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Abstract. Least-squares finite element methods are motivated, beside others, by
the fact that in contrast to standard mixed finite element methods, the choice of
the finite element spaces is not subject to the LBB stability condition and the
corresponding discrete linear system is symmetric and positive definite. We intend
to benefit from these two positive attractive features, on one hand, to use different
types of elements representing the physics as for instance the jump in the pressure
for multiphase flow and mass conservation and, on the other hand, to show the
flexibility of the geometric multigrid methods to handle efficiently the resulting
linear systems. With the aim to develop a solver for non-Newtonian problems,
we introduce the stress as a new variable to recast the Navier-Stokes equations
into first order systems of equations. We numerically solve S-V-P, Stress-Velocity-
Pressure, formulation of the incompressible Navier-Stokes equations based on the
least-squares principles using different types of finite elements of low as well as
higher order. For the discrete systems, we use a conjugate gradient (CG) solver
accelerated with a geometric multigrid preconditioner. In addition, we employ a
Krylov space smoother which allows a parameter-free smoothing. Combining this
linear solver with the Newton linearization results in a robust and efficient solver.
We analyze the application of this general approach, of using different types of
finite elements, and the efficiency of the solver, geometric multigrid, throughout
the solution of the prototypical benchmark configuration ‘flow around cylinder’.
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vation, Navier-Stokes equations.

1 Introduction

Least-Squares FEM (LSFEM) is generally motivated by the desire to re-
cover the advantageous features of Rayleigh-Ritz methods, as for instance,
the choice of the approximation spaces is free from discrete compatibility
conditions and the corresponding discrete system is symmetric and positive
definite [4].
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In this paper, we solve the incompressible Navier-Stokes (NS) equations
with LSFEM. Direct application of the LSFEM to the second-order NS equa-
tions requires the use of quite impractical C1 finite elements [4]. Therefore,
we introduce the stress as a new variable, on one hand to recast the Navier-
Stokes equations to a first-order system of equations, and on the other hand to
develop the basic solver for non-newtonian problems, i.e. the stress-velocity-
pressure (S-V-P) formulation.

The resulting LSFEM system is symmetric and positive definite [4]. This
permits the use of the conjugate gradient (CG) method and efficient multi-
grid solvers for the solution of the discrete system. In order to improve the
efficiency of the solution method, the multigrid and the Krylov subspace
method, here CG, can be combined with two different strategies. The first
strategy is to use the multigrid as a preconditioner for the Krylov method [1].
The advantage of this scheme is that the Krylov method reduces the error in
eigenmodes that are not being effectively reduced by multigrid. The second
strategy is to employ Krylov preconditions methods as multigrid smoother.
The Krylov methods appropriately determine the size of the solution updates
at each smoothing step. This leads to smoothing sweeps which, in contrast
to the standard SOR or Jacobi smoothing, are free from predefined damping
parameters.

We develop a geometric multigrid solver as a preconditioner for the CG
(MPCG) iterations to solve the S-V-P system with LSFEM. The MPCG
solver has been first introduced and successfully used by the authors for
the solution of the vorticity-based Navier-Stokes equations [3]. We use a CG
pre/post-smoother to obtain efficient and parameter-free smoothing sweeps.
We demonstrate a robust and grid independent behavior for the solution of
different flow problems with both bilinear and biquadratic finite elements.
Moreover, we show through the ‘flow around cylinder’ benchmark that accu-
rate results can be obtained with LSFEM provided that higher order finite
elements are used.

Therefore, the paper is organized as follows: in the next section we in-
troduce the incompressible NS equations, the Newton linearization, the con-
tinuous and the discrete least-square principles with their properties and the
designed LSFEM solver. In the next section, we present the general MPCG
solver settings and the detailed results of the flow parameters in the ‘flow
around cylinder’ problem. Finally, we give a conclusion and an outlook in the
last section.

2 LSFEM for the Navier-Stokes Equations

The incompressible NS equations for a stationary flow are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u · ∇u+∇p− ν�u = f in Ω

∇ · u = 0 in Ω

u = gD on ΓD

n · σ = gN on ΓN

(1)



Newton-Multigrid Least-Squares FEM 3

where Ω ⊂ R
2 is a bounded domain, p is the normalized pressure p = P/ρ,

ν = μ/ρ is the kinematic viscosity, f is the source term, gD is the value
of the Dirichlet boundary conditions on the Dirichlet boundary ΓD, gN is
the prescribed traction on the Neumann boundary ΓN , n is the outward
unit normal on the boundary, σ is the stress tensor and Γ = ΓD ∪ ΓN

and ΓD ∩ ΓN = ∅. The kinematic viscosity and the density of the fluid are
assumed to be constant. The first equation in (1) is the momentum equation
where velocities u = [u , v]T and pressure p are the unknowns and the second
equation represents the continuity equation.

2.1 First-order Stress-Velocity-Pressure System

The straightforward application of the LSFEM to the second-order NS equa-
tions requires C1 finite elements [4]. To avoid the practical difficulties in
the implementation of such FEM, we first recast the second-order equation
to a system of first-order equations. Another important reason for not us-
ing the straightforward LSFEM is that the resulting system matrix will be
ill-conditioned.

To derive the S-V-P formulation, the Cauchy stress, σ, is introduced as
a new variable

σ = 2νD(u)− pI (2)

where 2D := ∇+∇T . Using the NS equations and the stress equation (2) we
obtain the first-order Stress-Velocity-Pressure (S-V-P) system of equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u · ∇u−∇ · σ = f in Ω

∇ · u = 0 in Ω

σ + pI− 2νD(u) = 0 in Ω

u = gD on ΓD

n · σ = gN on ΓN

(3)

2.2 Continuous Least-squares Principle

We introduce the spaces of admissible functions based on the residuals of the
first-order system (3)

V :=H(div, Ω) ∩Hs(Ω)×H1
gD,D(Ω)× L2

0(Ω) (4)

and we define the S-V-P least-squares energy functional in the L2-norm

J (σ,u, p; f) =
1

2

(∫
Ω

|σ + pI− 2νD(u)|2 dΩ

+

∫
Ω

|∇ · u|2 dΩ +

∫
Ω

|u · ∇u+∇ · σ − f |2 dΩ

+

∫
ΓN

|n · σ − gN |2 ds
)

∀(σ,u, p) ∈ V

(5)
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where we have assumed extra regularity for the stress to define the functional
on the boundary ΓN in L2(ΓN ). The minimization problem associated with
the least-squares functional in (5) is to find ũ ∈ V , ũ := (σ,u, p), such that

ũ = argmin
ṽ∈V

J (ṽ; f) (6)

2.3 Newton Linearization

The S-V-P system (3) is nonlinear, due to the presence of the convective
term, u · ∇u, in the momentum equation. Let R denote the residuals for the
S-V-P system (3). We use the Newton method to approximate the nonlinear
residuals. The nonlinear iteration is updated with the correction δũ, ũk+1 =
ũk + δũ. Then, the Newton linearization gives the following approximation
for the residuals:

R(ũk+1) =R(ũk + δũ)


R(ũk) +

[
∂R(ũk)

∂x

]
δũ

(7)

Using the least-squares principle, the resulting quadratic linearized func-
tional, L, is given in terms of L2-norms as:

L(uk; δũ) =
1

2

∫
Ω

∣∣∣∣∣R(ũk) +

[
∂R(ũk)

∂x

]
δũ

∣∣∣∣∣
2

dΩ (8)

where we omitted the residual on the Neumann boundary for alluding briefly
the main points. Minimizing the quadratic linearized functional (8) is equiv-
alent to find δũ such that:∫

Ω

(
R(ũk) +

[
∂R(ũk)

∂x

]
δũ

)
·
([

∂R(ũk)

∂x

]
ṽ

)
dΩ = 0 ∀ṽ (9)

In the operator form, let A and F defined as follows:

A(ũk) :=

[
∂R(ũk)

∂x

]∗ [
∂R(ũk)

∂x

]
, F(ũk) := −

[
∂R(ũk)

∂x

]∗
R(ũk). (10)

Then, the linear system to solve at each nonlinear iteration is:

A(ũk)δũ = F(ũk) (11)

The resulting Newton iteration for the least-squares formulation is given as
follows:

ũk+1 = ũk −
([

∂R(ũk)

∂x

]∗ [
∂R(ũk)

∂x

])−1 [
∂R(ũk)

∂x

]∗
R(ũk) (12)
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2.4 Variational Formulation

The variational formulation problem based on the optimality condition of
the minimization problem (6), considering the Newton Linearization in (2.3),
reads {

Find (σ,u, p) ∈ V s.t.

〈A(σ,u, p), (τ ,v, q)〉 = F(τ ,v, q)
(13)

where A is the bilinear form defined on V × V → R as follows

〈
A(σk,uk, pk)(σ,u, p), (τ ,v, q)

〉
=

∫
Ω

(
σ + pI− 2νD(u)

)
:
(
τ + qI− 2νD(v)

)
dΩ

+

∫
ΓN

(
n · σ

)
·
(
n · τ

)
ds+

∫
Ω

(
∇ · u

) (
∇ · v

)
dΩ

+

∫
Ω

(
u · ∇uk + uk · ∇u+∇ · σ

)
·
(
v · ∇uk + uk · ∇v +∇ · τ

)
dΩ

(14)
and the bilinear form F is defined on V → R as follows:

F(σk,uk, pk)(τ ,v, q) =

∫
Ω

(
∂R(σk,uk, pk)

∂x
(τ ,v, q)

)
·
(
R(σk,uk, pk)

)
dΩ

(15)

2.5 Operator Form of the Problem

To analyze the properties of the least-squares problem, let us write the bilin-
ear form (14) as in (10). Then, the S-V-P operator reads:

A(σ,u, p) =

[
∂R(σ,u, p)

∂x

]∗ [
∂R(σ,u, p)

∂x

]

=

⎛
⎝ I−∇∇ ·+nΓN

nΓN
· −2νD−∇C(u) I

2ν∇ ·+C∗(u)∇· −4ν2∇ ·D−∇∇ ·+C∗(u)C(u) 2ν∇·
I −2νD I

⎞
⎠

(16)
Here, the nonlinear term C(u) is defined as follows:

〈C(u), v〉 =
∫
Ω

v · ∇u+ u · ∇v dΩ (17)

The resulting matrix, from equations (16), is symmetric and positive definite.
So, after discretization, we are able to use the CG method to efficiently solve
the system of equations. Our aim is to design an efficient solver which exploits
the properties of the least-squares system with respect to both the CG and the
multigrid methods. Therefore, we use CG as the main solver and accelerate
it with the multigrid preconditioning.
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2.6 Discrete Least-Squares Principle

Let the bounded domain Ω ⊂ R
d be partitioned by a grid Th consisting

of elements K ∈ Th which are assumed to be open quadrilaterals or hexahe-
drons such that Ω = int

(⋃
K∈Th

K
)
. Furthermore, letH1,h(Ω),Hs,h(Ω), and

Hdiv,h(Ω) denote the spaces of elementwise H1, Hs, and H(div) functions
with respect to Th [2].

Now, we turn to the approximation of the problem (13) with the finite
element method. So, we introduce the approximation spaces V h such that

V h ⊂ Hdiv,h(Ω) ∩Hs,h(Ω)×H1,h
gD,D(Ω)× L2

0(Ω) (18)

and we consider the approximated problems

{
Find (σh,uh, ph) ∈ V h s.t.

〈Ah(σ,u, p), (τh,vh, qh)〉 = Fh(τh,vh, qh)
(19)

where Ah is an approximate bilinear form of (14) defined on V h × V h → R.

The least-squares formulation allows a free choice of FE spaces [4]. So, we
are able to use different combinations of FE approximations, as for instance,
discontinuous P dc

0 , P dc
1 , H1-nonconforming Q̃1 and Q̃2, H

1-conforming Q1

and Q2, or from H(div). Here we use different combinations of finite element
spaces allowing better comparison with the standard mixed finite element for
velocity and pressure. Therefore, we set V h ⊂ V , and Ah = A.

2.7 MPCG Solver

The discrete linear system of equations resulting from the least-squares finite
element method (16) has a symmetric and positive definite (SPD) coefficient
matrix i.e.

A =

⎛
⎝Aσσ Aσu Aσp

Aσu Auu Aup

Aσp Aup App

⎞
⎠ (20)

Therefore, it is appropriate to take full advantage of the symmetric positive
definiteness by using solvers specially designed for such systems. In addition,
the resulting system matrix is sparse due to the properties of the interpolation
functions used in the finite element discretization. Our main focus is on the
iterative solvers. We specifically employ the conjugate gradient method as
a Krylov subspace solver suitable for the SPD systems. In addition, we use
multigrid method as a highly efficient defect correction scheme for sparse
linear systems arising in the discretization of (elliptic) partial differential
equations [3].
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3 Numerical Results and Discussions

We investigate the performance of the MPCG solver for the system (20)
for a wide range of parameters, using the benchmarks quantities drag, lift,
pressure drop, and the Global Mass Conservation (GMC) (see [3]). Moreover,
we analyze the performance of the MPCG solver for the solution of the S-V-P.
Figure 1 shows the computational mesh of the coarsest level.

Fig. 1. Flow around cylinder: computational grid on level 1

Table 1. S-V-P Formulation: Benchmark quantities for flow around cylinder at
Re = 20.

Level d.o.f. CD CL �p GMC|x=2.2
NL/MG

Q1/Q1/Q1 4 22,144 5.1716353 0.0210522 0.0103135 1.114501 7/19
5 88,576 5.4440131 0.0142939 0.1117922 0.299773 7/17
6 354,304 5.5415463 0.0117584 0.1152451 0.077866 7/17

Q2/Q2/Q2 3 135,024 5.5588883 0.0101360 0.1165546 0.022791 6/12
4 535,776 5.5769755 0.0105355 0.1173265 0.003022 6/12
5 2,134,464 5.5792424 0.0106064 0.1174766 0.000556 6/12

Q2/Q2/P
dc
1 3 129,128 5.5586141 0.0101405 0.1168068 0.0320698 6/13

4 512,912 5.5769573 0.0105351 0.1173867 0.0039341 6/13
5 2,044,448 5.5792414 0.1060618 0.1174911 0.0004692 6/13

ref.: CD = 5.57953523384, CL = 0.010618948146,�p = 0.11752016697

We present the drag and the lift coefficients, the pressure drop across
the cylinder, and the GMC|x=2.2

values at the outflow (x = 2.2) at Reynolds
number Re = 20 for the S-V-P formulation in Table 1 which also shows the
number of nonlinear iterations and the corresponding averaged linear solver
(MPCG solver) iterations for different levels.

Using higher order finite elements, the method shows excellent conver-
gence towards the reference solution. We observe a grid-independent conver-
gence behavior.
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4 Summary

We presented a numerical study regarding the accuracy and the efficiency of
least-squares finite element formulation of the incompressible Navier-Stokes
equations. The first-order system is introduced using the stress, velocity, and
pressure, known as the S-V-P formulation. We investigated different finite
element spaces of higher and low order. Using the Newton scheme, the lin-
earization is performed on the continuous operators. Then, the least-squares
minimization is applied. The resulting linear system is solved using an ex-
tended multigrid-preconditioned conjugate gradient solver. The flow accuracy
and the mass conservation of the LSFEM formulations are investigated using
the incompressible steady-state laminar ‘flow around cylinder’ problem’.

On the accuracy aspect, we have shown that highly accurate results can
be obtained with higher order finite elements. More importantly, we have ob-
tained more accurate results with the higher-order finite elements with less
number of degrees of freedom as compared to the lower-order elements. This
obviously amounts to less computational costs. On the efficiency aspect, we
have shown that the MPCG solver performs efficiently for LSFEM formula-
tion.

Having the basic S-V-P LSFEM solver, our main objective is the investi-
gation of generalized Newtonian fluids with the nonlinearity due to the stress
σ = 2ν(γ̇)D (u) − pI, and multiphase flow problems with the jump in the
stress and discontinuous pressure.
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