour of the proposed multigrid method for solving the linear
subproblems arising from the different time discretization schemes. The results show that the
multigrid convergence is almost independent of the spatial mesh size (as expected) and of the
time step (due to the incompressibility). So, combining the superlinear behaviour of the Newton
method with the robust and efficient solution behaviour of the multigrid solvers, the resulting
total computational costs to achieve a certain accuracy are essentially smaller for the higher order
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time discretizations compared to the classical Crank-Nicolson scheme (which is nearly equivalent
to cGP(1)), leading in 2D to an almost optimal computational behaviour since (uniform) grid
refinement in space and time leads not only to 8 times more unknowns, but also to 8 times higher
computational costs while at the same time also 8 times more accurate solutions can be obtained.
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[18] S. Turek, M. Schäfer, Benchmark computations of laminar flow around cylinder, in:
E. Hirschel (Ed.), Flow Simulation with High-Performance Computers II, Vol. 52 of Notes
on Numerical Fluid Mechanics, Vieweg, 1996, pp. 547–566.

31


