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Abstract

In this paper, we discuss the numerical treatment of three-dimensional
mixture models for (semi-)dilute and concentrated suspensions of particles
in incompressible fluids. The generalized Navier-Stokes system and the con-
tinuity equation for the volume fraction of the disperse phase are discretized
using an implicit high-resolution finite element scheme, and maximum prin-
ciples are enforced using algebraic flux correction. To prevent the volume
fractions from exceeding the maximum packing limit, a conservative over-
shoot limiter is applied to the converged convective fluxes at the end of each
time step. A numerical study of the proposed approach is performed for 3D
particulate flows over a backward-facing step and in a lid-driven cavity.
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1. Introduction

Flows of incompressible fluids carrying suspensions of rigid particles occur
very commonly in science, nature, and technology. Due to the complexity
of mechanisms that govern fluid-particle and particle-particle interactions,
numerical simulation of such flows belongs to the most challenging problems
in Computational Fluid Dynamics (CFD). The heterogeneous nature of dis-
perse two-phase flows has engendered a hierarchy of models that cover the
whole range of relevant scales and differ greatly in their complexity.

In this paper, we consider averaged continuum models in which the effec-
tive density and viscosity of the mixture depend on the local volume fraction
of the disperse phase [12, 13]. In the dilute regime, we use an analog of
the Boussinesq approximation for natural convection flows. The numerical
implementation of the presented mixture model is based on the methodology
we developed in [11] for buoyancy-driven turbulent bubbly flows.

When it comes to simulating dense suspensions, it is essential to ensure
that the volume fraction of the disperse phase is bounded above. A typ-
ical model for dense suspensions incorporates an interparticle stress term
designed to keep the particle volume fraction below the close-packing value
[1, 6, 17]. Leiderman and Fogelson [15] multiplied the convective flux by a
monotonically decreasing function of the volume fraction to impair the ability
of particles to move into regions packed with other particles.

The flux-corrected transport (FCT) algorithm proposed in [10] combines
the idea of Leiderman and Fogelson [15] with algebraic flux correction [9]. In-
stead of modifying the convective flux at the continuous level, we decompose
the discretized convective term into numerical fluxes and limit the magnitude
of these fluxes so as to get rid of unrealistic maxima. The advantages of con-
straining the discrete solution in this way are twofold. First, there is no need
for tuning any free parameters or choosing the ‘right’ damping function for
the convective flux. Second, the employed limiting strategy does not prevent
the particles from leaving the regions of maximum concentration.

In the original publication [10], we applied the overshoot limiter to a 2D
implosion problem with a prescribed velocity field. In the present paper, we
use the same strategy to enforce the maximum principle for volume fractions
in 3D mixture models of particulate flows. The numerical results for two test
problems (backward-facing step and lid-driven cavity) illustrate the ability
of the proposed scheme to handle dilute and concentrated suspensions.
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2. Mixture model

In mixture models of disperse two-phase flows, the velocity u and pressure
p of the suspension are given by the incompressible Navier-Stokes equations

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (2μD(u)) + ρg, (1)

∇ · u = 0, (2)

where ρ is the effective density, D(u) = 1
2
(∇u + ∇uT ) is the strain rate

tensor, μ is the effective viscosity, and g is the gravitational acceleration.
The hydrodynamic behavior of the mixture depends on the local volume

fraction α of the disperse phase. In the fully Eulerian modeling framework,
the evolution of α is governed by the hyperbolic continuity equation

∂α

∂t
+∇ · (αup) = 0, (3)

where up is the average velocity of the particles. The average velocity of the
fluid phase is denoted by uf . The relative velocity ur = up − uf is known
as the slip velocity, settling velocity, or sedimentation velocity. It can be
determined using empirical correlations (see below).

The effective density and momentum of the mixture are given by [5]

ρ = (1− α)ρf + αρp, (4)

ρu = (1− α)ρfuf + αρpup, (5)

where ρp is the density of the solid and ρf is the density of the fluid. It
follows that up can be expressed in terms of u and ur as follows [12]:

up = u+
1− α

1 + αΘ
ur, Θ =

ρp
ρf

− 1.

The model is closed by problem-dependent constitutive laws for ur and μ.

3. Boussinesq approximation

In the dilute flow regime, the mixture behaves as a weakly compressible
fluid and can be modeled using an analogy to the Boussinesq approximation
for natural convection flows. The use of this approach in the context of
disperse two-phase flow modeling goes back to the work of Lapin and Lübbert
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[14] and Sokolichin et al. [18, 19]. As shown by Lalli [13], it is well suited for
simulating dilute suspensions of particles in incompressible fluids.

Using ρ ≈ ρf in the left-hand side of the momentum equation (1) and the
constant effective viscosity μ ≈ μf in the right-hand side, one obtains

ρf

[
∂u

∂t
+ u · ∇u

]
= −∇p+ μfΔu+ ρfg + α(ρp − ρf )g.

Division by the constant density ρf yields the Boussinesq-like model [13]

∂u

∂t
+ u · ∇u = −∇p̃+ νfΔu+ αΘg, (6)

∇ · u = 0. (7)

The kinematic viscosity νf and modified pressure p̃ are defined by

νf =
μf

ρf
, ∇p̃ =

1

ρf
∇p− g.

The simplest constitutive relation for the relative velocity ur is the Stokes
law. For spherical particles of radius rp, we have

ur =
2

9

r2p
νf

Θg. (8)

For more general closure approximations, we refer to the literature [4, 5, 7].

4. Effective viscosity models

In the Newtonian flow regime, the effective viscosity of a particle suspen-
sion depends on the volume fraction of the disperse phase but not on the
shear rate. It can be calculated, e.g., using the constitutive equation [12]

μ = μf

(
1 +

3

2

α

1− α
αM

)2

, (9)

where αM is the maximum packing fraction and αm is the critical value at
which the viscoplastic behavior arises, see [12, 13] for details.

Another popular empirical formula was proposed by Krieger [8, 20]

μ = μf

(
1− α

αM

)− 5
2
αM

. (10)
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In the case of high particle loads, the generalized Navier-Stokes system
(1)–(2) should be solved instead of the simplified model (6)–(7). Moreover,
the effective viscosity μ of a dense suspension depends not only on the volume
fraction α but also on the second invariant of the strain rate tensor

DII =

√
1

2
D(u) : D(u).

The rheology of a suspension that behaves as a Bingham fluid can be modeled
using the constitutive equation proposed by Lalli et al. [12, 13]

μ =
τ0
2
(DII + ε)−1/2. (11)

The parameters of this model are the yield stress τ0 and the regularization
parameter ε which is used to control the magnitude of μ. Since the volume
fraction of particles may be large in some subdomains and small in other
subdomains, a combination of (11) with (9) or (10) may be employed.

Shear-induced particle migration can be taken into account by adding a
diffusive flux j = −deff∇α to the convective flux in (3). The effective diffusion
coefficient can be determined using the model of Leighton and Acrivos [16]

deff = α2r2p
DII

3

(
1 +

e8.8α

2

)
. (12)

For a detailed presentation of existing models, we refer to [12, 13, 20].

5. Finite element discretization

The numerical implementation of the above models builds on the algo-
rithm developed in [11] for numerical simulation of turbulent bubbly flows.
The generalized Navier-Stokes system is solved using the multilevel Schur
complement methods [22, 23] implemented in the parallel 3D version of the
open-source finite element library FeatFlow [21]. The velocity and pres-
sure are approximated using the stable Q2P1 pair on hexahedral meshes. The
continuity equation (3) is discretized using Q1 elements. The maximum prin-
ciple for volume fractions is enforced using algebraic flux correction [9, 10].
The coupling with the Navier-Stokes solver is accomplished using outer iter-
ations. Steady-state solutions are calculated using pseudo-time-stepping.
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6. Overshoot limiter

It is worth mentioning that even the exact solution of the continuity equa-
tion (3) may exceed the maximum packing value αM if the velocity up is not
divergence-free. In order to enforce the physical maximum principle α ≤ αM ,
the convective flux must be set to zero in regions where the maximum con-
centration is attained. In this paper, we achieve this effect using the 3D
version of the flux-corrected transport algorithm developed in [10].

In this section, we briefly describe the employed overshoot limiter. Given
the maximum-packing bound αM , we eliminate nonphysical maxima using
the following flux-based representation of the discrete problem [10]

miα
n+1
i = miα

n
i +Δt

∑
j �=i

gij, (13)

where mi is a diagonal entry of the lumped mass matrix, Δt is the time step,
and gij denotes a numerical flux from node j into node i.

In the process of algebraic flux correction, gij is multiplied by a solution-
dependent correction factor βij ∈ [0, 1]. Since there are no undershoots, only
positive fluxes require limiting. The algorithm for calculating βij becomes:

1. Compute the sums of positive convective fluxes into node i

P+
i =

∑
j �=i

max{0, gij}. (14)

2. Define the upper bounds for admissible increments

Q+
i =

mi

Δt
(αM − αn

i ). (15)

3. Compute the nodal correction factors for the components of P+
i

R+
i = min

{
1,

Q+
i

P+
i

}
. (16)

4. Check the sign of the unconstrained flux and multiply gij by

βij =

{
R+

i if gij > 0,
R+

j if gij < 0.
(17)
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This FCT-like limiter makes it possible to fix αn+1 with a single postpro-
cessing step. However, the formula for βij is based on the worst-case scenario.
Since positive fluxes are limited without knowing the magnitude of negative
ones, unnecessary flux correction is performed if there is no overshoot at
node i but the removal of negative fluxes would create an overshoot. This
may lead to some erosion in regions where αn+1 ≈ αM . A possible remedy is
iterative flux limiting. The contribution of negative fluxes can be taken into
account using βij from the previous iteration to sharpen the bounds thus:

Q+
i =

mi

Δt
(αM − αn

i ) +
∑
j �=i

βij min{0, gij}. (18)

At the first iteration, we use βij = 1 so that the solution remains unchanged
if the constraint α ≤ αM is satisfied from the outset for all nodes.

7. Numerical examples

The following examples illustrate the ability of the proposed numerical
algorithm to produce realistic results for particulate flow problems.

7.1. Backward-facing step

In the first example, we use the Boussinesq mixture model to simulate
dilute particulate flow over a three-dimensional backward-facing step. The
2D prototype of this benchmark problem was introduced by Barton [2] who
used an Euler-Lagrange flow model of the disperse two-phase flow. In the
3D version, we extrude the quadrilateral mesh shown in Fig. 1 into the third
dimension and successively refine it to generate the hierarchical data struc-
tures for the geometric multigrid methods implemented in FeatFlow. In
order to resolve the steep gradients in the boundary layer, we use anisotropic
mesh refinement in the near-wall region on the coarse mesh.

In the first example, we simulate a dilute suspension using the Boussinesq
model (6)-(7) with μf = 0.005 and the Stokes law (8) for the sedimentation
velocity. The densities of the two phases are given by ρp = 10 and ρf = 1,
which corresponds to Θ = 9.0. The value of the gravitational constant is
g = 0.3 in this test. At the inlet, we prescribe a parabolic velocity profile
with the mean velocity vin = 1. The inflow boundary condition for the
volume fraction of the disperse phase is given by αin = 0.003. On the solid
walls, we prescribe the symmetry (free-slip) condition. At the outlet, we use
the standard do-nothing condition for the effective stress of the mixture.
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Figure 1: Computational coarse mesh.

The flow pattern is characterized by the Reynolds and Stokes numbers

Re =
vin(2h)ρf

μf

= 400, Stk =
2

9

vinr
2
p

(2h)

ρp
μf

.

The quasi-stationary distributions of the volume fraction α for Stk = 0.001
and Stk = 0.01 are displayed in Figs. 2 and 3. These solutions are in a good
qualitative agreement with the results of the 2D simulation in [2].

Figure 2: Backward-facing step: distribution of α in the plane z = 0 for Stk = 0.001.

Figure 3: Backward-facing step: distribution of α in the plane z = 0 for Stk = 0.01.

7.2. Lid-driven cavity

In the second example, we simulate the flow in a particle-laden lid-driven
cavity using the 3D mixture model with the following parameter settings:

Θ = 0.1, g = 0.1, ρf = 1.0, μf = 0.01,

rp = 0.001, τ0 = 5.0, ε = 0.1.
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The bound for α is given by the close random packing fraction αM = 0.65.
In this numerical study, we neglect the shear-induced mixing and calculate

the effective viscosity μ using the following version of Krieger’s model:

μ = μf

(
1− α

α∞

)− 5
2
α∞

, 0 ≤ α ≤ αM , (19)

where α∞ = 0.75 is the void fraction for the maximum regular packing.
The domain Ω = (0, 1) × (0, 1) × (−0.1, 0.1) is discretized using 262,144

hexahedral elements. The Dirichlet boundary condition for the mixture ve-
locity is given by u = (1, 0, 0) on the upper wall of the cavity, symmetry
condition for z = ±0.1 and the no-slip condition u = (0, 0, 0) elsewhere.

The initial condition for the volume fraction α is given by

α0(x, y, z) =

{
αM , if y ≤ 0.75
0, otherwise.

The snapshots in Figs. 4 and 5 demonstrate the evolution of α and μ. Note
that the changes in the distribution of α are reflected in the distribution of μ.
The total volume of particles remains constant and the local volume fraction
satisfies the maximum principle 0 ≤ α ≤ αM . This example shows the
potential of our algebraic approach [10] to constraining the volume fractions
in finite element simulation software for disperse two-phase flows.

8. Conclusions

The mixture models considered in this paper are well-suited for coarse-
grained 3D simulations of particulate flows. The ability of these models to
describe real-life physical phenomena relies on the validity of the underlying
constitutive relations. In the presence of fine-scale effects that cannot be
captured using the above closures, a more accurate estimate of the effective
viscosity can be obtained, e.g., using a Lagrangian particle-scale model or
the discrete network approximation [3]. We envisage that the use of adap-
tive model refinement will make it possible to develop advanced multiscale
simulation tools for disperse two-phase flows. This task will also require
further work on the design of numerical upscaling and downscaling methods.
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t = 5.0 t = 10.0

t = 15.0 t = 20.0

t = 25.0 t = 30.0

Figure 4: Lid-driven cavity: evolution of α in the plane z = 0.
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Figure 5: Lid-driven cavity: evolution of μ in the plane z = 0.
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Kuzmin, R. Löhner and S. Turek (eds.) Flux-Corrected Transport: Prin-
ciples, Algorithms, and Applications. Springer: Scientific Computation,
2nd edition, 2012, pp. 145–192.

[10] D. Kuzmin and Y. Gorb, A flux-corrected transport algorithm for han-
dling the close-packing limit in dense suspensions. J. Comput. Appl.
Math. 236 (2012) 4944–4951.

[11] D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly
flows. In: G.P. Celata, P. Di Marco, A. Mariani, R.K. Shah (eds) Two-
Phase Flow Modeling and Experimentation. Edizioni ETS, Pisa, 2004,
Vol. I, 179-188.

12



[12] F. Lalli, P.G. Esposito, R. Piscopia and R. Verzicco, Fluid-particle flow
simulation by averaged continuous model. Computers & Fluids 34 (2005)
10401061.

[13] F. Lalli, P.G. Esposito and R. Verzicco, A constitutive equation for fluid-
particle flow simulation. Int. J. Offshore and Polar Engrg. 16 (2006)
18-24.
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