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Abstract. We present numerical simulations of a film stretching process between
two rolls of different temperature and rotational velocity. Film stretching is part of
the industrial production of sheet of plastics which takes place after the extrusion
process. The goal of the stretching of the sheet material is to rearrange the orien-
tation of the polymer chains. Thus, the final products have more smooth surfaces
and homogeneous properties. In numerical simulation, the plastic sheet is being
modelled geometrically as a membrane and rheologically as a polymer melt. The
thickness of the membrane is not assumed to be constant but rather depends on
the rheology of the polymer and heat transfer. The rheology of the sheet material
is governed by a viscoelastic fluid and is coupled to the flow model. An A-stable
time integrator is applied to the systems in which the continuous spatial system
is discretized within the FEM framework at each time step. The resulting discrete
systems are solved via Newton-multigrid techniques. Here, a level set method is
used to capture the free surfaces. We obtain similar results for test configurations
with available results from literature and present "neck-in” as well as ”dog-bone”
effects.

1 Introduction

Film casting processes are widely practiced in industry. The purpose is to pro-
duce thin sheets of polymer. They are mainly used for food packaging, drugs,
coating, etc. Having extruded from the die below the melting temperature,
the film sheet needs to be further oriented on the molecular level to obtain
more smooth material properties at desired thickness. This is done by several
rolls stretching the sheet material, see Fig. 1. The first several rolls warm up
the temperature of the sheet material with constant heat source. Then, the
two middle rolls stretch the sheet with different velocity and temperature.
The last several rolls cool down the temperature of the sheet material. In-
dustrial objectives are to improve the properties of end products at higher
production rates and to reduce production cost. In reality, the higher the rate
of production process is the poorer the quality of the end product becomes.
The reduced qualities are well-knwon as ”"neck-in” and ”dog-bone/edge-bead”
effects as studied in [8] for the extrusion process.

Numerical treatment of such process has been studied in the work of [7]
where a 2D membrane model is introduced together with isothermal Newto-
nian flow. Furthermore, a viscoelastic model is clearly of importance to the
corresponding process, as shown in [13,14].
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Fig. 1. Left: Laboratory tools (Courtesy of Schopfner, Wibbeke). Right: The nu-
merical setup

2 Membrane model, viscoelasticity and temperature
coupling

The thickness of the sheet material film, which is roughly 0.1% of the width,
makes it possible to use a 2D membrane model of [7]. This is numerically
more advantageous, but we are aware of physical limitations of using this
model which is that one cannot predict the whole physical phenomena, in
particular when dealing with viscoelastic constitutive laws, see [10]. Following
[7], the steady state 2D model starts with the assumption that inertia can be
neglected and that incompressibility holds, such as

V-eT+pge=0 and V-eu=0 where T = —pIl+ 21D (1)

for Newtonian fluids. The thickness e appears as new unknown inside the
equation. This is a consequence of the 2D simplification of the third direction
in 3D. Further consequence is that the pressure equals to the 2D velocity
gradient

p=—2ntr(D) with D= %(Vu + vu®). (2)

So, equation (1) can be written without pressure as unknown, respectively
only velocity and thickness (u, e) as unknowns

V-e(2nD + 2ntr(D)I) + pge =0 and V:-eu=0. (3)
In the case of nonstationary problems, equation (3) becomes

%tl +V-e(2nD + 2ntr(D)I) + pge = 0 and % +V-.eu=0. (4

In the presence of viscoelasticity, the total stress becomes T = —pI + 2n;D +
"7”(7' —1I), where the conformation stress tensor 7 is governed by the following

viscoelastic constitutive law,

or r 1
§+(U~V)T*VU~T*T'VU —Zf(‘l')7 (5)
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with parameters s, n,, A as solvent viscosity, polymer viscosity and polymer
relaxation time. Depending on how one sets f(7), many viscoelastic models
such as in [9] can be included. In this study, we use the Oldroyd-B model
with 59% solvent contribution, if later not explicitely mentioned. Further-
more, since the non-isothermal condition should be treated, a transport of
temperature is available via the following equation

00

— +(u-V)0 =k V30, (6)
ot

which influences the viscosity and the relaxation time of the fluid, as for
example by the well-known Arrhenius dependence

E /1 1 E /1 1
779:"706XPR<9—90>, AQ:AeXpR(e—eo> (7)

Here, the parameters k1, E/, R are the heat diffusion coefficient, activation of
energy and ideal gas constant.

3 Multiphase treatment

In the presence of the free surface for the above setup configuration, a surface
tracking method is possible. However, it is more convenient to use a single
mesh without one has to update the mesh at every time step. Furthermore,
an ALE formulation makes also sense since the deformation of the mesh is
small. On the other hand, it is computationally cheaper, in view of non-
isothermal situations, to avoid additional numerical variables exerting from
ALE formulation. Thus, a level set equation [12] is a good candidate,

d¢

— 4+ (u-V)p =0, 8

2 V) (®)
to capture the free surface as recently implemented in [6] for multiphase
viscoelastic flow. One needs to take care that the function should approximate
the distance property of | V|| = 1 at each time step, if not should satisfy.

4 Numerical treatment

The numerical strategy to deal with the multiphase character, that means
where and what to solve, is based on the sign of the level set function. In the
following we describe the numerical treatment via the backward FEuler scheme,
for simplicity. We proceed, also implemented in [3,4] and by neglecting the
gravity (also for simplicity), as follows: Given initial solutions (u"™,e™, 7™, 6™)
and interface ™ in each time step, the fully coupled weak formulation of the
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above system of equations is to find (u = u"*le = "t 7 = 77+l 9 =
6"t1) for the next time step with At = "1 — " so that

1

5w 8)e — (e 20(D + (D)), Vé)o + {(€T) -1, 6)o0 = —{u" 6)r (9)
e Ba (¥ ut (@ Ve, bl = (B (10)

L<T,¢>Q+<(U'V)T7VU'T7T'VUT* %f('r),@g = Ait<Tn’¢>Q (11)

At
000+ (0,000 + ki(V0,0)0 = 0" 00 (12

with an admissible inner product (-,-), and with test functions ¢ € Qo as
higher order finite element functions. Then, given a current solutions u, one
seeks a solution for ¢ of the next time step via

T80+ (a- Vg 6o = (e dho (13)

also here with ¢ € Q2 as higher order finite element approximation. The
numerical parameters are set to be level set dependent, denoting {2; and
£2,, where 2 = 27 U 2, with {2y N 2, = 0. Next, a redistancing procedure
maintains the distanced property of the level set function in each time step
[6]. The process is then repeated for the next time steps.

One expects that the solution may not be smooth even at lower Weis-
senberg number [11]. This fact introduces problems with the Galerkin for-
mulation. Unlike in the Stokes problem where a pair of Qo P; FEM satisfies
the so-called LBB condition for velocity-pressure [1], in the presence of vis-
coelasticity, Bonito and Burman [2] have shown that there is a second inf-sup
stability condition as well for the approximation of velocity-stress. A remedy
can be obtained by adding a consistent stabilization term penalizing the jump
of the solution gradient over element edges E (with hg denoting the length of
the edge). As presented in [15], this jump term ”smooths” also spurious ve-
locity components, thus avoiding unnecessary numerical artifacts. This term
can be written in the following form (see [15] for more details and also [4] in
the case of viscoelasticity):

Jo= Yty [ (V)i (Velds (1)
edge E E
Regarding the numerical solvers, the obtained discrete system of equations
(9-14) is nonlinear and fully coupled. Therefore, a damped Newton interation
is applied to the solution vector
OR(x")] "
Xn+1 — x" +wn [ (X ):| R(Xn), (15)
ox
where x represents the vector of the coefficients corresponding to the above
physical unknowns, with a damping parameter w™. The resulting linear sys-
tem are solved via a monolithic multigrid solver, see [5].
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5 Numerical results

There exist several numerical attempts for similar problems of film casting, as
for example in [7,13,14]. Unfortunately there is no common benchmark on this
issue. Numerical parameters of the corresponding fluids model are not easily
available, thus new numerical techniques are hard to validate. So, here we try
the dimensionless numbers of numerical attempts from the following Tab. 1,
which use the same geometry as the one in the work of [14] with similar fluid
parameters. Comparison with reference is still possible qualitatively, as shown
in Fig. 2. We simulate several mesh levels (12x8, 24x16, 48x32, denoted as

Table 1. Film stretching condition

Case Dist.(S) (1/2 W) Thick. (0) %in Uout Gin Gout 0 We
Newtonian 5 12.5 0.07 0115 - - 1 0
Viscoelastic 5 12.5 0.07 0115 - - 10.03

L2, L3, L4 accordingly) to be sure that the solutions are converging. The
following Fig. 2 shows that our numerical results lead to converged solutions
with mesh refinement. The end width of the free surface is wider than that of
[14]. As a consequence, the thickness along the symmetry line is thinner than
that of [14] accordingly. In general, the results show a similar behaviour when
the fluid is stretched. Here, the ”dog-bone” effect is clearly visible from the
left of Fig. 2 In the presence of viscoelasticity, see Fig. 3, the shear thinning
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Fig. 2. Thickness profile at the chill roll and the symmetry line

effect in the direction of the elongational flow makes the end width of the film
to be wider than that in the case of Newtonian which is also qualitatively
shown in [14] with the Upper Convective Maxwell model. As in the Newtonian
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Fig. 3. Thickness profile at the chill roll and the symmetry line

case, one sees clearly "neck-in” effects for the corresponding numerical setup.

Having qualitatively compared the numerical results, we do simulations
for the setup in Fig. 1 with the following conditions in Tab. 2. The geometry
and flow condition is slightly adjusted from the one in Tab. 1. Here, the
temperature of the two rolls is taken into account. The rest of the data is
served only for numerical tests. For this setup, we are quite flexible to choose
the time step size (At = 0.01 is also used in Tab. 1) due to the monolithic
treatment of velocity, thickness and stress. Care has to be taken that the

Table 2. Film stretching condition of Fig. 1

Dist.(S) (1/2 W) Thick. (§) tin %out Oin Oout o We E R ki
3.487 7 0.02 5/3 5 433 413 1 0.04779 45 8.31 0

time step size is not too big, not to disturbe the decoupling of the level set.
We found that the above time step size is quite optimal in this case. One sees
in Fig. 4 that the flow of the system gets steady. It is shown by the thickness
evolution of two points: one in the middle of the exit, and one is close to the
edge of the free surface. For two levels of computation, the solutions seem
to reach mesh convergence. In the region close to free sueface, care needs to
be taken that numerical parameters do not give additional ”jumps” across
the element otherwise the resolution must be high enough to capture smooth
datas. However this is not the case in the region (£2f) far from the free surface
which shows clearly mesh converged solutions, see Fig. 5. Furthermore, the
simulation of the complete system shows the same behaviour of ”dog-bone”
effect. Here, the thickness in the middle is relatively thinner than that near
the free surface.
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Fig. 4. Thickness evolution at two points at the chill roll (exit/take up)
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Fig. 5. Thickness profile at the chill roll (exit/take up)

6 Summary

A membrane model for simulating the stretching of viscoelastic flow is pre-
sented. The total governing system includes the Stokes equations as well
as viscoelastic constitutive laws and they are fully coupled. The multiphase
characteristic is handled by a level set equation denoting where and what to
solve. This may induce numerical artifacts which is then remedied by adding
a consistent jump stabilization term. The results are qualitatively compared
against reference [14] results and show that the numerical simulation is able
to predict the so-called ”dog-bone” and "neck-in” effects. In the presence of
viscoelasticity, the final thickness at the chill roll shows less of these effects.
Further studies will be performed.
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