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Abstract
Drop impact onto a solid surface is a complex phenomenon, which is
depending on a variety of factors. To describe the fluid motion, the 
incompressible Navier-Stokes equations will be used. It is known that the
inertial effects and the viscous and surface tension forces affect the evolution 
of the drop spreading and accordingly of the receding. The arising singularity 
in the solution for the stresses at the contact line requires special treatment.
The interface is divided into three regions with different length scales. At the 
inner region, the local viscous drag near the moving contact line determines 
the value of the microscopic dynamic contact angle. Due to numerical 
difficulties to resolve a mesh of the order of the slip length, which is 
comparable with the molecular size, the inner region is removed from the 
computational domain. We substitute the interplay between the microscopic 
angle and the macroscopic hydrodynamics by an additional force applied to 
the contact line. The Navier slip boundary conditions appear on the 
intermediate region. At the outer region the inertial effects become significant.
This region is characterized by the no-slip boundary condition. Both fluids are 
assumed to be incompressible and Newtonian with constant properties 
(density, viscosity and surface tension). Some preliminary numerical results for 
an axisymmetric problem are presented.                
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1 Motivation
In collaboration with the Chair of Computer Science VII, the robot-guided 
thermal spray process will be simulated on different levels. The micro- and 



macroscopic characteristics of the layer are the key aspects of the project. For 
the prediction of the coating thickness the understanding of the interaction 
between droplets and substrate is essential. The drop impact onto a rough 
solid surface is a widely studied problem. This study has focused on the drop 
deformation and its spreading on the wall. The classical approach for laminar 
incompressible two-phase flow is described by the Navier-Stokes equations:( + ) ( ( + ) + = += 0
in which the density and viscosity are variable and discontinuous,  {1,2}. The shear stress tensor will be denoted with = ( + ). The 
moving interface     of the droplet is unknown and must be determined in 
every time step. The well-known Level Set approach represents the interface 
as zero isoline of a continuous distance function :( , ) = ( , ),          1                        ( , ),         2 (  ) 
An overview how to use Level Set techniques is given in [Tur12]. When the 

position of the interface between two liquids is known, the boundary conditions 
will be defined as follows:

The normal velocity at the interface in both liquids shall be identical with 
the interface motion

The continuity of tangential velocity

The continuity of tangential stress: ( ) , = 0
The balance of the normal stress on the interface:( ) , = ,

The boundary conditions between the viscous fluid and the rough solid will be 
specified as follows: The traditional no-slip condition predicts that an infinite 
force is required to move the contact line. This is the so-called “contact-line 
problem”, referring to the non-integrable singularity in the shear stress. This 
stress singularity is avoided by replacing the no-slip condition by the Navier 
slip condition for the velocity component along the wall. However, for the major 
part of the drop the permitting slip is not valid [Fer12]. For macro-scale flow the 
interaction between the Newtonian fluid and the wall is equivalent to the no-
slip boundary condition. Hence, several regions with different length scales will 
be considered. In the immediate vicinity of the contact line the slip effect is 
significant. The slip length is a measure of the extent of this region. For an 



accurate resolution of the flow, the mesh size should be less than the slip 
length. Unfortunately [Sik05] this length is not observed in experiments 
because it is much smaller than the size corresponding to one pixel on the 
drop image. Therefore, the slip length is much smaller than the mesh size in
the numerical simulations. So that it cannot be calculated. To circumvent this 
problem, the inner region is removed from the computational domain and 
replaced by a compensative force , applied to the moving contact line. Due 
to the continuity of the velocity field it is not favorable to calculate the drop with 
the no-slip condition and an additional force at the contact line. An 
intermediate region is needed as well [Cox86]. There is a small region near the 
interface, where the Navier slip condition is valid. 

To prescribe the “contact-line” force = cos , the specification of the 
microscopic dynamic contact angle is required. This is the angle between 
the interface and the solid surface at the contact line. The microscopic contact 
angle plays a significant role in the dynamics. The value of is assumed 
to be a function of the static (equilibrium) contact angle and the capillary 
number = , where is the velocity of propagation of the contact line.
The velocity of the contact line is not a material velocity. An accurate 
estimation of the velocity influences the modeling problem.  

Examples of the so-called “contact line problem”, which can be experimentally 
investigated and as well numerically computed, occur with

The spreading of a liquid drop on a horizontal surface

The movement of a drop down an inclined surface

The movement of a solid object through a liquid interface

The inkjet printing

The coating process

2 Mathematical Model
As mentioned before, the boundary between the droplet and the solid surface 
will be separated into three regions. At the outer region the traditional no-slip 
boundary condition is valid. The Reynolds number based on the drop size is
considerable and the inertia effect is not negligible. The macroscopic dynamic 
contact angle can be predicted from the drop shape in the numerical 
simulation. This angle is called the apparent dynamic contact angle. It is 
shown in Fig. 1 and can be determined experimentally.  



Fig. 1: Outer region of the droplet size length scale;  represents the macroscopic 
(apparent) dynamic contact angle.

Fig. 2: Intermediate region of the size of  ( | |), where the slip effect is 
significant and   is the slip length. 

Fig. 3: Inner region in the vicinity of the moving contact line; represents the 
microscopic (wetting) dynamic contact angle. 



The intermediate region is a region, where the influence of the acceleration 
becomes significant. Slip between the liquid and the solid occurs very 

close to the contact line (Fig. 2). The Reynolds number based on the slip 
length is very small and the flow is dominated by viscous forces. The Navier
slip boundary condition will be used. The most popular slip model [Fer12]
relates the slip velocity to the wall velocity gradient via the proportionality 
coefficient: =
where the coefficient  is named slip length. The slip velocity along the wall is
denoted with . The size of this region is of the order of  (1 |ln |) [Sui13].

Fig. 4: Contact-line force, according to Young’s equation.

The contact-line force = cos , applied parallel to the wall, substitutes the 
inner region. Figure 4 illustrates this definition. The force is related to the 
viscous drag and capillary effects in the corner. The microscopic dynamic 
contact angle is shown in Fig. 3, 4 and assumed to be a function of the 
static contact angle and the capillary number [Sui13], [Sik05], [Cox86].

3 Numerical Results
The first numerical test concerns an axisymmetric droplet. The simulation 
considers only one half of the droplet. The full droplet simulations yield exactly 
symmetric results. The solid surface is idealized as being perfectly flat, 
smooth, dry, and chemically homogeneous. A simpler model of the contact-
line force was proposed, in which the velocity of propagation of the contact line 
is assumed to be a constant. 



Fig. 5: Qualitative comparison of the drop shape at several time instants.

The parameters of the presented simulations are given in in Tab. 1. The model 
is shown to converge and agree with previous work.



Tab. 1: The parameters of the simulations.

Characteristics Length scale Liquid 1 Liquid 2 (Drop)

Contact - line vel.= 15.5 Droplet size= 2.5 Viscosity   = 1  Viscosity = 10  
Static cont. angle = 75° Slip length = 10  Density    = 10  Density  = 10  
Gravity constant= 9.8 Domain size5 × 10 Surface tension = 250 

In this example, we demonstrate that in order to include the drop impact some 
mechanisms are necessary to predict the moving contact line. Then, one 
needs first to prescribe the contact-line force and the contact-line speed for the 
boundary condition between the droplet and the substrate. The grid should be 
refined to such an extent, that the intermediate region can be resolved. Any 
mesh of size larger than 1 | ln | will lead to mesh size dependent results.

4 Conclusion
The modeling of the drop spreading on a flat surface with the effect of the 
microscopic contact line is formulated and currently numerically tested. The 
preliminary results from the present model show a qualitative agreement with 
the physical expectation. The comparison of the numerical results with the 
experiment is under ongoing work.
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