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We present a novel fully implicit, monolithic multigrid-based finite element solution scheme to efficiently solve
the governing set of differential algebraic equations of incompressible poro-elastodynamics. Thereby, we pro-
ceed from a two-dimensional, biphasic, saturated porous medium model with intrinsically coupled and incom-
pressible solid and fluid constituents. Our approach, motivated by well-accepted CFD techniques and originally
developed for the efficient simulation of incompressible flow problems, is characterized by the following as-
pects: (1) a special treatment of the algebraically coupled volume balance equation leading to a reduced form
of the boundary conditions; (2) usage of a higher-order accurate mixed LBB-stable finite element pair with
piecewise discontinuous pressure for the spatial discretization; (3) application of the fully implicit second-order
Crank-Nicolson scheme for the time discretization; (4) use of a special monolithic multigrid solver for the re-
sulting discrete linear equation system. For the purpose of validation and to expose the merits and benefits of our
new solution strategy in comparison to other established approaches, canonical one- and two-dimensional wave
propagation problems are solved. Finally, a large-scale, dynamic soil-structure interaction problem serves to
reveal the efficiency of the special multigrid solver in combination with the chosen finite element discretization.
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1. INTRODUCTION

The numerical solution of large-scale problems of con-
tinuum physics is, thanks to modern hard- and software
resources, nothing particular. Even many of the more de-
manding coupled problems that incorporate additional field
quantities and may comprise millions of interconnected
evolution equations can be effectively solved on complex
three-dimensional geometries by resource to distributed and
parallel computing. However, such multi-field problems
loose their nature of being solved in a straightforward man-
ner if the underlying set of coupled partial differential
equations (PDEs) includes algebraic equations representing
some essential side condition or Lagrangian constraint, for
instance, forcing incompressibility or continuity. This typi-
cally leads to ill-conditioned saddle-point problems, which
become even more vulnerable to stability and robustness is-
sues if they are accompanied by a certain roughness of the
model parameters associated with a tight coupling of the
equations [1]. In this regard, the Finite Element Method
(FEM) has been proven to provide a suitable variational ap-
proximation framework for the numerical treatment of cou-
pled PDE systems that model some continuum-mechanical
initial-boundary-value problems. However, the key ingredi-
ents to the fast solution of constrained multi-field problems
require both a well-conceived FEM discretization, which
meets the anticipated accuracy and stability requirements,
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and a sophisticated fast solver of multigrid type that can
handle systems with large condition numbers, thereby out-
performing common single-grid methods. Especially for
PDEs with elliptic character, due to the incompressibility,
hierarchical multigrid techniques as pure solvers or as pre-
conditioners in Krylov-space solvers have proven their ad-
vantageous convergence behavior since they may lead to
iteration numbers independent of the problem size. This
property allows to design highly efficient solution schemes,
particularly for large problem sizes.

This is exactly what is required in the case of porous
media dynamics (PMD), where the coupling of the dis-
placement, velocity and pressure fields is inherent in the
balance equations and controlled by the hydraulic conduc-
tivity. From a computational perspective, the most chal-
lenging situation is given if the solid and fluid constituents
are materially incompressible, the hydraulic conductivity
is very low implying a strong coupling and no restric-
tion to the considered frequency range exists, such that
reduced displacement-pressure formulations are not feasi-
ble. Then, the pore-fluid pressure as algebraic variable
takes over the role of a Lagrange multiplier associated with
the continuity-like volume balance yielding a system of
differential-algebraic equations (DAEs) of higher differen-
tiation index, readily complicating the numerical solution
[2]. This is the point of departure of this paper. Here,
it is our objective to exploit the formal similarities of the
model equations of computational fluid dynamics (CFD),
namely the incompressible Navier-Stokes equations, and
PMD, and to adopt the sophisticated, high-performance so-
lution strategies of the former to solve large-scale wave-
propagation problems in deformable, fluid-saturated poroe-
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lastic solids. Actually, there is an unabated demand for
fast simulation of large-scale PMD problems, where espe-
cially the transient response of saturated porous materials
in the fields of geomechanics, coastal engineering, seismol-
ogy and also biomechanics is of considerable practical im-
portance. As examples, consider the hazardous impact of
seismically-induced soil liquefaction on structures or the
use of ultrasound elastography for the non-invasive char-
acterization of soft biological tissues.

For the theoretical description of different physical phe-
nomena in porous materials, the use of multiphasic con-
tinuum mechanics is a standard practice. In this regard,
when deformable porous solids are concerned, the Theory
of Porous Media (TPM) is proven to provide a consistent
and well-elaborated macroscopic modeling framework, see
[3-5] for details and references. Another popular macro-
scopic approach to model porous materials, which is based
on a generalization of the theory of elasticity, is Biot’s The-
ory (BT) [6, 7]. In fact, BT, the TPM and derivatives thereof
are considered as the bases of many later works in the mod-
eling of dynamic porous media problems, see [8—18] among
others. Concerning the applied numerical solution strate-
gies, fully implicit, monolithic solutions using the mixed
FEM [19] are well-established and for static porous me-
dia problems go back to [20], who have intuitively cho-
sen a LBB-stable quadratic displacement and linear pres-
sure interpolation. Alternative approaches already borrow
their ideas from CFD by avoiding the problem with the al-
gebraic pressure variable (cf. [21, 22]). This led to tailored
splitting and fractional-step algorithms [2, 23, 24] as well
as pressure-stabilization and penalty methods [25, 26] with
all known pros and cons. However, as far as the authors
are aware, the latest advances in the monolithic solution
of generalized incompressible flow problems, that means
in conjunction with multiphase flow behaviour and com-
plex rheologies (see [27, 28]), using a special treatment of
the algebraic equation in junction with a particular higher-
order mixed FE formulation and a fast multigrid solver for
the ill-conditioned linear system have not yet been applied
to PMD problems.

The paper is structured as follows. Section 2 briefly
presents the basics of the TPM approach and provides the
governing model equations of poro-elastodynamics. In Sec-
tion 3, the numerical treatment of the coupled problem is
described including the weak formulation, the spatial and
temporal discretization as well as the final matrix system.
Section 4 1s concerned with the numerical validation of the
proposed solution strategy by comparing the results of 1D
and 2D benchmark simulations with published data. The
multigrid solver is then discussed in Section 5, and Section
6 presents a large-scale, 2D, dynamic soil-structure inter-
action problem simulated with more than 10 million un-
knowns on the finest mesh level. Finally, Section 7 gives
a brief summary and conclusions of the presented research
work.

2. THEORETICAL FUNDAMENTALS

In preparation of the numerical treatment, the governing
equations of porous media dynamics are briefly recapitu-
lated. This includes the porous media modeling approach,
the corresponding kinematics as well as the equilibrium and
constitutive relations. For a more detailed discussion, the
interested reader is referred to [2, 10, 12] and the citations
therein.

2.1. Macroscopic porous media approeach

In the framework of the Theory of Porous Media (TPM)
[4], we proceed from a continuum-mechanical description
of a fluid-filled porous body consisting of a solid matrix sat-
urated by a single pore fluid. Thereby, the binary aggregate
is treated as a macroscopic mixture ¢ with overlaid and in-
teracting but de facto immiscible solid and fluid constituents
@® (@ = § :solid; @ = F :fluid), so that ¢ = ° U o at
any macroscopic spatial point x(¢) at any time ¢ € [tg, 7).
The local composition of the biphasic continuum is de-
scribed by volume fractions n®(x,¢) := dv®/dv € (0,1)
of ™ (n° :solidity; n'" : porosity) defined as the ratios of
the partial to the total volume elements of ¢. Assuming
fully saturated conditions, the saturation constraint obvi-
ously yields >~ n® =n% + n¥ = 1. Closely related is the
introduction of two density functions, namely an effective
density p**(x, t) and a partial density p®(x, t) relating the
local mass of v to the partial or the bulk volume element,
respectively. It is easily seen that p® = n®p°® is revealing
the general compressibility of porous solids through possi-
ble changes of the pore space.

Following the kinematics of mixtures, the superimposed
continuum formulation proceeds from unique individual
states of motion with each constituent having its own ve-
locity and acceleration field

with

o e 1)
(o) 00y

as the material time derivative following the motion of (™
and grad(-) = 9(+)/dx. In porous media theories, it
is convenient to proceed from a Lagrangian description of
the solid matrix via the solid displacement ug and veloc-
ity vg as the kinematical variables. However, the pore-fluid
flow is expressed either in a modified Eulerian setting via
the seepage velocity vector w g describing the fluid mo-
tion relative to the deforming skeleton, or by an Eulerian
description using the fluid velocity v itself. In particular,
we have

! I
Vo ' =Xq, (Vo)) =X,

’
us =x—Xg, vg={(us)s=xs,
@

4
Vg =X, Wps=Vp—Vg
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with X g representing the reference position vector of the
solid phase at time £o.

2.2. Equilibrium and constitutive relations

The considered biphasic model excludes thermal effects
as well as mass exchanges (inert ¢*) and proceeds from
intrinsically incompressible constituents (p™F = const.).
In particular, the arising purely mechanical, binary model
with o = {5, F'} is governed by the following constituent
balance equations:

e Partial mass balance — partial volume balance:

(p*), +p*divvy =0

— (n®), +n*divv, =0 3
e Partial momentum balance:
pa(va); =divT®+ p*b +p* (€))]

Here, div(-) is the divergence operator related to
grad(+), T® = (T%)7 is the symmetric partial Cauchy
stress assuming non-polar constituents, b is the mass-
specific body force acting on the overall aggregate, and p=
denotes the direct momentum production, which can be in-
terpreted as the volume-specific local interaction force be-
tween the percolating pore fluid and the solid skeleton Due
to the overall conservation of momentum, p° + p¥ = o
must hold for any closed multiphasic system. From (3) with
a = S and (nSpSH)s = (n%) p %, one directly obtains
the solidity as a secondary variable by integration

(e = —nSdivvg — n% =nds det Fgl 5
with njs being the initial volume fraction of % at time
to and Fg = 0x/0Xg as the solid deformatlon gradient.
Proceeding from a small strain approach, n® can be written
in geometrically linear form as

n® = nJg (1 — divug). (6)

To continue, according to the principle of effective
stresses, see [29] for references, T and P’ can be split
into effective field quantities, the so-called extra terms indi-
cated by the subscript ( - ) 5, and parts that are governed by
the pore-fluid pressure p

T =T% —npl, pf = pE +pgradn®  (7)

with I being the second-order identity tensor. With regard to
a thermodynamically consistent model, admissible constl-
tutive equations for the response functions T and fj; must
be provided. Restricting the presentation to the small strain
regime, the solid extra stress is determined by the Hookean
elasticity law

s = Q,uS Es+ M (Es-I)T  with

8
€s = 1 (gradug + grad Tug) &

as the geometrically linear solid strain tensor and 1%, A°
being the macroscopic Lamé constants of the porous solid
matrix. Furthermore, under the assumption of isotropic lin-
gering flow conditions at low Reynolds numbers, the perco-
lation process is appropriately described by a linear Darcy-
type filter law, which can be traced back to the simple but
thermodynamically consistent ansatz

¥
kF

(nF)2 FR

~F
pE S Wrs, (9)
where k¥ > 0 denotes the conventional hydraulic conduc-
tivity (Darcy permeability) in m/s and vF% = p™g is the
effective fluid weight with ¢ = |b] denoting the constant
scalar gravitational acceleration. Moreover, using (1), the
material time derivative with respect to the fluid motion can
be written as
7 !

(\)p=1(+)sg+grad(-) wps. (10)

In summary, inserting the aforementioned constitutive

and kinematic relations into (4), the governing set of par-
tial differential equations (PDE) reads:

e Balance of momentum of the solid phase

2 ()= diVT% —nSgradp + p°b

(nF)2 AR (1n

P bogr=v)

e Balance of momentum of the fluid phase

pF (vr)s = divTE — nfgradp + oFb

(nf?)z "!FR

o — (v —vs) (2
—pF(gradve)(vr — vs)
e Volume balance of the overall aggregate
div (nf'vg) 4 div (nSvg) =0 (13)

Note that the chosen primary unknowns for this set of PDE
are ug, Vp and p. Hence, vs(us) as well as TZ(ug),
TE(vr), n®(us), n''(us) and wrs represent the sec-
ondary vanables of the problem. Additionally, a reduction
in the order of the PDE to order-one in time is achieved
using

(ug)s =vs, (14)

which eliminates the second time derivative of the solid dis-
placement from (11), and allows the applicability of a wide
range of fundamental time-stepping algorithms.
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2.3. Reduction of the complete set of model equations

For the purpose of simplification, several terms in equa-
tions (11)-(13) have been neglected, which are marked with
blue and red color in the following description:

S(vg)y = div T — ngradp + p°b
F\2_ FR (15)
T
+—"'( ij (VF—Vs),

p

pF(vr)s + pF (grad vp)(ve — vs) = divT§
(nF)z 'YFR (16)

—nfgradp+ p!'b - T(VF —vg),

gradn® - vp 4 gradn® - vg
+nfdivvp + ndivvg =0.

(17)

Here, n° and n¥ are assumed to be constant, which is ac-
ceptable for the small deformation case, such that the blue
terms are dropped out. Furthermore, proceeding from a ge-
ometrically linear description, the (red) nonlinear convec-
tive term can be omitted by scaling arguments if grad () -
wps < (+)g yielding (- ) = (+)s. To continue with
linear PDESs, the pore fluid is assumed to be Newtonian and
incompressible leading to the constitutive relation

div TE = vF Avp. (18)

In spite of its negligible influence (cf. [30]) in all our per-
formed numerical tests so far, this term containing the
(small) fluid viscosity ¥ is nevertheless considered in our
subsequent discretization and solution approaches, particu-
larly in view of future large scale simulations which shall
be able to involve all physically relevant effects.

3. WEAK FORMULATION AND DISCRETIZATION IN
SPACE AND TIME

Our subsequent variational form of the uvp approach,
inspired by weak formulations that are typical in the CFD
community for treating the incompressible Navier-Stokes
equations, is created by multiplying (15)-(17) with the dis-
placement test function du g, the velocity test function dv p,
the pressure test function dp, integrating over the whole do-
main (2 and performing partial integrations. Finally, we ob-
tain the following weak form, which is similar to the stan-
dard one for porous media (see, for instance, page 1349 of

[2D:
/ grad dug: T dv — f nSdivdug pdv
Jo fol

F\2 FR
n .
— (—ilj———dug-(v;r —vg)du
0

+fp55ug-{(v‘g)'57b}dv
[P

:/ {SUS-ESdCL
I o

t

/ "o graddvp: gradvp de — /
212 o

F\2 _ FR
+] &%5\’5*-(\’5*—\13)(1%
0

(19)

nFdivdve pdo

+LpF5vF {(vp)s —b}du

:f évF-i_:Fda
FtF

(20)
/ n dp divvg d‘u+/ ndpdivvedo =0 (21)
J Jn

Here, the red-colored terms represent slight differences to
[2], namely the additional fluid viscosity term and the natu-
ral shape of the weak form of the volume balance. Finally,
we multiply (14) with Jug and integrate over {2:

fn (5113-{(115)%—‘/‘3}(115:0. (22)

The boundary I" = 942 is divided into Dirichlet (essential)
and Neumann (natural) boundaries, respectively, resulting
in [ = I, UT}s for the balance of momentum of the solid
phase and in I" = I, , U I';r for the balance of momentum
of the fluid phase, wherein the tractions are defined as

GVF
on

9 = (T% = 'TLSpI) -n, t=u" —nfpn. (23)
Keep in mind that due to the fact that the pressure (as
Lagrange multiplier regarding the incompressibility con-
straint) provides typically less regularity than displacement
and velocity, the pressure derivatives in the weak formu-
lation have been eliminated by partial integration. For the
same reason and as usual for the treatment of the incom-
pressible Navier-Stokes equations, no integration by parts
has been carried out in (21).

Using such a weak form, which avoids derivatives act-
ing on the pressure functions, one can use standard FEM
pairs for velocity/displacement and pressure as typical for
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incompressible flow problems, which are based on piece-
wise discontinuous pressure approximations (as shown in
Figure 1), and the boundary conditions are imposed in a
slightly modified way in which the fully drained boundaries
are represented by the typical CFD ‘Do-nothing’ (see [31])
boundary condition (€Y = 0) while the volume effluxes
and values for the pressure as boundary conditions are not
needed anymore. Therefore, we can choose the boundary
conditions independently. As a candidate for LBB-stable
Stokes elements, we apply in the following (2D) simula-
tions the well-known (non-parametric) Q2/P1 element, that
means biquadratic velocities and displacements and piece-
wise linear (discontinuous) pressure approximations (cf.
[32]), which belongs currently to the ‘best” FEM choices
for incompressible flow problems with respect to efficiency,
accuracy and robustness.

® | I
Pz
Py
@® us
Vg
VF
O

FIG. 1: The discontinuous linear pressure element P1 (left) and
the 9-node Lagrange biquadratic element Q2 (right) that are used
for the uvp(3)-TR method.

Since we want to show explicit comparisons with a more
classical (here: uvp-TB2) approach (see [2]), we addition-
ally introduce the Taylor-Hood-like element in Figure 2,
with biquadratic (Q) approximations for some degrees of
freedom (DOF) omitting the internal node (serendipity ele-
ment), and continuous bilinear (L) approximations for other
degrees of freedom.

RIS

FIG. 2: The standard 4-node bilinear element L (left) and the 8-
node serendipity quadrilateral element Q (right) that are used for
the uvp(2)-TB2 and uvp(2)-TR method. Three cases are tested:
(1) QL: ug, vg: biquadratic; vr, p: bilinear (2) LL: ug, vs:
bilinear; v, p: bilinear (3) QQ: us, vs: biquadratic; v, p: bi-
quadratic

Next, based on the discretization with the introduced
FEM spaces, equations (19)-(22) can be written in the fol-
lowing matrix-vector notation:

My + Ky =f. 24

In more detail with mass and stiffuess matrices and right

hand side vectors, one obtains with y” = [uf vE vip"']
Mvsug 0 0 0 ug
0 M, 0 0 Vg
= + (25
0 0 MVFVF 0 Vg
0 0 0 0 P
0 KVSVS 0 0 ug
Ku_g us Kus'\"s KIISVF Kus:l’ Vs
0 Kv;.—vs Kv;vp Kva VE
0 Kive Kiur 0 p
0
fus =+ bS
va o+ bF
0

with the following matrices and right hand side vectors:
Kugus = / grad dug: T?E dv

(n 2 [‘R
Kugvs / dug - vgdu

N /ﬂ (n F;ifr

Kugp= f[ n°div dug pdv
2

Ky, = dug -vpdv

Kvsvs = - [ dug - vg dv

(?’L )2 FR
Kvpv,g = = o k'F

ovp -vgdv
f{ver =/ v grad dvp: grad vp dv

(,n 2 FR
vFVF:/ 5VF'VFd‘U

K
KvFvF = vFvl— +KVFVF
K

i / nFdivéve pdv

K= / n* dp divvgdv
2

Kpp = / n"op divve dv
J2
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Musw = [ (55"} us- (ve)isd
My us = ]ﬂ dug - (ug)gdv
My vy, = /Q{anFR} dvp - (vi)gdo
fis =/ Sug -t da

Fig

fo, = f dvp -tF da
Ir

+F

bs =/{nSpSR}5uS-de
n

br = / {n"p" R} évp -bdv (26)
2

In the next step, regarding the time integration, equations
(24) or (25) are treated in a monolithic implicit way leading
to a fully coupled system. In our approach, we apply the
standard one-step f-scheme to these systems, leading to

MR oKy =~ (1= 0)Kya (@)
+ 01 + (1 - 0)f,.

However, as an important remark for the subsequent more
detailed description, the red-colored continuity equation
due to the incompressibility constraint and the blue-colored
pressure p as corresponding Lagrange multiplier are always
treated fully implicitly (that means, as usual in CFD sim-
ulations, @ = 1), which leads to second-order accuracy (cf,

[32].

MVSUS glKvsvS 0 0 ug
BIKUSLIS AUSVS BiKust Kngg_’: Vg
0 alKvFvs AVFVF Kv_y.-g': VF
0 Kpvs Kpup 0 B
n+1
M"Sus GQKVSVS 0 0 ug
SQKUSHS Ausvs l921{1131;1., 0 Vg
0 HQKVFVS AvFvF 0 VR
0 0 o of/\»p
7
+ 01 — 0o, (28)

with
01 =0AL, 62=(0—1)At
AUSVS = MUSVS + elKus\'s
Avpve =Mupvp + 6 Kopo, 29
AusVs =Mygvs + hKugvs
Avive = Mypyp +02Ko v,

Note that the time steps (At), supposed to be in front of
the (blue) pressure matrices, are absorbed into p = At p, as
usually done in CFD, leading to the following saddle-point

problem with U?" = [ul vI vT] that we solve for every
time step:
A B\ (U
= RHS (30)
B' 0 P
n+1

After solving the above saddle-point system, the pressure
is scaled back using the relation p = F/At. Setting § =
1/2, we recover the second-order Crank-Nicolson scheme
(in time), which is based on the well-known trapezoidal rule
(TR). However, also fully L-stable second-order schemes
like BDF(2) or Fractional-Step-Theta-schemes can be used
in an analogous way.

4. NUMERICAL VALIDATION

To validate and to evaluate our discussed formulations
(which all have been realized in our in-house code FEAT-
FLOW [43]), two numerical examples taken from [2] are
introduced and implemented in order to compare with
well-established methods. Our uvp(3)-TR-Q2/P1 approach
stands for the described monolithic solver for the uvp for-
mulation based on the weak forms (19)-(22) using the fully
implicit Crank-Nicolson (# = 1/2) time integration scheme
as shown in (28) and the mixed finite element pairs Q2/P1
shown in Figure 1. The number 3 in uvp(3)-TR-Q2/P1 is
used to distinguish our solution algorithms from those in
Table T'in [2].

4.1. Results I: Saturated poroelastic column under
harmeonic load

In this example, the response of a homogeneous and
isotrapic, water-saturated, poroelastic column (height: 10
m, width: 2 m) is analyzed under plane-strain, confined
compression conditions. Therefore, the mixture domain is
surrounded by impermeable, frictionless but rigid bound-
aries except for the loaded top side, which is perfectly
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drained (t¥ = 0) [2]. The geometry with boundary condi-
tions and meshes are illustrated in Figure 3, Figure 18 and
Table 1.

sy =0
Upe =0
/
10 m //
'/

\_ 1_15 i 0
(- 3 Upy =0
2m
FIG. 3: Geometry, boundary conditions (left) and FE meshes
{mesh level 1, isotropic cartesian (center) and rectilinear (right))
of the dynamic confined compression of a saturated poroelastic
column. Non prescribed DOFs are automatically taken as natural
boundary conditions. f(£) = 10%[1 — cos(20 7 t)] [N/m®]. For
higher mesh levels, see also Figure 18 and Table I.

TABLE [: Total number of elements and unknowns (five primary
unknowns Ugg, Usy, UFa, UFy and p plus two secondary un-
knowns vs, and vg,) for the uvp(3)-TR-Q2/P1 approach. This
table is related to Figure 3 and Figure 18.

Cartesian Rectilinear
#Elem./m | #Elem. \#Unknowns Level | #Elem. | #Unknowns

1 20 690 1 18 625

D 500 14226 2 72 2214
10 2000 55446 3 288 8310
15 4500 123666 4 1152 32166
20 8000 | 218886 5 | 4608 126534
25 12500 | 341106 - z =

30 18000 | 490326 - - -

40 32000 | 869766 - - -

50 50000 | 1357206 - - -

The constitutive material parameters are adopted from re-
lated literature [33] and listed in Table II. The aim of this
simple benchmark problem is to mainly compare our mono-
lithic uvp(3)-TR-Q2/P1 approach with the reference solu-
tions for the solid displacement and the pore-fluid pressure

obtained by analytically solving the following slightly dif-
ferent 1-dimensional PDEs:

o Balance of momentum of the solid phase:

psus,tt = ()\S + le.s)us:yy -nSp,
S g

divTg
F\2 . FR
n")*y
-!-(—%;— (ups —ust)
e Balance of momentum of the fluid phase:

F _ . F
P UFge =~ Py

F\2 L FR
ne )y
—(—%‘— (up: — us,t)

e Volume balance of the overall aggregate:

nS‘us,ty + nFqufy =0

For further details, see [33].

It also serves to compare the accuracy of our uvp(3)-
TR-Q2/P1 approach with the classical ones. Here, two
scenarios are tested: (1) a high permeability case with
EF = 1072 m/s and (2) a moderately low permeability
case with k¥ = 107° m/s, which is the lowest perme-
ability for which the analytical reference solution could be
achieved using Maple [2].

TABLE II: Physical properties of the porous medium used for all
simulations.

|Parameter Symbol Value St Uniﬂ
first Lamé constant of solid e 5.583 x 10%| N/m*
second Lamé constant of solid A5 |8.375 % 10| N/m®
Effective density of dense solid|  p%% 2000 kg /m*
Effective density of pore fluid PR 1000 kg /m®
Tnitial volume fraction of solid |n® = n{g 0.67 -
Darcy permeability k7 [107%,107° | m/s
Fluid viscosity (Figure 3 & 11) v 10-% Pas
Fluid viscosity (Figure 19) v’ 1074 Pas

Since the optimal time step (that means the maximum
time step that leads to a time step independent solution on
a given spatial mesh) in our method seems to be mesh in-
dependent, our computations are performed on anisotropic
meshes that get finer when approaching the top (perfect
drainage) boundary since at the top we have t© = o, which
must be compensated by an immediate pressure increase in
a small layer below the boundary as stated in [2]. From
Figure 4, we note that for each refinement level the optimal
time step remains the same (nearly 5 X 1072 s), which in-
dicates that the optimal time step in our uvp(3)-TR-Q2/P1
method is indeed mesh size independent.
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FIG. 4: Solid displacement distribution in the first half meter under
the loaded top of the column at time = 0.15s using uvp(3)-TR-
Q2/P1 for k¥ = 107° m/s and the rectilinear mesh (cf. Figure 3
right). The reference solution is taken from [2].

‘We notice that the displacement obtains full convergence
at a mesh level and time step size where the pressure is still
not fully converged (see Figures 4 and 5). This indicates
that a small error in the pressure does not significantly in-
fluence the full convergence in the displacement. Moreover,
from Figures 6 and 7 one can notice that for smaller k7,
i.e. for a stronger coupling, more elements are required to
reach full convergence to capture the large gradient in the
pressure. However, in both cases the optimal time step does
not change. This indicates that the stability of the proposed
method is also not influenced by the value of the permeabil-
ity parameter k¥
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FIG. 5: Pressure distribution in the first half meter under the
loaded top of the column at time = 0.15s using uvp(3)-TR-
Q2/P1 for k¥ = 10‘5m/s and the rectilinear mesh (cf. Figure 3
right). The reference solution is taken from [2].

For comparing the accuracy of the uvp(3)-TR-Q2/P1
method with the well-established classical methods, we
adopt the isotropic Cartesian mesh of Figure 3. Although
this kind of mesh requires a larger number of elements, it
was opted because the results of the classical methods re-
ported in [2] are based on this discretization. From Figure
8, we notice that for this problem the proposed uvp(3)-TR-
Q2/P1 method provides the most accurate solutions at all
selected heights except at the top permeable loaded bound-
ary (87 = 0and £° = f(t) n), where nevertheless the so-
lution is sufficiently accurate. Therefore, we closely look
at this top loaded permeable boundary part and beginning
with the high permeability case (k¥ = 1072 m/s), we no-
tice that our formulation yields a convergent approximation
of the solid displacement field following the reference so-
lution u,.; of a point at the top of the column (Figure 9,
top).
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FIG. 7: y-displacement at point (1,10) vs. time using uvp(3)-
TR-Q2/P1 for k¥ = 107 %m/s and rectilinear mesh (cf. Figure 3
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right). The reference solution is taken from [2].
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FIG. 8 Solid displacement (top) and absolute errors in pm
(bottom) for the first half meter below the top surface for the
isotropic Cartesian mesh (10 elem/m) (cf. Figure 3, center) for

kY =

taken from [2].

10 °m/s at t = 0.15 5. All the data except Q2/PI are
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att = 0.15s. All the data except Q2/P1 are taken from [2].

Furthermore, regarding the relative displacement error
ERR = |(usy — tref)/Ures| in Figure 9 (bottom), one
observes that the Q2/P1 approach converges faster than the
other element pairs (LL, QL and QQ) while QL has the
slowest convergence and shows the highest deficiency as
expected for large values of &7 [2].

In contrast to the QL approach, we observe a sufficiently
accurate displacement solution at the permeable loaded
boundary in case of the low permeability (here k¥ =
107°m/s) as depicted in Figure 10. The significance of
the Q2/P1 approach arises when switching to extremely low
permeability values in which both LL and QQ approaches
may fail [2] while QL can merely provide insufficient solu-
tions as shown in the following subsection.
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FIG. 10: Top displacement history (top) for k¥ = 107%m/s,

t = [0,0.5]s and Cartesian mesh (10 elements/meter) using

uvp(3)-TR-Q2/P1. Relative error (logarithmic scale) over mesh

size (bottom) at ¢ = 0.15s. All the data except Q2/P1 are taken
from [2].

4.2. Two-dimensional wave propagation

In this second example, we study the 2D dynamical
wave propagation in a rectangular symmetric domain un-
der plane-strain conditions (Figure 11) as presented in [12].
The material parameters are the same as before (Table II)
and the ‘earthquake event’ is represented by the applied dis-
tributed impulse force

f(t) =10° sin(257t) [1 — H(t — 7)] [N/m2]  (31)

with H(¢ — 7) being the Heaviside step function and + =
0.04 s. The water saturated mixture domain is surrounded
by impermeable, frictionless (I = 0 for the bottom and
t, = 0 for the left and right sides) but rigid boundaries
ezilgept for the loaded top side, which is perfectly drained
t" =0.

10
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FIG. 11: Geometry, boundary conditions and mesh level 1 of the
symmetric 2D wave propagation problem (top). Total number of
elements and unknowns for the uvp(3)-TR-Q2/P1 approach (bot-
tom). The symmetry of the problem can be exploited to reduce the
problem size. However, the computation was performed on the
full problem only for our Q2/P1 approach.

The objective of this benchmark problem is to com-
pare quantitatively the accuracy of our proposed monolithic
uvp(3)-TR-Q2/P1 approach with uvp(2)-TB2-QL of [2],
which is known as well-accepted combination for solving
such coupled problems. Here, we study the displacement
solution at point A and the pressure history at point B in
the high permeability case Ef = 1072 m/s and the ex-
tremely low permeability case with k¥ = 107 m/s. In
addition, since no analytical solution is available, we vali-
date our results by comparing with [2]. For the high per-
meability case, we can see from Figure 12 that the optimal
time step is approx. 10~ s and the optimum mesh level is
already level 2. The direct comparison of the appropriate
parameters (mesh level and time step) illustrates the perfect
matching as depicted in Figure 13. Note that uvp(2)-TB2-
QL obtains the full convergence at level 3 as indicated in
Figure 11 of [2] while our uvp(3)-TR-Q2/P1 converges al-
ready at mesh level 2 as shown in Figure 12, both leading to
similar problem sizes. The subsequent contour plots (Fig-
ure 14) generated by our approach in FEATFLOW are very
similar to those in [2].
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FIG. 14: Time sequence of displacement contour plots with

lus| = y/ug, +u3, on the deformed geometry (scaling factor
500) for uvp(3)-TR-Q2/P1, mesh level 4, and At =5 x 10~ % s.

Next, we switch to the extremely low permeability of
k¥ = 1071° m/s, which further demonstrates the merits
of the considered Q2/P1 approach. We first conclude the
optimal time step (At = 102 s) and the optimal mesh size
(level 2) from Figure 15. For this case both uvp(2)-TB2-
QQ and uvp(2)-TB2-LL do not converge and the mono-
lithic solution requires LBB-stable mixed FE formulations
such as QL [2] and Q2/P1 element pairs.

Based on the results shown in Figures 8 and 9, the di-
rect comparison between the QL solutions (on higher mesh
levels) and the fully converged Q2/P1 solutions (on mesh
level 2) (see Figure 16) reveals the less accurate displace-
ment solution of the QL approach. In contrast to the TR-QL
approach, our TR-Q2/P1 approach does not produce large
pressure oscillations as seen in Figure 17. Such large oscil-
lations are extremely reduced even for the trapezoidal rule
(TR) by using a L.BB stable element with equal-order ap-
proximations of ug, vg and vy such as the Q2/P1 element.

12
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5. FAST MULTIGRID SOLVERS

During each time step, most of the elapsed CPU time is
consumed by solving the corresponding linear systems in

TABLE 1V: Total number of elements and unknowns (the five pri-
mary unknowns: ugsz, WSy, Vs, Ury and p plus the two sec-
ondary unknowns: vs; and vsy) for uvp(3)-TR-Q2/P1 approach.
This table is related to Figure 18.

(30)i1 Tygi;all;;; by fcl('jcur;(l:y Leasons whichtreqll}ires sm?)ll ol it TP [ em—
mesh widths, the arising block systems are too large to be
handled by direct solvers, such that iterative schemes have pEl [FDOFe e |#DOFS il |#DOFS
to be preferred. 1 20 690 18 624 32 1038
2 80 2454 72 2214 | 128 | 3798
TABLE IIT: Averaged number of iterations (the first 2 tables) and 3 S20: | pER2 | 248 | B | 312 ) IS
Averaged CPU time in seconds (the second 2 tables) per time 4 1280 | 35718 | 1152 | 32166 | 2048 | 56646
step for the first 10 time steps for preconditioned ( by Vanka 5 | 5120 [140550] 4608 [126534| 8192 |223878
scheme, see later) BICGSTAB in combination with uvp(3)-TR-
Q2/P1 scheme for k¥ = 10~ m/s (the first and third table) and
k¥ = 107° m/s (the second and fourth table), Residual < 10™8 .
, At in ms. See Figure 18 for the meshes and Figure 3 for the T E==
configuration.
Pl Cartesian Rectilinear Unstructured
Al =5|At =0.5|At =5|At=0.5|At =5|At=0.5
3 31 37 40 41 44 35
58 58 79 54 82 47
5 109 54 159 84 162 60
(a) (b)
Level Cartesian Rectilinear Unstructured
N At = 5|At = 05/At = 5| At — 0.5|Ar = 5| Az = 05|  FIG. 18: Mesh level 1, level 2 and level 3 for three kinds of grids:
(a) Cartesian, (b) rectilinear and (c) unstructured.
3 31 19 44 19 38 20
65 21 130 29 100 32 o ,
% 95 1 530 5 368 £ Therefore, an excellent alternative is to solve (30) via ge-

Level Cartesian Rectilinear Unstructured
Al =5|At =0.5|At =5|At = 0.5|At =5|At =0.5

3 1.69 2.01 1.95 2.02 3.84 3.04

12.65 12.67 15.37 10.90 | 28.05 17.03

5 | 95.75 | 5048 |125.87| 69.82 |230.00| 90.40

Level Cartesian Rectilinear Unstructured
At =5|At =0.5|At =5|At =0.5|At = 5|At = 0.5

3 1.7 1.02 2.20 0.96 3.30 1.80

14.16 4.76 25.40 5.70 3490 | 11.80

5 [ 169950 2845 | 418.3 | 42.00 |515.00] 76.60

However, due to the nature of the involved partial dif-
ferential equations, particularly w.r.t. the incompressibility,
the condition numbers of the arising matrices typically scale
with the problem size and are quite large, such that stan-
dard single-grid schemes, for instance Krylov-space meth-
ods like BICGSTAB or GMRES (cf. [34, 35]), are too
slow, at least for larger problem sizes, and also in the case
of larger time step sizes and for spatial meshes with non-
equidistant mesh spacing (see Tables III).

ometrical multigrid (MG) solvers (see [28] and [36-38]),
which require a hierarchy of refined mesh levels and cor-
responding intergrid transfer operators, which are selected
w.r.t. the chosen FEM spaces. What is special for the de-
scribed saddle-point problem in (30) is the choice of the so-
called ‘smoothing operator’, which in our case can be traced
back to the early work by Vanka [39]. The corresponding
(basic) iterative schemes can be interpreted as block GauB3-
Seidel methods applied to mixed formulations of saddle-
point problems.

These techniques are very prominent in the CFD commu-
nity to solve incompressible and weakly compressible flow
problems, which are based on the (generalized) Navier-
Stokes equations. They have been adapted to a wide class of
fluidic problems including multiphase flow, fluid-structure
interaction, particulate flow, multi-component fluids, flow
with chemical reactions, etc. In the following, we perform
multigrid iterations of F-cycle type, applying a fixed num-
ber of pre- and postsmoothing steps for the three types of
grids as shown in |'i¢  al :la . Typ-
ically, we will show results for a sequence of consecutively
refined meshes, which are constructed by connecting oppo-
site midpoints of the corresponding coarser meshes, start-
ing from a basic mesh on mesh level 1. The results in
the subsequent Table V demonstrate the very efficient con-
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vergence behavior for several parameter configurations and
they illustrate the typical convergence behavior of multigrid
solvers, namely to be more or less independent of the mesh
size and the value of k7. Such independency becomes even
more prominent in large-scale problems (see Table VII).

TABLE V: Averaged number of iterations (The first 2 tables) and
averaged CPU time in seconds (the second 2 tables) per time step
for for the first 10 time steps for MG (F-4-4) for uvp(3)-TR-Q2/P1
for k¥ = 1072 m/s (the first and third table) and k¥ = 107" m/s
(the second and fourth table), Residual < 1078 and At in ms.

¥ Cartesian Rectilinear Unstructured
At =5|At = 0.5|At = 5| At = 0.5|At = 5| At =05
3 5 3 12 4 8 4
4 3 3 15 4 I3 4
5 5 3 15 4 16 4
Pkl Cartesian Rectilinear Unstructured
At = 5|At =0.5|At =5|At = 0.5|At =5|At =05
3 5 3 13 3 8 3
5 3 16 3 13 3
5 5 3 16 4 16 4
Level Cartesian Rectilinear Unstructured
At = 5|Af = 0.5|At =5|At = 0.5|At =5|At = 0.5
3 1.0 0.7 2.2 1.0 2.6 1.2
44 2.7 11.7 38 175 5.6
204 11.5 475 16.2 943 314
f el Cartesian Rectilinear Unstructured
At =5|At =0.5|At = 5|At =0.5[|At =5|At =05
3 1.0 0.67 2.4 0.73 2.8 1.1
45 27 12:7 2.6 18.0 4.2
5 19.8 10.7 49.6 13.8 94.3 29.1

6. LARGE-SCALE PROBLEMS

The objective of this section is (1) to test the multi-
grid solver on a large system with millions of DOFs and
(2) to show that the proposed uvp(3)-TR-Q2/P1 method
in combination with locally adapted unstructured meshes
and mutigrid solution can be an excellent alternative to infi-
nite element extensions in unbounded domain applications.

The advantages of the described multigrid methods be-
come more prominent for porous media applications when
working on large-scale problems such as studying the dy-
namic wave propagation in infinite saturated half spaces.
As an example, we adopt the problem of wave propagation
in an elastic structure-soil system presented in Section 4.2
of [18]. The problem is illustrated in Figure 19. Such soil-

structure interaction problems have been intensively studied
in the literature, cf. [40-42].
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FIG. 19: Geometry of the 2D structure-soil problem with pre-
scribed boundary conditions. The domain is composed of a struc-
ture, represented by an elastic block (size: 4 x 2 m?), founded on
an infinite domain of elastic soil, replaced by a truncated domain
(size: Ly x L, m”) with rigid boundaries.

In the current problem, the structure is represented by a
block, which is considered to be in a welded contact with
the supporting soil. The applied shear impulse force is
given by

F(t) = 10*[L — cos(20mt)] [L — H(¢ — 7)] [N/m?] (32)

with H () being the Heaviside step functionand 7 = 0.1
s. The material parameters of the block and the soil are the
same (cf. Table II) with k¥ = 10~% m/s and both are dis-
cretized with the same type of finite elements. This implies
a weak damping of the vibrations in the loaded structure
resulting in a successive wave transition into the soil [18].
The unbounded soil domain beneath the block is replaced
by a finite domain with artificial, impermeable, frictionless
but rigid boundaries except for the top side, which is fully
drained (£¥ = 0). Since the acoustic waves in the case of
an unbounded domain propagate towards infinity, the vi-
bration of, for example, point C is supposed to progress
without being later disturbed by the arrival of the reflected
waves resulting from the artificially fixed boundaries. To
resolve this issue, the arrival of these ‘undesired’ waves is
delayed by choosing the dimensions (L, x L) of the rep-
resented finite domain large enough, so that for a desired
period of time, point C can vibrate unimpeded before the
unwanted waves travel back and corrupt the solution. This
is not an economic way, but it serves the purpose to reveal
the capabilities of our solution approach in case of large-
scale problems. A more convenient treatment of infinite
domain boundaries, for instance, by use of infinite elements
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FIG. 20: Level 1 of the Cartesian (top), rectilinear (middle) and
unstructured grid (bottom) for the problem in Figure 19. For
higher mesh levels, see Tables VI and VII.

in the static form in combination with the viscous damp-
ing boundary method is described in [18]. Taking the area
(84 x 81 m?) as reference, we notice from Figure 21 that the
correct description of the horizontal displacement of point
C with time is attained by adopting a finite domain of area
20 x 20 m* and 40 x 40 m? for the time intervals ¢ € [0 0.7]
sand t € [0 1.4] s, respectively. Following [18], the finite
domain size is set to 40 x 40 m? and the time period is set to
t € [0 1.0] s. Using such an equidistant (Cartesian) mesh,
as done in [18], requires an unnecessarily large number of
finite elements, leading to correspondingly large computa-
tional costs. The results for different mesh levels are illus-
trated in Figure 22.

As a remark, with our uvp(3)-TR-Q2/P1 approach us-
ing the described multigrid solver, the results for level 3 are
available in few hours using a standard PC as shown in Ta-

ble VL.
15 : ‘ T
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5 7
S o
&
T -5 1
t=0.7s t=14s
-10 : - ) : :
0 05 1 15 2 2.5 3

time ¢ [s]

FIG. 21: Time history of the horizontal displacement at point C us-
ing uvp(3)-TR-Q2/P1 scheme for level 1 and the rectilinear mesh
of Figure 20.
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FIG. 22: Time history of the horizontal displacement at point C us-
ing uvp(3)-TR-Q2/P1 for k™ = 1072 /s and the Cartesian grid
with optimal time step At = 2 ms. The corresponding number of
elements and number of DOFs are given in Table VL.

TABLE VI: Averaged number of iterations (#Iter.) and elapsed
CPU time (CPU) in seconds per time step for the described multi-
grid solver for uvp(3)-TR-Q2/P1 for ¢ € [0 1.0] s and At = 2
ms for the Cartesian grid case and &7 in m/s.

Level | #Elem. | #DOFs |F = 1077 (k" = 1078 k" = 1071
#ter.| CPU |#lter.| CPU |#Tter.| cPU
2 | 1608 ] 44406 | 2 J25( 2] 2 | 2 | 2
3 | 6432 (175638 | 3 | 19| 3 | 18] 3 | 18
4 25728 | 698598 | 3 | 89 | 2 |60 | 2 | 70
5 1102012| 2786502 | 3 | 353 | 3 | 348 | 3 | 346
6 [411648[11130246| 3 [1446| 3 |1440| 3 | 1441

However, the Cartesian mesh is not the most economi-

cal way for discretizing the domain. Since our fully im-
plicit uvp(3)-TR-Q2/P1 FEM approach is also suitable for
unstructured meshes (see Figure 20) that can better handle
the far-field artificial boundary conditions with mesh-size
independent time steps (here: At = 2 ms), it provides an
excellent and practical alternative to structured methods (cf,
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[18]). Thus, even large-scale problems can be solved in rea-
sonable time (see Figure 23 and Table VII) in combination
with locally adapted, unstructured meshes.
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FIG. 23: Time history of horizontal displacement at point C using
the uvp(3)-TR-Q2/P1 scheme for the unstructured grid (top) and
both the Cartesian and unstructured grids (bottom) with optimal
time step At = 2 ms. The corresponding number of elements and
number of DOFs are given in Tables VI and VIL

TABLE VII: Averaged number of iterations and averaged CPU
{ime in seconds (CPU) per time step for the multigrid solver in
combination with uvp(3)-TR-Q2/P1 for k¥ = 107? m/s and
Af = 2 ms for the unstructured mesh. Level 3 is the mesh level
of the multigrid coarse grid solver (here UMFPACK).

Mesh Level |#Elements |#Unknowns | #lterations | CPU
3 928 25878 1 1.45
4 3712 101862 3 10.5
5 14884 404166 3 59
6 59392 | 1610118 30 |2

7. CONCLUSION

In this paper, special numerical CFD techniques, which
had been developed for the efficient simulation of incom-

pressible flow problems, have been extended and applied to
the set of DAEs governing a dynamic TPM model describ-
ing an intrinsically incompressible, elastic solid matrix that
is saturated by an incompressible pore fluid. The model
equations include the balance of momentum of the solid
phase and the balance of momentum of the fluid phase as
well as the mixture volume balance as algebraic side con-
dition plus the solid velocity-displacement relation. This
set of PDEs has been treated by a special variational form
characterized by the absence of derivatives operating on the
pressure functions and consideration of the fluid viscosity
leading to a reduced and slightly different form of bound-
ary conditions.

The spatial discretization within the mixed FEM has been
carried out by the well-known (non-parametric) Q2/P1 fi-
nite element pair, which belongs to the best choices for in-
compressible flow problems in terms of efficiency, accuracy
and robustness, while the discretization in time has been
carried out by the standard f-scheme (¢ = 1/2), which
leads to a fully implicit, monolithic treatment of all vari-
ables involved. For the solution of the resulting (linear)
systems of equations in each time step, a fast geometri-
cal multigrid solver with special block Vanka smoother has
been realized, which leads to convergence rates being in-
dependent of time step and mesh size, which is important
particularly for large-scale problems. For validation pur-
poses, canonical 1D and 2D wave propagation examples
were opted from the related literature in order to validate
and compare the presented approach with classical ones.

In conclusion, based on the comprehensive investigation
of several test cases and the quantitative comparison with
the results presented in [2], we recommend our fully im-
plicit, monolithic approach using the uvp(3)-TR-Q2/P1 for-
mulation in combination with the described special multi-
grid components. The proposed scheme does not only
demonstrate excellent numerical results regarding accuracy
and robustness, but is also less prone to stability issues (L-
stability) of the time integrator even for coarser meshes.

In future works, we will investigate the potentially sta-
bilizing influence of the fluid viscosity and account for the
nonlinear convective terms. Moreover, an extension of our
implementation to 3D and geometrically nonlinear and in-
elastic solid deformations is on the road map, which opens
the avenue to more practically relevant applications.
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