
Space-time Newton-multigrid strategies for nonstationary

distributed and boundary flow control problems

Michael Hinze ∗ Michael Köster†‡ Stefan Turek §

October 13, 2013

Abstract

This paper considers a Newton-type solver strategy for optimal flow control problems
using space-time multigrid solution techniques. Based on the standard Newton approach
for optimal control, a space-time multigrid preconditioner is derived and numerically anal-
ysed for distributed and boundary control.

1 Introduction

The optimal control of incompressible, nonstationary flow problems belongs to today’s most
challenging problems in the field of optimisation. By design, all variables in the discretised
equations are fully coupled, which drives these problems very challenging on the numerical
level.

There are different discretisation and solver approaches available to approach nonstation-
ary flow control, see [5, 11] for an overview. In [2, 3], the state of the art of multigrid methods
in PDE constrained optimisation is summarised. Buildung upon [4] and the ideas promosed
there, the present paper presents results for a multigrid-based solution strategy for the dis-
tributed and L2 boundary control of nonstationary incompressible flow problems. A special
Newton-type solver in the control space is developed which utilises space-time multigrid tech-
niques for the Newton systems to enhance the efficiency.

In section 2 the model problems considered in this paper are introduced. Section 3 presents
with a description of the standard Newton method in the control space and draws a comparison
to other known methods. Section 4 introduces appropriate discretisation strategies for the
space-time problems. The multigrid-based solver for the linear subproblems in the Newton
approach is described in Section 5. Section 6 presents numerical tests regarding efficiency, and
finally in Section 7, we draw some conclusions.

∗Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany,
michael.hinze@uni-hamburg.de

†corresponding author
‡Institute of Applied Mathematics, Technische Universität Dortmund, Vogelpothsweg 87, D-44227 Dort-

mund, Germany, michael.koester@mathematik.tu-dortmund.de
§Institute of Applied Mathematics, Technische Universität Dortmund, Vogelpothsweg 87, D-44227 Dort-

mund, Germany, stefan.turek@mathematik.tu-dortmund.de

1

2 Model problems

Our paper investigates distributed control as well as L2 Dirichlet boundary control. In the
following, let Ω ⊂ R

d (d = 2, 3) denote an open, bounded domain with boundary Γ = ∂Ω
and outer normal vector η, T > 0 a final time, Q := (0, T)× Ω the corresponding space-time
domain, and Σ := (0, T)×Γ. Let the boundary Γ at each time instant be decomposed into the
three different, disjoint parts ΓD, ΓN , ΓC , with Γ = ΓD ∪ ΓN ∪ ΓC . ΓD specifies the Dirichlet
part of the boundary, ΓN the Neumann part, and ΓC the Dirichlet control part. Furthermore,
let ΣN := (0, T)× ΓN , ΣC := (0, T)× ΓC and ΣD := (0, T)× ΓD.

2.1 Optimal distributed control of the Navier–Stokes equations

Let ΓC = ∅. Take a function z : Q → R
d, the so-called target function, a Dirichlet boundary

condition g : (0, T) × ΓD → R
d and an initial condition y0 : Ω → R

d. The aim is to find a
control u : Q → R

d, a velocity field y : Q → R
d and a pressure field p : Q → R which solve

the following minimisation problem.

J(y, u) =
1

2
||y − z||2L2(Q) +

α

2
||u||2L2(Q) → min, (1)

where y, p and u are coupled through the nonstationary Navier–Stokes equations,

yt − νΔy + y∇y +∇p = u in Q,

− div y = 0 in Q,

y = g on ΣD,

ν∂ηy − pη = 0 on ΣN ,

y(0) = y0 in Ω.

Using the Lagrange multiplier technique, the following corresponding KKT system can be
derived,

yt − νΔy + y∇y +∇p = u −λt + νΔy − y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,

− div y = 0 − div λ = 0 in Q,

y = g λ = 0 on ΣD,

ν∂ηy − pη = 0 ν∂ηλ− ξη + (yη)λ = 0 on ΣN ,

y(0) = y0 λ(T) = 0 in Ω,

αu+ λ = 0 in Q. (2)

Here, λ : Q → R
d a dual velocity and ξ : Q → R and a dual pressure. It follows from (2) that

in tis setting, the control u lives in the same space as the dual velocity λ.

2.2 Optimal L2 boundary control of the Navier–Stokes equations

In the case of L2 boundary control our minimisation problem reads: Find u : ΣC → R
d,

y : Q → R
d and p : Q → R which solve the following minimisation problem.

J(y, u) =
1

2
||y − z||2L2(Q) +

α

2
||u||2L2(ΓC) → min, (3)

2

where y, p and u are coupled through the nonstationary Navier–Stokes equations,

yt − νΔy + y∇y +∇p = 0 in Q,

− div y = 0 in Q,

y = g on ΣD,

y = u on ΣC ,

ν∂ηy − pη = 0 on ΣN ,

y(0) = y0 in Ω.

Using the Lagrange multiplier technique, the following corresponding KKT system can be
derived,

yt − νΔy + y∇y +∇p = 0 −λt − νΔy − y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,

− div y = 0 − div λ = 0 in Q,

y = g λ = 0 on ΣD,

y = u λ = 0 on ΣC ,

ν∂ηy − pη = 0 ν∂ηλ− ξη + (yη)λ = 0 on ΣN ,

y(0) = y0 λ(T) = 0 in Ω,

αu− (ν∂ηλ− ξη) = 0 on ΣC . (4)

The control u acts only on the boundary and thus has a much smaller dimension than in the
distributed case. However, for u to be computed, the fully coupled system has to be solved.

2.3 Control constraints

As an extension to the above problems, bounds can be introduced for the control. Let a
distributed control u be bounded by

umin ≤ u ≤ umax (5)

for some bounds umin, umax : Q → R
d in the distributed case or umin, umax : ΣC → R

d in the
boundary control case, umin < umax. Using the L2 projection operator P defined as

P (u) :=

⎧⎪⎨
⎪⎩
umin, where u < umin,

umax, where u > umax,

u, elsewhere.

If we require (5) in the optimal control problem, according to, e.g., [16, Lemma 1.11], the
control equation (2) in the distributed case changes to

u− P (u− σ(αu+ λ)) = 0 in Q, (6)

where σ > 0 can be chosen arbitrarily. The special choice σ := 1
α leads to

u− P (− 1

α
λ) = 0 in Q (7)

3

with the left-hand side being semismooth, see, e. g., [20]. In the boundary control case, one
obtains

u− P (
1

α
(ν∂ηλ− ξη)) = 0 on ΣC . (8)

3 The integral equation method for nonlinear problems

The integral equation approach to solve our control problems is based on the control equations
of the KKT system. At first, one defines the reduced cost functional

Ĵ(u) := J(Su, u) (9)

with S : u �→ y being the solution operator that maps a control u to the solution y of the
nonstationary Navier–Stokes equations. The first order optimality condition

(Ĵ ′(u), ū− u) ≥ 0 for all ū ∈ Uad

leads to the equations (2), (4), (7) and (8), respectively, which serve as starting point for this
approach. From this, one derives a (semismooth) Newton method which we present exemplary
for the control equations (2) and (7).

Unconstrained control In the unconstrained case the Newton iteration in the control
space based on (2) reads

un+1 := un −DF1(un)
−1F1(un), (10)

i.e., expressed in two steps,

a.) solve DF1(un)ūn = dn := −F1(un)

b.) update un+1 = un + ūn

with

F1(u) := Ĵ ′(u) = αu+ λ (
!
= 0), DF1(u)ū = Ĵ ′′(u)ū = αū+ λ̄, (11)

where (λ, ξ), (y, p) and (λ̄, ξ̄), (ȳ, p̄) are the solutions of the following systems:

1.) Primal/dual equation

yt − νΔy + y∇y −∇p = u, −λt − νΔy − y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,

− div y = 0, − div λ = 0 in Q,

y = g, λ = 0 on ΣD,

ν∂ηy − pη = 0, ν∂ηλ− ξη + (yη)λ = 0 on ΣN ,

y(0) = y0, λ(T) = 0 in Ω,

4

2.) linearised primal equation

ȳt − νΔȳ + y∇ȳ + ȳ∇y +∇p = ū in Q,

− div ȳ = 0 in Q,

ȳ = 0 on ΣD,

ν∂ηȳ − p̄η = 0 on ΣN ,

ȳ(0) = 0 in Ω,

3.) and linearised dual equation

−λ̄t − νΔλ̄− y∇λ̄+ (∇y)T λ̄+∇ξ̄ = ȳ + ȳ∇λ− (∇ȳ)Tλ︸ ︷︷ ︸
(12)

in Q,

− div λ̄ = 0 in Q,

λ̄ = 0 on ΣD,

ν∂ηλ̄− ξη̄ + (yη)λ̄ = −(ȳη)λ on ΣN ,

λ̄(T) = 0 in Ω.

Remarks a) The calculation of F1(un) involves the simulation of a nonlinear forward and a
linear backward equation 1.) + 2.). The functions yn and λn have to be stored.

b) The equation in step a.) is linear and can be solved with an iterative solver; in Sec-
tion 5, we introduce a multigrid solver for this task. The iteration is based on the application
of the operator DF1(·), which involves the simulation of a linear forward and a linear backward
equation 3.)/4.). Both problems can be solved at roughly the same costs. Thus, each Newton
iteration amounts to one nonlinear forward simulation in 1.), one linear backward iteration
in 2.) and a couple of linear forward and backward iterations for the linearised equations in
3.)/4.).

c) The term (12) was found to impose numerical difficulties in the first couple of Newton
iterations. Numerical tests in this paper skip this term in the right-hand side assembly during
the first one or two iterations, so the update is a kind of a mixture between a Picard and a
Newton update.

Constrained control In the constrained case, we start from equation (7) and set

F2(u) := u− P (− 1

α
λ)

!
= 0. (13)

As this formula is not differentiable in the usual sense, we need a semismooth Newton method,
whose corresponding iteration formula reads

a.) Solve DF2(un)ūn = dn := −F2(un),

b.) Update un+1 = un + ūn.

Here, DF2(un) is an appropriate element of the subdifferential of F at un. DF2(·) involves
the generalised derivative DP (·) of the projection operator P . DP (·) set valued, cf. [16]. For

5

practical calculations, the following representative can be used and under certain conditions
(see [19, 20]) is known to lead to superlinear convergence. For v, v̄ : Q → R

d let

DP (v)v̄ :=

{
v̄ if umin ≤ v ≤ umax,

0 otherwise.

With this setting, we obtain

DF2(un)ū = ū−DP
(− 1

α
λn

) (− 1

α
λ̄
)

with (λn, ξn) ≡ (λ, ξ), (yn, pn) ≡ (y, p), and (λ̄, ξ̄), (ȳ, p̄) the solutions of the (linearised)
primal/dual systems from the unconstrained case above.

Remarks DF1(·) is a symmetric operator as it is the Hessian of the reduced cost functional,
see (11). With the above choice of DP , this also holds for DF2(·). Thus, symmetric linear
solvers like the Conjugate Gradient (CG) method can be used as solvers for the Newton system.

4 Discretisation

The discretisation of the optimal control problem is chosen in such a way that the optimise-
then-discretise approach commutes with the discretise-then-optimise approach. We demon-
strate this idea in a formal way based on (1). We use the following notations,

A(y) := A(y, p) := −νΔy + y∇y +∇p,

A′(y)ȳ := A′(y, p)(ȳ, p̄) = −νΔȳ + y∇ȳ + ȳ∇y +∇p̄,

A′(y)∗λ := A′(y, p)∗(λ, ξ) = −νΔλ− y∇λ+ (∇y)Tλ+∇ξ.

Choosing the rectangular rule for the discretisation of the cost functional and the implicit
Euler scheme for the discretising of the primal equation leads to

J(yk,uk) =
1

2
k

N∑
i=1

||yi − zi||2Ω +
α

2
k

N∑
i=1

||ui||2Ω,

where yk = (y0, ..., yN), uk := (u0, ..., un) and

(yi − yi−1) + kA(yi) = kui in Ω,

− div yi = 0 in Ω,

y0 + kA(y0) = y0 + kA(y0) in Ω,

yi = g(ti) on Γ.

Setting λk := (λ0, ..., λn) and applying the formal Lagrange multiplier technique leads to

L(yk,uk,λk) := J(yk,uk) +
N∑
i=1

(
λi, kui − (yi − yi−1 − kA(yi))

)
(14)

+
(
λ0, (y

0 + kA(y0))− (y0 − kA(y0))
)
, (15)

6

where boundary conditions are neglected for the moment. From DL(yk,uk,λk) = 0, one
obtains the time-discretised system of equations,

(yi − yi−1) + kA(yi) = kui, (λi − λi+1) + kA′(yi)∗λi = k(yi − zi)

− div yi = 0, − div λi = 0

y0 + kA(y0) = y0 + kA(y0), λN + kA′(yN)∗λN = k(yN − zN)

yi = g(ti), λi = 0

αui + λi = 0

in Ω,

in Ω,

in Ω,

on Γ,

in Ω.

The discrete counterparts of the linearised primal/dual equations are derived by taking the
Fréchet derivatives of the complete system,

(ȳi − ȳi−1) + kA′(yi)ȳi = kūi, (λ̄i − λ̄i+1) + kA′(yi)∗λ̄i = k(ȳi − z̄i)− kA′(ȳi)∗λi

− div yi = 0, − div λi = 0

y0 + kA(y0) = 0, λ̄N + kA′(yN)∗λN = k(ȳN − z̄N)

ȳi = 0, λ̄i = 0

αūi + λ̄i = 0

in Ω,

in Ω,

in Ω,

on Γ,

in Ω.

The time-discrete counterparts to F (u) and DF (u)ū can be derived as in Section 2.3.

The fully discretised system After applying the time discretisation, a space discretisation
can be used to generate the fully discretised system. In the following, the fully discretised,
vector valued variables are denoted by

y := yk,h := (yh0 , ..., y
h
N), u := uk,h := (uh0 , ..., u

h
N), λ := λk,h := (λh

0 , ..., λ
h
N),

with yhk , u
h
k and λh

0 vectors of degrees of freedom in the Rn in every timestep (for an appropriate
n depending on the space). The index h indicates the discretisation in space and the index k
the discretisation in time. In this work, we employ a discretisation with the Q2 element for
the velocity and the P disc

1 element for the pressure, see, e.g., [17].

The discrete (semismooth) Newton method The discrete counterpart of the (semis-
mooth) Newton iteration used in this work reads

1.) solve DFk,h(un)g = d := −Fk,h(un), (16a)

2.) update un+1 := un + g, (16b)

with

Fk,h(u) := αu+ λ, DFk,h(u)ū = αū+ λ̄ (17)

in the unconstrained case and

Fk,h(u) := u− Pk,h(v), v := vk,h := − 1

α
λ, (18)

DFk,h(u)ū := ū−DPk,h(v)v̄, v̄ := v̄k,h := − 1

α
λ̄ (19)

7

in the constrained case. The discrete projection operator Pk,h is realised by applying the
projection to every degree of freedom. An approximation to its generalised derivative is

DPk,h(v)v̄ = (I0 v̄
h
0 , ..., IN v̄hN) (20)

where the Ii are modified identity operators which set all those degrees of freedom in v̄hi to
zero where the corresponding degree of freedom in vhi violates the bounds.

Remarks This realisation of the projection operator corresponds to a first-optimise-then-
discretise approach which does not commute with first-discretise-then-optimise in general.
Using Q2 for the discretisation of the control, applying the projection only to the degrees of
freedom will not guarantee the discrete control to be admissible. As a remedy, one can use a
Taylor-Hood approach to discretise the control with piecewise linear continuous functions on
a once refined mesh. Alternatively, one can realise the semismooth Newton method without
discretisation of the control, see [12].

5 Multigrid for the control equation

Equation (16a) defines a linear system for the correction g of the control. The linear system
is defined in space and time, each component of g = gk,h = (gh0 , ..., g

h
N) defines one discrete

function in space at a specified point in time. In this work, a multigrid approach according
to Hackbusch [6–8] is applied to (16a) in order to solve this equation, see also [4]. This
necessitates to begin with a couple of definitions.

5.1 The space-time mesh hierarchy

At first, we define a hierarchy of space-time meshes as follows:

• Space hierarchy: At first Ω1, Ω2,..., ΩM denote a hierarchy of M ∈ N regularly refined
meshes, i. e., new vertices are generated by connecting opposite midpoints.

• Time hierarchy: T1,..., TL describes a hierarchy of L ∈ N regularly refined meshes in
time. The coarse mesh T1 is assumed to contain N1 := N intervals of length k1 := 1

N ,
thus having N + 1 vertices. As a consequence, there are Nl := 2l−1N intervals in every
Tm, each with timestep length kl :=

1
Nl
, and the time mesh has 2m−1N + 1 vertices.

• Space-time hierarchy: A space-time hierarchy can be created by different coarsening
strategies, starting from the finest combination of space and time mesh. For simplicity,
we assume L = M and denote by Q1,...,QL a sequence of L nested space-time meshes.
Typical choices for these hierarchies are, with l = 1, ..., L,

– coarsening in space and time: Ql := (Tl,Ωl),

– semi-coarsening in time: Ql := (Tl,ΩL),

– semi-coarsening in space: Ql := (TL,Ωl).

8

5.2 Discretisation and problem hierarchy

Secondly, we have to define a discretisation on every level. In this work, the time discretisation
is done with the Implicit Euler scheme, while the Q2/P

disc
1 finite element pair is used for the

space discretisation. We use the following notations:

• V m denotes for m = 1, ..., L the space discretisation of the control space, realised by the
degrees of freedom of the underlying finite element space.

• W l,m denotes for l,m = 1, ..., L the space-time discretisation of the control space using
V m for the discretisation in space on the time scale Tl.

• W l defines for l = 1, ..., L the space-time discretisation of the control space corresponding
to Ql. As a consequence, a coarsening strategy in space in time induces W l = W l,l, a
semi-coarsening in time W l = W l,L and a semi-coasening in space W l = WL,l.

Problem hierarchy a) The space-time discretisation induces a hierarchy of problems. For
l = 1, ..., L, a hierarchy of discrete equations, derived from (10), reads

F l
1(u

l) := αul + λl !
= 0 in W l, (21)

with ul ∈ W l the discrete solution to be determined, λl the corresponding dual solution to u
and the operator F l

1 = Fk,h the descrete counterpart to F1 on W l, with k = k(l) and h = h(l)
identifying the mesh width on level l. Correspondingly, the discrete linearised system to be
solved in every step of the Newton method on level l reads

DF l
1(u

l)ūl = −F l
1(u)

l in W l, DF l
1(u

l)ūl := αūl + λ̄l. (22)

with λ̄l the solution of the linearised discrete dual equation, corresponding to ūl. The solution
of the problem is to be found on the finest mesh at level L.

b) In the constrained case, the discrete counterpart to (13) reads

F l
2(u

l) := ul − P l(vl)
!
= 0, vl := − 1

α
λl (23)

in W l, with P l = Pk,h define the descrete counterpart to P , and the discrete linearised system
to be solved in every step of the semismooth Newton method on level l reads

DF l
2(u

l)ūl = −F l
2(u)

l, DF l
2(u

l)ūl := ūl −DP l(vl)v̄l, v̄l := − 1

α
λ̄l. (24)

with DP l the discrete counterpart to DP .

Primal/dual equations on lower levels Let yL and λL define the solutions of the primal
and dual equation on level L. For the operator DF l to be applied on level l < L, corresponding
primal/dual solutions yl and λl are needed. They can be obtained with an L2 projection of
the finite element counterparts of yL and λL in space and time to the lower level, realised
approximately by a proper interpolation of the degrees of freedom.

9

5.3 Multigrid components

Multigrid needs a couple of components to be properly defined in order to be effective:

Prolongation Let the prolongation operator from level l to level l + 1 be denoted by
I l+1
l : W l → W l+1. Depending on the choice of the coarsening strategy, the operator
has a time component and a spatial component. Each component uhi of a control vector
ul = (uh0 , u

h
1 , ..., u

h
Nl
) ∈ W l corresponds to a finite element function and thus, meaningful

prolongation in space is the finite element prolongation. On the other hand, a prolongation
in time is derived by a linear finite difference interpolation of the solutions in time, i. e.,

(uh0 , u
h
1 , ..., u

h
Nl
) �→

(
uh0 ,

uh0 + uh1
2

, uh1 ,
uh1 + uh2

2
, ..., uh2Nl

)
.

Restriction Let a restriction operator from level l to level l− 1 be denoted by I l−1
l : W l →

W l−1, and let dl := (dh0 , ..., d
h
Nl
) ∈ W l be a defect vector. Similar to the prolongation, the

restriction has a time component and a spatial component. One possible choice for a restriction
in time is a weighted mean in the sense of finite differences. However, for a discretisation with
the implicit Euler, it is enough to apply a constant restriction in time, given by

(dh0 , d
h
1 , ..., d

h
Nl
) �→

(
dh0 ,

dh1 + dh2
2

, dh2 ,
dh3 + dh4

2
, ..., dhNl

)
.

This restriction is ‘backward directed’, thus, respects the direction of the propagation of
information in time specified by the dual equation and will be shown to be effective in numerical
tests.

For the restriction in space, one has to take into account that the discrete operator F l maps
W l → W l, i. e., the operator works directly in the control space without any test functions,
mass matrices or similar things involved. An appropriate choice is therefore the L2 projection
of the control space to a lower level, which is realised approximately by a simple interpolation
of the degrees of freedom.

Coarse grid solver and smoother Typical choices for coarse grid solver and smoothers
are iterative algorithms which only necessitate the application of the corresponding operator.
For example, provided a damping parameter 0 < ω ≤ 1, the Richardson iteration reads

gnew := g + ω(d−DF l(un)g).

In a similar way, it is possible to apply a CG, BiCGStab or GMRES method. Applying such
an algorithm on the coarse level until convergence is the usual choice for a coarse grid solver.
Taking only a fixed number of iterations on any level except for the coarse level, one obtains
a smoother for that level. In the following, we denote a smoother on level l applying NSM
smoothing steps for a right-hand side d by the operator g �→ Sl(g,d,NSM).

The operator to be applied in such algorithms reads DF l and is realised by a forward-
backward solving process: A forward iteration solves for ȳ and a backward iteration for λ̄.
During the forward and the backward iteration, linear problems in space must be solved.
In this work, we apply a multigrid solver in space for this task which provides low, level

10

independent convergence rates. Smoothing and coarse grid solving processes in space are
realised with local pressure-Schur-Complement (‘VANKA’-) like techniques which process all
variables in space (velocity/pressure) simultaneously.

5.4 The multigrid algorithm

With the above components, Algorithm 1 describes a basic V-cycle multigrid in the control
space. For a more general implementation (also concerning other cycles, etc.), the interested
reader is referred to [1, 9, 21].

Algorithm 1 Space-time multigrid

Predefined constant: NSM ∈ N0: number of (post)smoothing steps

1: function SpaceTimeMultigrid(ū;d;l)
2: if (l = 1) then
3: return DF l(ul)−1d
 coarse grid solver
4: end if
5: while (not converged) do
6: dl−1 ← I l−1

l (d−DF l(ul)ū) ∈ W l−1
 restriction of the defect
7: gl−1 ← SpaceTimeMultigrid(0;dl−1; l − 1) ∈ W l−1
 coarse grid solution
8: ū ← ū+ I ll−1(g

l−1)
 coarse grid correction
9: ū ← Sl(ū,d,NSM)
 postsmoothing

10: end while
11: return ū
 solution
12: end function

6 Numerical examples

As test examples, we consider the optimal control of a cavity flow and a fackward-facing step
flow. Tests are carried out for single-grid solvers, multigrid solvers, for distributed control as
well as for boundary control. However, the numerical experiments do not cover the case of
control constraints. In the constrained case, the semismooth Newton method showed large
convergence problems, even for a one-level solver. While the CG method worked fine after
being restricted to the inactive set similar to [20], the semismooth Newton method oscillated
between two states, not converging to the solution (using α = 0.01, [u1,2min, u

1,2
max] = [−0.5, 0.5]).

This problem could not be explained and solved during the time of the project, although other
authors report this approach to work well, see [10, 20].

6.1 Distributed control for Driven–Cavity flow

Example We consider the optimal distributed control of the Navier–Stokes equations, see
Section 2.1. The underlying domain is Ω = (0, 1)2 with the four boundary parts Γ1, Γ2, Γ3

and Γ4 on the bottom, left, top and right. The problem is set up as a pure Dirichlet problem
with y(x, t) = (0, 0) for x ∈ Γ1 ∪ Γ2 ∪ Γ4 and y(x, t) = (1, 0) for x ∈ Γ3. The coarse grid
consists of only one square element. The time interval is defined as [0, T] with T = 1, the
viscosity parameter is set to ν = 1/400. The initial flow y0 is the stationary fully developed

11

Navier–Stokes flow at ν = 1/400, while the target flow z is chosen as the fully developed,
stationary Stokes flow, see Figure 1. The regularisation parameter for the control is set to
α = 0.01.

Figure 1: ‘Driven–Cavity’ example, velocity profile. Initial flow y0 (left), target flow z (centre),
optimal control u at t = 0.0625 (right).

The basic spatial coarse grid used in this test is a mesh containing one cell [0, 1]2 three
times refined, i. e., h = 1/8. The basic time mesh contains 20 time intervals. Both meshes
are regularly refined to generate a hierarchy of meshes and a fine mesh used for the actual
computation. Table 1 presents statistical data about the space and the time mesh for different
refinement levels (with ‘#vertices’ the number of vertices, ‘#edges’ the number of edges, ‘#el-
ements’ the number of elements, #dofpd the number of degrees of freedom in the primal and
the dual space, #dofc the number of degrees of freedom in the control space). As mentioned,
the spatial discretisation is carried out with Q2/P

disc
1 .

Space-Level #vertices #edges #elements #dofpd #dofc
4 81 144 64 770 578
5 289 544 256 2 946 2 178
6 1 089 2 112 1 024 11 522 8 450
7 4 225 8 320 4 096 45 570 33 282

Table 1: Driven–Cavity: Mesh statistics for distributed control, different refinement levels.

Solver configuration For the following tests we apply an inexact version of the described
Newton algorithm above. The space-time Newton algorithm was configured to reduce the
initial residual by six digits, while the space-time multigrid algorithm in every Newton step
reduces its residual adaptively (at least gaining two digits) such that one obtains quadratic
convergence; for a description of this strategy, see, e.g., [18]. The same stopping criterion
was also used for the coarse grid solver. A V-cycle is used. For smoothing, four steps of a
space-time CG method are applied.

Nonlinear and linear problems in space (calculated during the forward and backward loops)
were solved until the L2-norm of the residual drops below 10−14; a spatial (Newton-)Multigrid
solver with coarse grid solver on level four is applied in every timestep for this purpose.
The local multigrid solver in space applies a local pressure Schur complement technique for
smoothing and coarse grid solving, see also [13–15, 18]. This smoother is capable of processing

12

velocity and pressure variables simultaneously, which renders it ideal for saddle-point problems.

Solver efficiency test The following test applies a single grid and a multigrid solver stra-
tegy. On different refinement levels in space and time the Newton algorithm is applied, see
Table 2. ‘S.-Lv.’ specifies the refinement level in space, ‘#int’ the number of intervals in time,
‘Topt’ documents the time which was necessary for the computation of the optimisation prob-
lem and ‘Tsim’ the time which was needed for the computation of the first forward simulation,
i. e., for a simulation without any control applied. ‘#NL’ and ‘

∑
#LIN’ depict the number of

Newton steps and the sum of all steps of the linear solver, respectively.

Single grid CG preconditioner

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 40 0:16:35 0:00:13 4 67 79.0 16.8
6 80 2:14:23 0:01:41 4 64 79.6 16.0
7 160 15:37:20 0:11:33 4 63 81.1 15.8

Multigrid preconditioner, pure space coarsening

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 40 0:41:32 0:00:13 4 17 197.8 4.2
6 80 3:48:29 0:01:41 4 14 135.3 3.5
7 160 25:48:41 0:11:33 4 16 134.0 4.0

Multigrid preconditioner, pure time coarsening

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 2 0:26:47 0:00:13 4 10 127.5 2.5
6 3 3:22:01 0:01:41 4 8 119.7 2.0
7 4 21:30:05 0:11:33 4 7 111.6 1.8

Multigrid preconditioner, space-time coarsening

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 40 0:36:46 0:00:13 4 17 175.1 4.2
6 80 3:11:02 0:01:41 4 15 113.1 3.8
7 160 21:41:53 0:11:33 4 11 112.6 2.8

Table 2: Driven–Cavity: Solver statistics for distributed control. Single grid and multigrid
solver applied on different coarsening strategies.

The numerical test is applied for four different solver configurations. The first part of the
table contains the result for a single grid CG solver. In the second and third part, a multigrid
solver is used where the space-time hierarchy is build up using coarsening in space only (until
space level 4) or in time only (until time time mesh has 20 time intervals). The last part
finally uses full space-time coarsening, i.e., the coarse meshes are generated by coarsening in
space and time.

One can see that for this configuration, already the single-grid solver provides linear com-
plexity. Each refinement gives a factor of eight in the number of unknowns and the computing

13

time. The ratio between simulation and optimisation is a factor of about 80.
If space-time multigrid is used for preconditioning (second to fourth part of the table),

the results are two-fold. The total number of multigrid steps in this test is either constant
or even reducing with increasing refinement level, in particular upon increasing the number
of timesteps. Counting the number of CG steps on the finest level, there are 63 CG steps
for the single grid solver and 28 steps (7×NSM, with NSM=4 smoothing steps per multigrid
step) for the multigrid solver with time coarsening. So multigrid successfully accellerates the
convergence. A hierarchy generated from pure space-coarsening is rather ineffective.

From the viewpoint of numerical efficiency, however, the overhead for the space-time New-
ton algorithm is rather large. The ratio

Topt

Tsim
is much higher than that of a single-grid algo-

rithm. It depends on the configuration of the coarse grid problems and the solver parameters
if the approach is effective. In the above test, one can expect that the use of the multigrid
approach will pay off for large problems if space-time coarsening is used. The convergence
speeds up with higher refinement levels and the effort for solving the coarse grid problems is
not too large. Possible enhancements which may help to render the approach more efficient
than a single-grid solver are the choice of a different hierarchy (e. g., coarsening twice in time
per space coarsening), the use alternative smoothers (e. g., GMRES) or the application of an
advanced strategy to choose the stopping criteria of all the involved solver components. A
detailed analysis is, however, out of the scope of this work.

Comparison to SQP In the following, a small comparison of the solver efficiency results
between the Newton solver in this paper and the SQP-type solver analysed in [13, 14, 18] is
drawn. The latter one applies an inexact Newton strategy in the primal/dual space where
the solution vector is given as x = (y0, p0, λ0, ξ0, ..., yN , pN , λN , ξN). The control is eliminated.
An outer space-time Newton solver reduces the nonlinear residual by the factor 10−6. Linear
subproblems are solved either with a one-level space-time BiCGStab(FBSimSolver) solver or a
space-time multigrid solver (using V-cycle, four steps BiCGStab(FBSimSolver) for smoothing
and BiCGStab(FBSimSolver) for coarse grid solving), cf. [18]. The stopping criterion of the
linear solver is configured adaptively to obtain quadratic convergence. Subproblems in space
are solved with a spatial multigrid up to two digits. The test configuration is chosen as above.

Table 3 gives the results for this solver. The solver is very stable, it basically needs only
three nonlinear iterations to converge. In comparison to the Newton solver, for low levels, the
computing time is rather the same. For higher levels, if a space-time multigrid preconditioner
is applied, the SQP solver is more efficient in this example. Space-time multigrid is indeed
necessary in this case, as a single-grid solver loses efficiency on higher levels – the number of
linear steps per nonlinear step #LIN/#NL rises if only BiCGStab is applied. However, one
should be careful with a comparison of the total time Topt between both solvers, as gaining
six digits in the primal/dual space does not necessarily mean to gain six digits in the control
space and vice versa.

Remark: The number of nonlinear iterations differs whether the one-level preconditioner
or the space-time multigrid preconditioner is applied. This is due to technical reasons. The
BiCGStab solver checks the preconditioned residual while the multigrid preconditioner checks
the real residual in the stopping criterion. As a consequence, BiCGStab does not solve accu-
rately enough for the Newton to converge in three steps while multigrid does.

14

Single grid BiCGStab preconditioner

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 40 00:13:58 0:00:13 5 25 66.5 5.0
6 80 01:54:21 0:01:41 5 37 67.7 7.4
7 160 18:24:56 0:11:33 4 36 95.6 9.0

Multigrid preconditioner, space-time coarsening

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

5 40 00:15:26 0:00:13 3 6 41.5 2.0
6 80 02:04:08 0:01:41 3 7 40.3 2.3
7 160 11:24:15 0:11:33 3 6 53.9 2.0

Table 3: Driven–Cavity: Solver statistics for distributed control. SQP-type solver in the
primal/dual space (u eliminated), space-time BiCGStab and multigrid preconditioner.

6.2 L2 boundary control for Backward-facing step

Example We consider the optimal L2 boundary control of the Navier–Stokes equations, see
Section 2.2. The basic domain for this test is a backward-facing step geometry, see Figure 2,
on a time interval [0, T] with T = 10. On the left, a maximum inflow ymax = 1.5 is prescribed,
while on the right, do-nothing boundary conditions characterise the outflow; using ν = 1/100,
this results in a Re=100 optimisation. The part ΓC = {2} × (0.5, 1) ⊂ ∂Ω defines a control
boundary of length 0.5 on the top of the step.

The initial flow y0 is the fully developed nonstationary Navier–Stokes flow, the target flow
is the stationary Stokes flow, restricted to the observation area Ωs = [3, 4] × [0, 1] (which
induces the right-hand side “y − z” of the control equation being replaced by χΩs · (y − z),
with χΩs the characteristic function of Ωs). The regularisation parameter for the control is
set to α = 0.2. Table 4 gives an overview about the problem size; the cells on the coarse mesh
have a size of h = 1.0. Figure 3 visualises the controlled flow at t = 1.25 and t = 5.0.

Single-grid and time-multigrid test Table 5 depicts the solver statistics for a single-level
CG solver and a multigrid solver, carried out on different space-time levels. Due to the small
number of unknowns in the control in space, any coarsening in space would not make much
sense. Therefore, for multigrid tests, pure time coarsening is applied until a space-time coarse
mesh with 20 time intervals is reached.

The solver configuration is the same as in Section 6.1. Both types of linear solvers, the
single-grid CG method as well as the time-multigrid method, converge with rather level-
independent convergence rates. With four CG smoothing steps per multigrid iteration, the
multigrid method needs in this example about 40 CG iterations on the finest level, which is
slightly less than in the one-level CG solver case. However, due the additional overhead on the
coarse levels and the fact that the time mesh is rather coarse, the application of the multigrid
method is not really reasonable. The total time is about twice as high as a single-grid approach
as the costs for solving the coarse grid problems is as large as the costs for the iteration on the
finest grid – which is typical for a multigrid approach. One would need very fine time meshes
until the use of multigrid will be advantageous.

15

Figure 2: Test configuration ‘Backward-facing step’.

S.-Lv. #vertices #edges #elements #dofpd #dofc
2 97 168 72 890 1
3 337 624 288 3 362 3
4 1 249 2 400 1 152 13 058 5
5 4 801 9 408 4 608 51 458 9

Table 4: Backward-facing step: Mesh statistics for boundary control, different refinement
levels.

Figure 3: Test configuration ‘Backward-facing step’. Controlled flow at t = 1.25 and t = 5.0.

Single-grid test

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

3 40 0:13:46 0:00:17 5 27 48.3 5.4
4 80 2:47:18 0:02:19 6 41 72.2 6.8
5 160 23:35:08 0:14:59 6 46 94.5 7.7

Multigrid test, pure time coarsening

S.-Lv. #int Topt Tsim #NL
∑

#LIN
Topt

Tsim

∑
#LIN
#NL

3 40 0:32:02 0:00:17 5 8 113.7 1.6
4 80 6:18:30 0:02:19 6 10 163.9 1.7
5 160 47:50:46 0:14:59 6 10 191.6 1.7

Table 5: Backward-facing step: Single grid (top) and multigrid test (bottom).

16

7 Summary and discussion

This paper presented the application of a space-time Newton method for optimal control of the
nonstationary Navier–Stokes equations. A space-time multigrid method in the control space
was used for solving linear subproblems. The basic method was described and the efficiency of
the method was analysed in numerical examples using distributed and L2 boundary control.

Concerning the numerical results, it is a fact that the Newton approach does often not
need multigrid for the linear subproblems to be solved. Only on very fine time meshes in
combination with distributed control, the multigrid solver seems to be advantageous as the
solver speeds up with the problem size.

Acknowledgements This work was financed by the program SPP1253 from the DFG,
projects HI689/5-2 and TU102/24-1+2.

References

[1] R. E. Bank and T. F. Dupond. An optimal order process for solving finite element
equations. Math. Comput., 36(153):35–51, 1981.

[2] A. Borzi and V. Schulz. Multigrid methods for PDE optimization. SIAM Review, 51(2):
361–395, 2009.

[3] A. Borzi and V. Schulz. Computational Optimization of Systems Governed by Partial
Differential Equations. SIAM, 2011.

[4] G. Büttner. Ein Mehrgitterverfahren zur optimalen Steuerung parabolischer Probleme.
PhD thesis, Fakultät II – Mathematik und Naturwissenschaften der Technischen Univer-
sität Berlin, 2004. http://edocs.tu-berlin.de/diss/2004/buettner_guido.pdf.

[5] M. D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, 2003. ISBN
089871527X.

[6] W. Hackbusch. Fast solution of elliptic control problems. J. Opt. Theory and Appl., 31
(4):565–581, 1980.

[7] W. Hackbusch. Die schnelle Auflösung der Fredholmschen Integralgleichung zweiter Art.
Beiträge zur numerischen Mathematik, 9, 1981.

[8] W. Hackbusch. Numerical solution of linear and nonlinear parabolic optimal control
problems. Lecture Notes in Control and Information Science, 30, 1981.

[9] W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Computational
Mathematics. Springer, Berlin, 1985. ISBN 3-540-12761-5.

[10] M. Hintermüller and M. Hinze. A SQP-semi-smooth Newton-type algorithm applied to
control of the instationary Navier–Stokes system subject to control constraints. SIAM J.
Optim., 16:1177–1200, 2006.

17

[11] M. Hinze. Optimal and instantaneous control of the instationary Navier–Stokes equations.
Habilitation thesis, Institut für Numerische Mathematik, Technische Universität Dresden,
2000.

[12] M. Hinze and M. Vierling. The semi-smooth newton method for variationally discretized
control constrained elliptic optimal control problems; implementation, convergence and
globalization. Opt. Meth. Software, 27(6), 2012.

[13] M. Hinze, M. Köster, and S. Turek. A hierarchical space-time solver for distributed
control of the Stokes equation. Preprint SPP1253-16-01, SPP1253, 2008.

[14] M. Hinze, M. Köster, and S. Turek. A space-time multigrid solver for distributed control
of the time-dependent Navier–Stokes system. Preprint SPP1253-16-02, SPP1253, 2008.

[15] M. Hinze, M. Köster, and S. Turek. A hierarchical space-time solver for optimal distri-
buted control of fluid flow, 2009. Proceedings of the Conference on Modeling, Simulation
and Optimization of Complex Processes, Heidelberg, July 21-25, 2008, accepted.

[16] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints,
Volume 23 of Mathematical Modelling: Theory and Applications. Springer, Berlin, 2009.
ISBN 9781402088384.

[17] V. John and G. Matthies. Higher order finite element discretizations in a benchmark
problem for incompressible flows. Int. J. Num. Meth. Fluids, 37:885–903, 2001.

[18] M. Köster. A Hierarchical Flow Solver for Optimisation with PDE Constraints.
Phd thesis, TU Dortmund, Lehrstuhl III für Angewandte Mathematik und Numerik,
2011. Slightly corrected version with an additional appendix concerning prolonga-
tion/restriction.

[19] M. Ulbrich. Semismooth Newton methods for the operator equations in function spaces.
SIAM J. Optim., 3:805–841, 2003.

[20] M. Ulbrich. Constrained optimal control of Navier–Stokes flow by semismooth Newton
methods. Syst. Contr. Lett., 48:297–311, 2003.

[21] H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica,
pages 1–44, 1992.

18

