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Abstract: We derive a class of extended one-step methods of order m for solving delay-differential equations. This class includes

methods of fourth and fifth order of accuracy. Also, the class of these methods depends on two free parameters. A convergence theorem

and convergence factor of these methods are given. In addition, we investigate the stability properties of these methods. The results of

the article are illustrated by numerical examples.
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1 Introduction

Delay differential equations (DDEs) have a wide range of
applications in science and engineering: for examples
population dynamics, chemical kinetics, physiological
and pharmaceutical kinetics. For example, one may think
of modelling the growth of a population where the
self-regulatory reaction in case of overcrowding responds
after some time lag. More examples are discussed in
Driver [7], Gopalsamy[27] and Kuang[28]. First order
DDE can be written as

y′(x) = f (x,y(x),y(α(x))), a ≤ x ≤ b,
y(x) = g(x), ν ≤ x ≤ a.

(1)

Here f , α and g denote given functions with α(x) ≤ x
for x ≥ a , the function α is usually called the delay or lag
function and y is unknown solution for x> a. If the delay is
a constant, it is called the constant delay, if it is a function
of only time, then it is called the time dependent delay, if it
is a function of time and the solution y(x), then it is called
the state dependent delay.

Many methods have been proposed for the numerical
approximation of problem (1). Oberle and Pesch [18]
introduced a class of numerical methods for the treatment
of DDEs based on the well-known Runge-Kutta-Fehlberg
methods. The retarded argument is approximated by an
appropriate Hermite interpolation. The same methods are
used by Arndt [2] with a different stepsize control

mechanism. Bellen and Zennaro[4] developed a class of
numerical methods to approximate solution of DDEs.
These methods are based on implicit Runge-Kutta
methods. Paul and Baker [19] used explicit Runge-Kutta
method for the numerical solution of singular DDEs.
Torelli and Vermiglio [20] considered continuous
numerical methods for differential equations with several
constant delays. These methods are based on continuous
quadrature rule. Hayashi [10] used continuous
Runge-Kutta methods for the numerical solution of
retarded and neutral DDEs. Engelborghs et al. [6]
presented collocation methods for the computation of
periodic solution of DDEs. Hu and Cahlon [12]
considered the numerical solution of initial-value
discrete- delay systems.
The most obvious of the above methods for solving
problem (1) numerically is that the s− Runge-Kutta
methods with α(x) = x− τ in the form

Y i
n+1 = yn +h∑

j
ai j f (xn + c jh,Y

j
n+1,y(xn + c jh− τ)),

yn+1 = yn +h∑
j

b j f (xn + c jh,Y
j

n+1,y(xn + c jh− τ))

i = 1,2 . . . ,s. The b j are often referred to as the weights
of the method, while the ci are referred to abscissae, they
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belong to [0,1 ] and satisfy the conditions:

ci =
s

∑
j

ai j.

There are many concepts of stability of numerical methods
for DDEs based on different test equation as well as the
delay term. [3] has considered the below scalar equation
for λ = 0 and μ ∈ C and also considered the case, where
λ and μ are complex using the linear DDEs

ý(x) = λy(x)+μy(x− τ), x ≥ 0

y(x) = g(x), −τ ≤ x ≤ 0
(2)

It is known that from [1] that if g(x) is continuous and if

|μ|<−Re(λ ), (3)

then the soultion y(x) of ( 2 ) tends to zero as x −→ ∞.

It is well known that the maximum order of an A-stable
linear multistep methods (LMMs) is two. This difficulty
has been solved by coupling two LMMS to give an
A-stable extended one step method of order three , which
had constructed by Usmani and Agarwal [26]. After
noting that the maximum order of extended one step
methos is three, Kondrat and Jacques [15] gave extended
two-step fourth order A-stable methods for solving
ordinary differential equations. Later Chawla et al. [24]
had constructed a class of extended one-step methods
generalizing the method of Usmani and Agrawal [26] and
the maximum attainable order for methods of this class is
five which are A- and/ or L-stable.

The purpose of this paper is to study an extension the
work of Chawla et al. [23,24] for solving DDEs. This
class includes methods of fourth and fifth order of
accuracy. Furthermore there exists two-parameter
sub-family of these methods which are P-stable.

The paper is organized as follows: In the following
section 2, we explain the general approach for solving
DDEs. The details of the computations for different value
of m will be described in Section 3. The Analysis of
stability regions for these methods presents in section 4.
For three representative examples, section 5 contains a
documentation of numerical results illustrating the
performance of our methods. Some concluding remarks
are given in the final section 6.

2 The general approach

In this section, we extend the work of Chawla et al.
(1994,1995) to derive a class of extended one-step
methods of order m for solving DDEs. We start with the

following discretization for solving problem (1):

yn+1 = yn

+h[ α0 fn +α1 fn+1 +
m−1

∑
j=2

α j f̂n+ j] , n = 0,1, . . . ,N −1,

(4)
where f̂n+ j = f (xn+ j, ŷn+ j,yh(α(xn+ j))) and
α j, j = 0,1, . . .m− 1 are real coefficients. The function

yh is computed from⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yh(x) = g(x) for x ≤ a

yh(x) = β j0yk +β j1yk+1 +h[ γ j0 fk

+ γ j1 fk+1 +
j−1

∑
i=2

γ ji f̂k+1] ,

xk < x ≤ xk+1 k = 0,1, . . .

(5)

where β j0, β j1, γ j0, γ j1 and γ ji are real coefficients. The
function ŷn+ j are computed from (5) when x = xn+ j. In
this paper, we will use ˜ for the coefficients of ŷn+ j as in
the following form :

ŷn+ j = β̃ j0yn + β̃ j1

+h[ γ̃ j0 fn + γ̃ j0 fn+1 +
j−1

∑
i=2

γ̃ ji f̂n+i]

(6)
We display this class of extended one-step methods in the
following Table.

α0 α1 α2 ... αm−1

β20 β21 γ21

β30 β31 γ31 γ32

βm−1,0 βm−1,1 γm−1,1 γm−1,2 γm−1,m−2

3 Derivation of some methods for m = 4,5

In this section, we describe derivations of some methods
for various values of m .

3.1 Case I, m = 4

In this case, we describe the derivation of the present
methods of fourth order of accuracy. In order to determine
the coefficients α0,α1 and α j , we rewrite (4) in the exact
form

y(xn+1) = y(xn)+h[α0 f (xn,y(xn),y(α(xn)))

+α1 f (xn+1,y(xn+1),y(α(xn+1)))

+
m−1

∑
j=2

α j f (xn+ j,y(xn+ j),y(α(xn+ j)))]+ t(xn+1).

(7)
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We expand the left and right side of (7) in the Taylor
series about the point xn+1, equate the coefficients up to
the terms O(h4) and solve the resulting system of
equations, we obtain

α0 =
3

8
, α1 =

19

24
, α2 =− 5

24
α3 =

1

24
(8)

and

t(xn+1) =
−19

720
h5y(5)(xn+1). (9)

By the same way, in order to determine the coefficients
β j0,β j1,γ j0,γ j1 and γ ji, i = 0,1, . . . j−1, we rewrite (5) in
the exact form

y(x) = β j0y(xk)+β j1y(xk+1)+h[ γ j0 f (xk,y(xk),y(α(xk)))

+ γ j1 f (xk+1,y(xk+1),y(α(xk+1)))

+
j−1

∑
i=2

γ ji f (xk+ j,y(xk+ j),y(α(xk+ j)))] + t j(xk+1).

(10)
We expand the left and right side of (10) in the Taylor
series about the point xn+1, equate the coefficients up to
the terms O(h3) and solve the resulting system of
equations, we obtain

⎧⎪⎨
⎪⎩

β20 = 2γ20 +δ 2
1

β21 = 1−δ 2
1 (x)−2γ20

γ21 = γ20 +δ1(x)+δ 2
1 (x)

(11)

with γ20 free, where

t2(xk+1) =
h3

6
(δ 3

1 (x)+δ 2
1 (x)− γ20)y(3)(xk+1)

+
h4

24
(δ 4

1 (x)−δ 2
1 (x)+2γ20)y(4)(xk+1), for j = 2,

(12)
here δ1(x) = 1

h (x− xk+1), for xk < x ≤ xk+1, x = α(xn+2),
k = 0,1, . . . .
and

⎧⎪⎨
⎪⎩

β30 = 2γ31 +4γ32 −2δ2(x)−δ 2
2 (x)

β31 = 1+2δ2(x)+δ 2
2 (x)−2γ31 −4γ32

γ30 =−δ2(x)−δ 2
2 (x)+ γ31 +3γ32

(13)

with γ31,γ32 free where

t3(xk+1) =
h3

6
(δ 3

2 (x)+2δ 2
2 (x)+δ2(x)− γ31

−8γ32)y(3)(xk+1)+
h4

24
(δ 4

2 (x)−3δ 2
2 (x)

−2δ2(x)+2γ31 +4γ32)y(4)(xk+1), for j = 3,

δ2(x) = 1
h (x− xk+1), for xk < x ≤ xk+1, x = α(xn+3), k =

0,1, . . . .

The approximations ŷn+2 and ŷn+3 is determined from (5)
and the coefficients in this case take the form⎧⎪⎨

⎪⎩
β̃20 = 1+2γ̃20

β̃21 =−2γ̃20

γ̃21 = 2+ γ̃20

(14)

with γ20 free, where

t2(xn+1) =
h3

6
(2− γ̃20)y(3)(xn+1)

+
h4

12
γ̃20y(4)(xn+1) for j = 2,

and ⎧⎪⎨
⎪⎩

β̃30 =−8+2γ̃31 +4γ̃32

β̃31 = 9−2γ̃31 −4γ̃32

γ̃30 =−6+ γ̃31 +3γ̃32

(15)

with γ̃31, γ̃32 free, where

t3(xn+1) = (3− 1

6
γ̃31 − 4

3
γ̃32)h3y(3)(xn+1)

+(
1

12
γ̃31 +

1

6
γ̃32)h4y(4)(xn+1) for j = 3.

and consider the discretization (4) for m= 4 made into one
step defined by

yn+1 = yn +h[ α0 fn +α1 fn+1 +α2 f̂n+2 +α3 f̂n+3]+Tn+1.
(16)

To calculate the local truncation error in (16) from (7) and
(16) we have

Tn+1 = t(xn+1)+h[ α2( f (xn+2,y(xn+2),y(α(xn+2)))

− f̂n+2)+α3( f (xn+3,y(xn+3),y(α(xn+3)))− f̂n+3) ].
(17)

It can be shown from (17) (we omit details) that

Tn+1 = t(xn+1)

+
h4

144
[ (8+5γ20 − γ31 −8γ32)g1(xn+1)+(−5δ 2

1 (x)

−5δ 3
1 (x)+5γ̃20 +δ 3

2 (x)+δ2(x)+2δ 2
2 (x)− γ̃31

−8γ̃32)w1(xn+1)] y(3)(xn+1)+

{
h5

720
[ (26−5γ̃20 −2γ̃31

−16γ̃32)g
′
(xn+1)+(−5δ 2

1 (x)−5δ 3
1 (x)+5γ20 +2δ 3

2 (x)

+4δ 2
2 (x)+2δ2(x)−2γ31 −16γ32)ẃ1(xn+1)+ γ̃32(2

− γ̃20)g2
1(xn+1)+ γ32(2− γ̃20)g1(xn+1)w1(xn+1)+ γ32(δ 3

1 (x)+δ 2
1 (x)

− γ20)w2
1(xn+1)] 5y(3)(xn+1)+ [ (−10γ̃20 + γ31 + γ̃31)g1(xn+1)

+(δ 4
2 −3δ 2

2 −2δ2 −δ 4
1 +5δ 2

1 +2γ31 +4γ32 −10γ20)w1(xn+1)

+4γ̃32(δ 3
1 (x)+δ 2

1 (x)− γ20)g1(xn+1)w1(xn+1)]
5

4
y(4)(xn+1)},

where we have set
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g1(xn+1) =
∂ f (x,y(x),y(α(x)))

∂y(x)
)|xn+1

,

and

w(xn+1) =
∂ f (x,y(x),y(α(x)))

∂y(α(x))
)|xn+1

.

In order that Tn+1 in (??) be O(h5), we must have

γ31 = 8+5γ20 −8γ32,

γ̃31 = 5γ̃20 +δ 3
2 (α(xn+3))+δ2(α(xn+3))

−8γ̃32 −5δ 2
1 (α(xn+2))−5δ 3

1 (α(xn+2)).

By consider γ̃20 = γ20 and γ̃32 = γ32, we have a
two-parameter family of extended one-step fourth order
methods given, which we will refer it by PM4(γ20,γ32).

3.2 Case II, m = 5

We describe the derivation of a scheme of the fifth order
of accuracy. As in case I, we rewrite (4) in the exact form
and expand the left and right sides of this equation in the
Taylor series about the point xn+1, equate the coefficients
up to the terms O(h5) and solve the resulting system of
equations, we obtain

α0 =
251

720
, α1 =

323

360
, α2 =−−11

30
, α3 =

53

360
, α4 =

−19

720
(18)

and

t(xn+1) =
3

160
h6y(6)(xn+1). (19)

By the same way, in order to determine the coefficients
β j0,β j1 and γ ji, i = 0,1, . . . j − 1, we rewrite (5) in the
exact form and expand the left and right sides of this
equation in the Taylor series about the point xk+1, equate
the coefficients up to the terms O(h4) and solve the
resulting system of equations, we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β20 = 2δ 3
1 (x)−3δ 2

1 (x)+1

β21 = 3δ 2
1 (x)−2δ 3

1 (x)

γ20 = δ 3
1 (x)−2δ 2

1 (x)+δ1(x)

γ21 = δ 3
1 (x)−2δ 2

1 (x)

(20)

where

t2(xk+1) =
h4

24
(δ 4

1 (x)−2δ 3
1 (x)+δ 2

1 (x))y
(4)(xk+1)

+
h5

120
(δ 5

1 (x)−3δ 3
1 (x)+2δ 2

1 (x))y
(5)(xk+1)

for j = 2,

δ1(x) = 1
h (x− xk+1), for x = α(xn+2); k = 0,1, . . .,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β30 = 2δ 3
2 (x)−3δ 2

2 (x)−12γ32 +1

β31 = 12γ32 −2δ 3
2 (x)+3δ 2

2 (x)

γ30 = δ 3
2 (x)−δ 2

2 (x)+δ2(x)−5γ32

γ31 = δ 3
2 (x)−δ 2

2 (x)−8γ32

(21)

with γ32 free, where

t3(xk+1) =
h4

24
(δ 4

2 (x)−2δ 3
2 (x)+δ 2

2 (x)−12γ32)y(4)(xk+1)

+
h5

120
(δ 5

2 (x)−3δ 3
2 (x)+2δ 2

2 (x)−52γ32)y(5)(xk+1),

for j = 3,

δ2(x) = 1
h (x− xk+1), for x = α(xn+3); k = 0,1, . . .

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β40 = 2δ 3
3 (x)−3δ 2

3 (x)−12γ42 −36γ43 +1

β41 = 3δ 2
3 (x)−2δ 3

3 (x)+12γ42 +36γ43

γ40 = δ 3
3 (x)−2δ 2

3 (x)+δ3(x)−5γ42 −16γ43

γ41 = δ 3
3 (x)−δ 2

3 (x)−8γ42 −21γ43

(22)

with γ42,γ43 free, where

t4(xk+1) =
h4

24
(δ 4

3 (x)−2δ 3
3 (x)+δ 2

3 (x)−12γ42

−60γ43)y(4)(xk+1)+
h5

120
(δ 5

3 (x)+2δ 2
3 (x)−3δ 3

3 (x)

−52γ42 −336γ43)y(5)(xk+1),

δ3(x) = 1
h (x− xk+1),for x = α(xn+4); k = 0,1, . . ..

The approximations ŷn+2, ŷn+3 and ŷn+4 determined from
(5) and the coefficients in this case take the form

β̃20 = 5, β̃21 =−4, γ̃20 = 2, γ20 = 4,

where

t2(xn+1) =
1

6
h4y(4)(xn+1)+

2

15
h5y(5)(xn+1) for j = 2;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̃30 = 28−12γ̃32

β̃31 =−27+12γ̃32

γ̃30 = 12−5γ̃32

γ̃31 = 18−8γ̃32

(23)

with γ̃32 free, where

t3(xn+1) = (
3

2
− 1

2
γ̃32)h4y(4)(xn+1)+(

3

2
− 13

30
γ̃32)h5y(5)(xn+1)

+O(h6) for j = 3;

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̃40 = 81−12γ̃42 −36γ̃43

β̃41 =−80+12γ̃42 +36γ̃43

γ̃40 = 36−5γ̃42 −16γ̃43

γ̃41 = 48−8γ̃42 −21γ̃43

(24)
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with γ̃42, γ̃43 free, where

t4(xn+1) = (6− 1

2
γ̃42 − 5

2
γ̃43)h4y(4)(xn+1)

+(
36

5
− 13

30
γ̃42 − 14

5
γ̃43)h5y(5)(xn+1)

+O(h6) for j = 4;

By the same way as in case I, we can prove that the global
error of fifth order. Thus, with consider γ̃32 = γ32 and γ̃43 =
γ43, we have a two-parameter family of extended one-step
fifth order methods, which will refer it by PM5 = (γ32,γ43)
.

4 Stability definitions and results

The stability investigations are based on the linear
equation (4) and the concept of P-stability introduced by
Barwell [3]
Definition 1.1. (P-stability region) Given a numerical

method for solving (2), the P-stability region of the
method is the set SP of the pairs
(X ,Y ), X = λh and Y = μh, such that the numerical
solution of (2) asymptotically vanishes for step-lengths h
satisfying

h =
τ
m

(25)

with m is positive integer.

Definition 1.2. (P-stability) A numerical method for (2) is
said to be P-stable if

SP ⊇ R,

where

R = {(X ,Y ) : Y <−X} .

4.1 Case I, m = 4

In order to solve the Problem (2), the present methods with
m = 4 are written as follows

[
24−12λh(1+ γ32)+2(λh)2(1+4γ32

+γ32γ20)− γ32(λh)3(2+ γ20) ]yn+1 =[
24+12λh(1− γ32)+2(λh)2(1−2γ32 + γ32γ20)

+γ32γ20(λh)3 ]yn +μh[ (9+λh(2−5γ32)

+γ32γ20(λh)2)y(xn − τ)+(19−2λh(1+4γ32)

+γ32(λh)2(2+ γ20))y(xn+1 − τ)
−(5−λhγ32)y(xn+2 − τ)+ y(xn+3 − τ), ]

(26)

with a constant step size h satisfying the constraint (25).
The characteristic polynomial associated with (26) takes

the form

Wm(z) =
[
24−12X(1+ γ32)+2X2(1+4γ32

+ γ32γ20)−X3γ32(2+ γ20)zm+1

− [
24+12X(1− γ32)+2X2(1−2γ32 + γ32γ20)

+X3γ32γ20

]
zm −Y

[
9+X(2−5γ32)+X2γ32γ20

+(19−2X(1+4γ32)+X2γ32(2+ γ20))z

− (5−Xγ32)z2 + z3 ]= 0, m = 1,2, . . .
(27)

It is clear that (X ,Y ) ∈ SP if and only if all roots of the
polynomials Wm are inside the unit disc for m = 1,2, . . ..
Let

P(z) :=
[
24−2X(1+ γ32)+2X2(1+4γ32 + γ32γ20)

−X3γ32(2+ γ20)
]
zm+1 − [24+12X(1− γ32)

+2X2(1−2γ32 + γ32γ20)+X3γ32γ20 ]zm,

Q(z) :=−Y
[
9+X(2−5γ32)+X2γ32γ20

+(19−2X(1+4γ32)+X2γ32(2+ γ20))z

− (5−Xγ32)z2 + z3 ],
(28)

and z∗ denotes the only nonzero root of P(z). It follows
from Rouche’s theorem, see Marden [17], that
(X ,Y ) ∈ SP if [z∗] < 1 and |P(z)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have

|P(z)| ≥||24−12X(1+ γ32)+2X2(1+4γ32 + γ32γ20)

−X3γ32(2+ γ20)|− |24+12X(1− γ32)

+2X2(1−2γ32 + γ32γ20)+X3γ32γ20||,
|Q(z)| ≤|Y |(|9+X(2−5γ32)+X2γ32γ20|

+ |19+2X(1+4γ32)+X2γ32(2+ γ20)|
|−5+Xγ32|+1).

(29)
Therefore, (X ,Y ) ∈ SP if the following set of inequalities
is satisfied

||24−12X(1+ γ32)+2X2(1+4γ32 + γ32γ20)

−X3γ32(2+ γ20)|− |24+12X(1− γ32)

+2X2(1−2γ32 + γ32γ20)+X3γ32γ20|| ≥
|Y |(|9+X(2−5γ32)+X2γ32γ20 + |19−2X(1+4γ32)

+X2γ32(2+ γ20)|+ |−5+Xγ32|+1),
(30)

and∣∣∣∣ 24+12X(1− γ32)+2X2(1−2γ32 + γ32γ20)+X3γ32γ20

24−12X(1+ γ32)+2X2(1+4γ32 + γ32γ20)−X3γ32(2+ γ20)

∣∣∣∣< 1.

(31)
It can be seen that X ∈ SA where SA is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (31) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (31) is satisfied if
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1. γ32 = 0 , with γ20 free to choose or
2. γ32 > 0 and γ20 ≥−1

Moreover, the P-stability region for various values of free
parameters is determined by solving the system of
inequalities (30) and (31). Thus we establish the
following.

Theorem 1. For the present methods, the region of
P-stability satisfies the relation

SP ∩R = {(X ,Y ) : |Y |<−X and |Y |< φ(X)}

where

φ(X) =

⎧⎪⎨
⎪⎩

−12X
17

for X ≥ −9

2
−6X
4−X

for X <
−9

2

for γ32 = 0 and γ20 free to choose.

Proof. The proof follows immediately from inequality
(30).

From among values for the case (2), the choice γ20 =
0 and γ32 = 1

2 give the large stability region, so we will
present only the theorem of this choice as the following:

Theorem 2. For the present methods the region of
P-stability satisfies the relation

SP ∩R = {(X ,Y ) : Y <−Xand |Y |< φ(X)} ,

where

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

−2X3 −12X2 +48X
68−14X +X2

, if X ≥−4

−2X3 +12X2 −24X +96

68−14X +X2
, if X <−4,

for γ20 = 0 and γ32 =
1
2 .

Proof. The proof follows immediately from inequality
(27).
The Fig. 2 shows the different regions of the P-stability
with respect to different values of γ20 and γ32.

Fig. 1 The P-stability region for PM4(0,
1
2 ) and PM4(−1,1)

(Top-Bottom).

4.2 Case II, m = 5

By the same way for m=5, we obtain the following
characteristic polynomial

Wm(z) =
[
720−8X(48+57γ43)+4X2(21+57γ43

+57γ43γ32)−2X3(4+19γ43 +11γ43γ32)

+76X4γ43γ32

]
zm+1 − [720+12X(28−38γ43)

+6X2(10−38γ43 +38γ43γ32)+2X3(2−19γ43)

−38X4γ32γ43 ]zm −Y [251+X(50−171γ43)

+X2(4−38γ43 +95γ43γ32)+(646−X(76+361γ43)

+2X2(4+19γ43 +76γ43γ32)−76X3γ43γ32)z

− (264−X(2+95γ43)+19X2γ43γ32)z2 +(106

−19Xγ43)z3 −19z4 ]= 0, m = 1,2, . . .
(32)

It is clear that (X ,Y ) ∈ SP if and only if all roots of the
polynomials Wm are inside the unit disc for m = 1,2, . . ..
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Let

P(z) :=
[
720−8X(48+57γ43)+4X2(21+57γ43

+57γ43γ32)−2X3(4+19γ43 +11γ43γ32)

+76X4γ43γ32

]
zm+1 − [720+12X(28

−38γ43)+6X2(10−38γ43 +38γ43γ32))

+2X3(2−19γ43 −38X4γ32γ43 ]zm

Q(z) :=−Y
[
251+X(50−171γ43)+X2(4−38γ43

+95γ43γ32)+(646−X(76+361γ43)

+2X2(4+19γ43 +76γ43γ32)

−76X3γ43γ32)z− (264−X(2+95γ43)

+19X2γ43γ32)z2 +(106−19Xγ43)z3

−19z4 ]
(33)

and z∗ denotes the only nonzero root of P(z). It follows
from Rouche’s theorem, see Marden [17], that
(X ,Y ) ∈ SP if [z∗] < 1 and |P(z)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have

|P(z)| ≥||720−8X(48+57γ43)+4X2(21+57γ43

+57γ43γ32)−2X3(4+19γ43 +11γ43γ32)

+76X4γ43γ32 −|720+12X(28−38γ43)

+6X2(10−38γ43 +38γ43γ32)+2X3(2

−19γ43)−38X4γ32γ43||
|Q(z)| ≤|Y |(|251+X(50−171γ43)+X2(4−38γ43

+95γ43γ32)|+ |(646−X(76+361γ43)+2X2(4

+19γ43 +76γ43γ32)−76X3γ43γ32)|+ |−264

+X(2+95γ43)−19X2γ43γ32)|+ |106

−19Xγ43|+19)
(34)

Therefore, (X ,Y )P if the following set of inequalities are
satisfied

||720−8X(48+57γ43)+4X2(21+57γ43 +57γ43γ32)

−2X3(4+19γ43 +11γ43γ32)+76X4γ43γ32 −|720

+12X(28−38γ43)+6X2(10−38γ43 +38γ43γ32)

+2X3(2−19γ43)−38X4γ32γ43|| ≥
|Y |(|251+X(50−171γ43)+X2(4−38γ43 +95γ43γ32)|
+X2(4−38γ43 +95γ43γ32)|+ |(646−X(76+361γ43)

+2X2(4+19γ43 +76γ43γ32)−76X3γ43γ32)||−264

+X(2+95γ43)−19X2γ43γ32)|+ |106−19Xγ43|+19)
(35)

and

|A1

A2
|< 1 (36)

where

A1 = 720+12X(28−38γ43)+6X2(10−38γ43 +38γ43γ32)

+2X3(2−19γ43)−38X4γ32γ43

and

A2 = 720−8X(48+57γ43)+4X2(21+57γ43 +57γ43γ32)

−2X3(4+19γ43 +11γ43γ32)+76X4γ43γ32

It can be seen that X ∈ SA where SA is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (36) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (35) is satisfied if

1. γ43 = 0, with γ32 free to choose or
2. γ32 = 0 and γ43 ≥ −1

19 .

Moreover, the P-stability region for various values of free
parameters is determined by solving the system of
inequalities(35) and (36). Thus we establish the
following.

Theorem 3. For the present methods, the region of
P-stability satisfies the relation

SP ∩R = {(X ,Y ) : |Y |<−X and |Y |< φ(X)}
where

φ(X) =

⎧⎪⎪⎨
⎪⎪⎩

−3X3 +6X2 −720

3X2 −7X +319
for X ≥−6

−X3 +36X2 −12X +360

3X2 −7X +319
for X <−6

for γ43 = 0 and γ32 free to choose.
Proof. The proof follows immediately from inequality
(35)).
The Fig. 2 shows the different regions of the P-stability
with respect to different values of γ43 and γ32.

In the next part of this section, we state the error
estimate for the present methods (4), (5) and (6). Our
error estimate is given by the following theorem:

Theorem 4. Let yn be obtained by the methods (4), (5) and
(6). Then, at each mesh point xn, we have the following
error estimate:

en = |y(xn)− yn| ≤C1hm, n = 1,2, . . . (37)

where m = 4,5 and C1 is independent of n and h .
Proof. see(Ibrahim et al. )
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Fig. 2 The P-stability region for PM5(0,
2

19 ) and PM5(0,
−1
19 )

(Top-Bottom).

5 Numerical tests

In this section, we present some numerical results using
PM4(γ20,γ32) and PM5(γ32,γ43) with different values of
free parameters and also compare the results with
Runge-Kutta method. We apply these methods to three
examples for each h = 1

N where N = 4,8,16,32,64 and
128 .
Example 1

y′(x) = 1

2
e

x
2 y(

x
2
)+

x
2

y(x) 0 ≤ x ≤ 1

y(0) = 1

The exact solution is y(x) = ex.
Example 2

y′(x) = 1− y(
x
2
)2 0 ≤ x ≤ 1

y(0) = 0

The exact solution is y(x) = sin(x).
Example 3: Paul [25]

y1′(x) = y1(x−1)+ y2(x), x ≥ 0

y2′(x) = y1(x)− y1(x−1)

y1(x) = ex, x ≤ 0

y2(0) = 1− e−1

The exact solution is
y1(x) = ex, y2(x) = ex − ex−1, x ≥ 0.

Runge-Kutta method

s=2 s=3

N EN RN EN RN

4 7.80E-02 3.83E-03

8 2.29E-02 1.77 5.19E-04 2.88

16 6.28E-03 1.87 6.81E-05 2.93

32 1.64E-03 1.93 8.73E-06 2.96

64 4.2E-04 1.97 1.11E-06 2.98

128 1.06E-04 1.98 1.39E-07 2.99

A class of extended one-step methods

PM4(0,
1
5 ) PM5(0,

2
19 )

N EN RN EN RN

4 1.04E-05 1.39E-06

8 6.06E-07 4.11 4.05E-08 5.10

16 3.66E-08 4.05 1.23E-09 5.05

32 2.25E-09 4.03 3.77E-11 5.02

84 1.39E-10 4.01 1.17E-12 5.01

128 8.66E-12 4.01 4.06E-14 4.85

Table 1 Comparison of class extended one-step methods with

Runge-Kutta method for Example 1.

Runge-Kutta method

s=2 s=3

N EN RN EN RN

4 4.95E-03 1.64E-03

8 1.21E-03 2.03 1.91E-04 3.10

16 3.38E-04 1.84 2.30E-05 3.05

32 9.17E-05 1.88 2.80E-06 3.04

64 2.35E-05 1.96 3.45E-07 3.02

128 5.94E-06 1.99 4.28E-08 3.01

A class of extended one-step methods

PM4(0,
1
5 ) PM5(0,

2
19 )

N EN RN EN RN

4 3.46E-06 2.77E-07

8 2.23E-07 3.96 7.88E-09 5.13

16 1.42E-08 3.98 2.33E-10 5.07

32 8.92E-10 3.99 7.18E-12 5.03

84 5.59E-11 3.99 2.22E-13 5.02

128 3.50E-15 4.00 7.10E-15 4.96

Table 2 Comparison of class extended one-step methods with

Runge-Kutta method for Example 2.
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Runge-Kutta method

y1(x) y2(x)
N EN RN EN RN

4 6.99E-03 5.87E-03

8 9.63E-04 2.86 8.14E-04 2.85

16 1.26E-04 2.93 1.07E-04 2.93

32 1.62E-05 2.96 1.37E-05 2.96

64 2.05E-06 2.98 1.74E-06 2.98

128 2.57E-07 2.99 2.19E-07 2.99

Fourth order method PM4(0,
1
2 )

y1(x) y2(x)
N EN RN EN RN

4 4.00E-06 2.30E-05

8 5.00E-07 4.10 1.20E-06 4.26

16 6.26E-08 4.05 6.82E-08 4.14

32 7.80E-09 4.02 4.05E-09 4.07

64 9.74E-10 4.01 2.47E-10 4.04

128 4.00E-06 4.01 1.53E-11 4.02

PM5(0,
2
19 )

y1(x) y2(x)
N EN RN EN RN

4 3.19E-05 3.54E-05

8 8.57E-07 5.22 9.62E-07 5.20

16 2.48E-08 5.11 2.80E-08 5.10

32 7.46E-10 5.05 8.46E-10 5.05

64 2.29E-11 5.03 2.60E-11 5.03

128 7.14E-13 5.00 8.00E-13 5.02

Table 3 Comparison of class extended one-step methods with

Runge-Kutta method for Example 3.

6 Conclusion and perspective

we have described a class of numerical methods of order
four and five for solving delay differential equation by
extending the work of Chawla et all. (1994, 1995). These
methods depended on two free parameters, so we can
obtain for every method on a family of methods for
different value of a free parameters. The region of
P-stability for the present methods has been investigated
for different values of a free parameters. The large
-stability region for the present method of order four
occurs at γ20 = 0 and γ32 = 1

2 , see Fig. 1, further the
largeP -stability region for the present method of order
five occurs at γ32 = 0 and γ43 =

2
19 , see Fig. 2. In the last

cases, the present methods are L-stable for solving
ordinary differential equations. All the obtained
numerical results clearly indicate the effectiveness of our
methods.
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