1-10 (2013)

A class of Extended one-step methods for solving delay

differential equations

F. Ibrahim"2, A. A. Salama® and S. Turek!

! Institut fiir Angewandte Mathematik, LS III, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Gemany

2 South Valley University, Egypt

3 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

Received: , Revised: , Accepted:
Published online:

Abstract: We derive a class of extended one-step methods of order m for solving delay-differential equations. This class includes
methods of fourth and fifth order of accuracy. Also, the class of these methods depends on two free parameters. A convergence theorem
and convergence factor of these methods are given. In addition, we investigate the stability properties of these methods. The results of

the article are illustrated by numerical examples.

Keywords: Delay-differential equations, Stability, Convergence, Numerical solutions

1 Introduction

Delay differential equations (DDEs) have a wide range of
applications in science and engineering: for examples
population dynamics, chemical kinetics, physiological
and pharmaceutical kinetics. For example, one may think
of modelling the growth of a population where the
self-regulatory reaction in case of overcrowding responds
after some time lag. More examples are discussed in
Driver [7], Gopalsamy[27] and Kuang[28]. First order
DDE can be written as

V(x) = flx,y(x),y(ax)), a<x<b,
y(x) = g(x), v<x<a

Here f , o and g denote given functions with a(x) < x
for x > a , the function « is usually called the delay or lag
function and y is unknown solution for x > a. If the delay is
a constant, it is called the constant delay, if it is a function
of only time, then it is called the time dependent delay, if it
is a function of time and the solution y(x), then it is called
the state dependent delay.

Many methods have been proposed for the numerical
approximation of problem (1). Oberle and Pesch [18]
introduced a class of numerical methods for the treatment
of DDEs based on the well-known Runge-Kutta-Fehlberg
methods. The retarded argument is approximated by an
appropriate Hermite interpolation. The same methods are
used by Arndt [2] with a different stepsize control

(D

mechanism. Bellen and Zennaro[4] developed a class of
numerical methods to approximate solution of DDEs.
These methods are based on implicit Runge-Kutta
methods. Paul and Baker [19] used explicit Runge-Kutta
method for the numerical solution of singular DDEs.
Torelli and Vermiglio [20] considered continuous
numerical methods for differential equations with several
constant delays. These methods are based on continuous
quadrature rule. Hayashi [10] wused continuous
Runge-Kutta methods for the numerical solution of
retarded and neutral DDEs. Engelborghs et al. [6]
presented collocation methods for the computation of
periodic solution of DDEs. Hu and Cahlon [12]
considered the numerical solution of initial-value
discrete- delay systems.

The most obvious of the above methods for solving
problem (1) numerically is that the s— Runge-Kutta
methods with ¢¢(x) = x — T in the form

Vi =yt hY aijf (ot cih, Y], y0om +cjh— 1)),
7

Va1 = Yt h Y bif (6 + i Yl y 00+ cjh— 7))
7

i=1,2...,s. The b; are often referred to as the weights
of the method, while the ¢; are referred to abscissae, they
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belong to [0, 1] and satisfy the conditions:
S
[ Za,-j.
J

There are many concepts of stability of numerical methods
for DDEs based on different test equation as well as the
delay term. [3] has considered the below scalar equation
for A =0 and u € C and also considered the case, where
A and p are complex using the linear DDEs

¥(x) = Ay(x) +uy(x—7), x=0

y(x) = g(x), —T<x<0 @

It is known that from [1] that if g(x) is continuous and if
1l < —Re(R), )

then the soultion y(x) of (2) tends to zero as x — oco.

It is well known that the maximum order of an A-stable
linear multistep methods (LMMs) is two. This difficulty
has been solved by coupling two LMMS to give an
A-stable extended one step method of order three , which
had constructed by Usmani and Agarwal [26]. After
noting that the maximum order of extended one step
methos is three, Kondrat and Jacques [15] gave extended
two-step fourth order A-stable methods for solving
ordinary differential equations. Later Chawla et al. [24]
had constructed a class of extended one-step methods
generalizing the method of Usmani and Agrawal [26] and
the maximum attainable order for methods of this class is
five which are A- and/ or L-stable.

The purpose of this paper is to study an extension the
work of Chawla et al. [23,24] for solving DDEs. This
class includes methods of fourth and fifth order of
accuracy. Furthermore there exists two-parameter
sub-family of these methods which are P-stable.

The paper is organized as follows: In the following
section 2, we explain the general approach for solving
DDEs. The details of the computations for different value
of m will be described in Section 3. The Analysis of
stability regions for these methods presents in section 4.
For three representative examples, section 5 contains a
documentation of numerical results illustrating the
performance of our methods. Some concluding remarks
are given in the final section 6.

2 The general approach

In this section, we extend the work of Chawla et al.
(1994,1995) to derive a class of extended one-step
methods of order m for solving DDEs. We start with the

following discretization for solving problem (1):

Ynt+1 =Yn

m—1
+hl oo fu+aufusi+ Y, Qifasj], n=0,1,...

j=2
A ) )
where forj = gy Ins), Y (0xnr))) and
o, j=0,1,...m—1 are real coefficients. The function

y"* is computed from
Yix)=g(x) for x<a

Y'(x) = ﬁ/oyk+ﬁ/1Yk+1 + h[ Yjofi
(5)
+ Vit firr + Z Yifes1]

X <x<xpr1 k=0,1,...

where Bjo, Bj1, Yjo, ¥j1 and ¥j; are real coefficients. The
function 3y, ; are computed from (5) when x = x,;. In
this paper, we will use ~ for the coefficients of J,, ; as in
the following form :

Intj= ﬁ/OYn+ﬁjl
=r
+ [ Fjofu+ FioSar1 + Y, Fiifuril
i=2
(6)
We display this class of extended one-step methods in the
following Table.

(04 o (0%) Ohy—1
B | Ba Y
B | B V1 12
Bn-10 | Bu-11 | Ym-11 | Ym—12 Yn—1,m—2

3 Derivation of some methods for m = 4,5

In this section, we describe derivations of some methods
for various values of m .

3.1 Casel, m=4

In this case, we describe the derivation of the present
methods of fourth order of accuracy. In order to determine
the coefficients oy, oy and o , we rewrite (4) in the exact
form
y(anrl) = y(xn) + h[a()f(xmy(xn)vy(a(xn)))
+ alf(xn+lay(xn+1)ay(a(xn+l)))

m—1

+ X 03 Cons 23 ) (o)) +1C501)
@)

aN_]7
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We expand the left and right side of (7) in the Taylor
series about the point x,1, equate the coefficients up to
the terms O(h*) and solve the resulting system of
equations, we obtain

W=g BT BTy BTy
and 0
t(Xpy1) = %hsy(s)(xrﬂrl)- )

By the same way, in order to determine the coefficients
Bjo,Bj1, Yo, vj1 and ¥j;, i =0,1,... j — 1, we rewrite (5) in
the exact form

y(x) = Bjoy(xe) + Bj1y(xi1) + Al vjof (o, y (i), y(@(xe)))
+ Vi f (o1, Y (1), (@ (xie1)))
j—1
+ Y Vi (g Yoy ),y (00 )]+ (ecgr)-
i=2
(10)
We expand the left and right side of (10) in the Taylor
series about the point x,1, equate the coefficients up to

the terms O(h?) and solve the resulting system of
equations, we obtain

Bao = 2750 + &7
Bor =1 — 8% (x) — 20 (11)
Y1 = Y0+ 61 (x) + 87 (x)

with 70 free, where

/’13
(1) = 3 (83 (x) + 82 (x) — o)y® (xes1)
h4

53 (81 (@0) = 87 (1) + 210y (i), for j =2,

(12)
here 9 (x) = %(xkaﬂ), for xp < x < xpe1, X = A(Xp42),
k=0,1,....

and

+

Bso = 2751 + 4y — 282 (x) — 85 (x)
B3 = 1 +28(x) + 85 (x) — 2731 — 4732 (13)

The approximations y,.2 and y,,3 is determined from (5)
and the coefficients in this case take the form

Bro = 1+ 2%
a1 = 270 (14)
P1=2+%o
with g free, where
n 3
0 (Xpt1) = K(Z— %0)y™ (An+1)
h4

+ Ef’zoym (Xp41) for j =2,
and B
B30 = —8+2%31 + 47
B3t =9— 2151 — 47 (15)
a0 =—6+ P31+ 3

with 731, 5 free, where
N P PRV E M)
B(xn1) =3 oo 3732)h Y (1)
1 . 1. .
+ (EYBI + 8?’32)h4y(4) (Xpg1) for j=3.

and consider the discretization (4) for m = 4 made into one
step defined by

Yn+1 = Yn +h[ 0 [+ 04 frr1 + a2fn+2 + O‘3fn+3] + Ty

(16)
To calculate the local truncation error in (16) from (7) and
(16) we have

To1 = t(xnr1) +h[ 0 (f (xng2, y(6nr2), (0 (xn12)))
- fn+2) + 03 (f(xn+3 s y(xn+3 ) s y(a(x11+3))) - fn+(31);)
It can be shown from (17) (we omit details) that

L1 =t(Xn+1)
+ m[ (84570 — 131 — 8752)81 (Xnt1) + (=567 (x)

— 587 (x) + 5720 + 8 (x) + & (x) + 287 (x) — 1
5

Y30 = —62(X) - 622()6) + 131 +3’)/32 720

—1652)g (us1) + (—587 (x) — 567 (x) + 510 +285 ()

487 (x) + 28 (x) — 2731 — 16732)W1 (1) + F52(2

— 70)81 (Xn1) + 152(2 — F20)81 (s 1)W1 (Kng1) + ¥32(87 (x) + 8 (x)
—p0)w7 (ens 1)) Y (oni1) + [ (=10F0 + 131 + F51)€1 (1)
+(8) =385 =28 — 8] + 587 + 2131 + 4732 — 10%20) w1 (X 11)

87w (o )]y (i) + {’W (26— 57— 27

with 731,732 free where

3
ki) = o (8300) 428300+ 8:(2) —

h4
—8930)y (1) + 7 (85 (x) =355 (x)

—28(x) + 2131 + 452y (i), for j =3, Co 5
+4%52(87 (x) + 67 (x) — 120) &1 (Xn 1)W1 (Xn41)] Zy< ) (i)
8 (x) = F(x —xps1), for xp < x < xppp, X = A(xp43), k =

0,1,.... where we have set
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9 f(x,y(x),y(ax(x)))
dy(x)

gl(xn+1) = )|xn+1a

and
df(x,y(x),y(e(x)))
dy(a(x))

In order that T}, 1 in (??) be O(h°), we must have

W(xn-H) = )|xn+1~

Y51 = 8+ 570 — 8732,
P31 = 590 + 8 (0t(x043)) + (0 (x43))
— 873 — 587 (A(xn12)) — 567 (0t(x042)).

By consider 9 = p9 and J3 = 732, we have a
two-parameter family of extended one-step fourth order
methods given, which we will refer it by PM4 (70, ¥32)-

3.2 Casell m=5

We describe the derivation of a scheme of the fifth order
of accuracy. As in case I, we rewrite (4) in the exact form
and expand the left and right sides of this equation in the
Taylor series about the point x,,+, equate the coefficients
up to the terms O(h’) and solve the resulting system of
equations, we obtain

e SV R 4
=720 M 360 2T 30 BT 3600 ¥ 720
(18)
and
3 6.6
t(xn+1):@hy (Xnt1)- (19)

By the same way, in order to determine the coefficients
Bjo,Bj1 and yj;, i =0,1,...j— 1, we rewrite (5) in the
exact form and expand the left and right sides of this
equation in the Taylor series about the point x4, equate
the coefficients up to the terms O(h*) and solve the
resulting system of equations, we obtain

Bao = 287 (x) — 357 (x) + 1
_2S2/\ _ ~S3
P21 = 3<331 (x) 2?1 (x) 20)
Y0 = 0 (x) — 267 (x) + 6 (x
Y1 = &} (x) =267 (x)
where
/’l4
(1) = o5 (8 (x) — 287 (x) + 87 (x))y) (x11)
hS
+ m(ﬁf (x) =367 (x) + 287 (x))y"™ (x141)
for j =2,

o1(x) = %(xka“), forx = a(x,12); k=0,1,...,
and
Bso =285 (x) — 385 (x) — 12y, + 1

B31 = 12730 — 285 (x) + 387 (x)
%0 = 8 (x) = & (x) + 82(x) — 5732
%1 =8 (x) — 8 (x) — 812

with 3, free, where

2D

h4
t3(Xy1) = ﬂ(@‘ (x) — 285 (x) + 83 (x) — 12932)y™ (x1e11)
hS

+120 (85 (x) =385 (x) 285 (x) = 5275207 (1),

for j =3,

8 (x) = F(x—xp41), forx = at(x,43); k=0, 1,...
and
Bao =285 (x) =387 (x) — 1290 — 36Y3 + 1
Bar =365 (x) — 285 (x) + 1242 + 36743
a0 = 85 (x) — 285 (x) + 83 (x) — 5742 — 16743
T = 8 (x) = 85 (x) — 8y — 213

with Y12, 143 free, where

X

(22)

h4
t4(01) = 5 (83() 2830 + 83 () — 120

h5
—60%3)y™ (x41) + m(

— 52910 — 336743y (%41,

83 (x) +283 (x) =387 (v)

8(x) = %(x—xkﬂ),forx =(xp14); k=0,1,....
The approximations 12, y,+3 and y,4+4 determined from
(5) and the coefficients in this case take the form

Boo =35, Po1 = —4, o =2, 1o =4,

where

1 2 .
t2(xn+1> = 6h4y(4) (xn—H) + Ehsy(s)(xn+1) for j =2;

B0 =28 — 1295,
B3 = 27+ 129,

B . (23)

10 =12—573

1 =18—87
with 73, free, where

3 1. 3 13 .
B(Xpp1) = (5 - 5}’32)h4y(4> (Xne1) + (5 - %732)h5y(5)(xn+1)
+0(h%) for j=3;
and .
Bao =81 — 12742 — 3673
Ba1 = —80+ 12712 + 3673 (24)

Yao =36 — 5% — 16Ys3
Yo =48 —8Ys2 — 21743
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with a2, 743 free, where

1. 5.
t4(Xnt1) = (6 — S 5743)h4y<4) (Xnt1)
36 13 _ 14 _
+ (g “30le §V43)h5y(5)(xn+1)

+0(h®) for j=4;

By the same way as in case I, we can prove that the global
error of fifth order. Thus, with consider 13, = ¥3, and 743 =
Y13, we have a two-parameter family of extended one-step
fifth order methods, which will refer it by PMs = (32, ¥43)

4 Stability definitions and results

The stability investigations are based on the linear
equation (4) and the concept of P-stability introduced by
Barwell [3]

Definition 1.1. (P-stability region) Given a numerical

method for solving (2), the P-stability region of the
method is the set Sp of the  pairs
(X,Y), X = Ah and Y = ph, such that the numerical
solution of (2) asymptotically vanishes for step-lengths &
satisfying

h= 25)

T
m
with m is positive integer.
Definition 1.2. (P-stability) A numerical method for (2) is
said to be P-stable if

Sp 2R,

where
R={(X,Y):Y <—-X}.

4.1 Casel m=4

In order to solve the Problem (2), the present methods with
m = 4 are written as follows

24— 122h(1 + 132) +2(Ah)* (1 44132

+132720) — ¥52(Ah)* (2 + P0) [yns1 =

24+ 1220(1 = 132) +2(A)* (1 = 2932 + P3220)
+52020(Ah) yn+ Hh[(9+ Ah(2—573,)  (26)
+¥32720(Ah)?)y (s — T) + (19 = 2Ah(1 +430)
)
]

+72(AR)* (24 120) )y (Xns1 — T
—(5 = Ahys2)y(xXps2 — ) +y(Xn13 — 1),

with a constant step size & satisfying the constraint (25).
The characteristic polynomial associated with (26) takes

the form
Win(z) = [24 — 12X (1 + 132) +2X*(1 + 472
+¥52%20) — X ¥32(24 120) "
— 244+ 12X (1 — y32) +2X*(1 — 2932+ ¥32720)
X000 2" =Y [9+X(2 - 575) + X2 2750
+ (19— 2X (1 +4y3) + X152 (2+ 10) )2

—(5-Xy)Z+2]=0, m=12,...
27)
It is clear that (X,Y) € Sp if and only if all roots of the
polynomials W, are inside the unit disc for m = 1,2,....
Let

P(z):=[24-2X(1+ %)+ 2X2(1 449+ ¥527120)
X324 p0) [ — 24+ 12X (1 — 732
+2X%(1 =275 + 1a2p0) + X 1210 ]2",

Q(Z) =Y [9+X(2—5’)/32) +X2Y32720
+ (19 —2X(1+4y3) + X273 (2+710))z
—(5—Xy)Z+2°),

(28)
and z* denotes the only nonzero root of P(z). It follows
from Rouche’s theorem, see Marden [17], that
(X,Y) € Sp if [z*] < 1 and |P(z)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have

|P(z)] >[|24 — 12X (1 + 132) +2X (1 + 4952 + ¥32720)
— X ¥52(2+ 10)| — 24+ 12X (1 — 132)
+2X2(1 =27+ 129%0) + X212 p0]

10()| <IY](19+X (2 —5y52) + X 13220
+194+2X (1 +473) + X2 ¥32(2+ 120)|

| =5+Xy|+1).
(29)
Therefore, (X,Y) € Sp if the following set of inequalities
is satisfied

124 — 12X (14 132) +2X> (1 4+ 4732+ %32 %20)

— X3y (24 10)| — [24 4+ 12X (1 — 132)

+2X3(1 =2y + 1a20) + X Y200 | >
Y[(19+X(2—5¥52) + X200 + [19 — 2X (1 + 4732

X2y (24 710)| + | =5+ X0+ 1),
(30)
and

24 412X (1 — 32) +2X%(1 — 2930 + 1327130) + X3 132720

24 — 12X (1+732) +2X2(1 442 + P32720) —X3y32((2;1r)m)

It can be seen that X € S4 where S4 is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (31) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (31) is satisfied if
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1. 12 =0, with P free to choose or
2. 12 >0and po > —1

Moreover, the P-stability region for various values of free
parameters is determined by solving the system of
inequalities (30) and (31). Thus we establish the
following.

Theorem 1. For the present methods, the region of
P-stability satisfies the relation

SPAR={(X,Y):|Y| < —X and |Y| < ¢(X)}

where

—12X -9

2 o x>

T 2
PX) =1 ex 9
for X < 7

4-X

for 3o =0 and g free to choose.

Proof. The proof follows immediately from inequality
(30).

From among values for the case (2), the choice o =
0 and 3 = % give the large stability region, so we will
present only the theorem of this choice as the following:

Theorem 2. For the present methods the region of
P-stability satisfies the relation

SpPNR={(X,Y):Y < —Xand |Y| < ¢(X)},

where
—2X3 —12X%2+48X
+ 2 9 lf X Z _4
—2X34+12X%2 24X +96 F X <4
68 — 14X + X2 >k :

for o =0 and v = %

Proof. The proof follows immediately from inequality
(27).

The Fig.2 shows the different regions of the P-stability
with respect to different values of o and Y3;.

» V=X

Fig. 1 The P-stability region for PM4(0,%) and PMy(—1,1)
(Top-Bottom).

4.2 Casell, m=>5

By the same way for m=5, we obtain the following
characteristic polynomial

Win(z) = [720 — 8X (48 + 5773) +4X> (21 + 5773
+57W3Y52) — 2X7 (44 1973 + 1173732
+ 76X y3ys0 | 2" — [720 4 12X (28 — 38743)
+6X?(10 — 383 + 38743732) +2X° (2 — 19%3)
—38X* s " — Y [251 + X (50 — 171943)

6

+X2(4— 3873 + 9513752) + (646 — X (76 +361743)

+2X2 (44 19943 + 76 Y43732) — 76X Va3 132)2
— (264 — X (2+95Y13) + 19X 23 132)2% + (106

—19Xy13)2° —1924]=0, m=1,2,...
(32)
It is clear that (X,Y) € Sp if and only if all roots of the

polynomials W, are inside the unit disc for m = 1,2,....
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Let

P(z) :=[720 — 8X (48 + 57s3) +4X* (21 + 57113
+57 13 ¥52) — 2X° (44193 + 1113 932)
+ 76X y3ys0 | 2" — [720 4 12X (28
—38%3) +6X°(10 — 3813 + 38%3732))
+2X7(2— 1993 — 38Xy 43 2"

0(z) :=—Y [251+X(50 — 17173) + X (4 — 38743
+95%43732) + (646 — X (76 +36173)
+2X% (44 1993 + 7673 752)

— 76X’ yi3¥32)7 — (264 — X (24 95y3)
+ 19X %3 732)% + (106 — 19X 133)2°

—197%]

(33)
and 7" denotes the only nonzero root of P(z). It follows
from Rouche’s theorem, see Marden [I7], that
(X,Y) € Sp if [z*] < 1 and |P(z)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have

|P(2)| >[720 — 8X (48 + 5773) +4X> (21 + 5743
+5713752) — 2X° (441993 + 1113 ¥32)
+76X Y332 — 720+ 12X (28 — 38743)
+6X%(10 — 38743+ 38W3732) +2X3(2
—19713) — 38Xy 3|

0(2)] <[Y[(|251+X (50 — 17173) + X* (4 — 3843
+95Y3732)| + |(646 — X (76 +361743) +2X> (4
+ 1993 +7613732) — T6X >y ) | + | — 264

+X(2495%3) — 19X 13 ¥32) | + 106

— 19X y3|+19)
(34)
Therefore, (X,Y)p if the following set of inequalities are
satisfied

|[720 — 8X (48 + 57743) +4X> (21 + 5713 + 57143 32)
—2X> (4419753 + 13 ys2) + 76X  pa3 y32 — 720
+12X (28 —38743) +6X (10 — 3873 + 38743 732)

+2X3(2 - 19y3) — 38Xy | >

Y](1251+X (50— 1713) + X (4 — 3873 + 95%3732) |
+X7(4— 3873 +95Y3732) |+ | (646 — X (76 4 361713)
+2X% (44 1993 + 763 132) — 76X Ya3 1) || — 264

+X(2495%3) — 19X2153732)| + 106 — 19X 43| 4 19)
(35)
and

<1 (36)

where

Ay =720+ 12X (28 — 38743) 4+ 6X>(10 — 38743 + 383 732)
+2X3(2— 19%3) — 38X ya0 13

and

Ay =720 — 8X (48 +57133) +4X> (21 4+ 5713 + 57113 732)
—2X3 (44 193 + 11y372) + 76X 1312

It can be seen that X € Sy where Sa is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (36) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (35) is satisfied if

1. 3 =0, with Y3, free to choose or
2. Bo=0and 3 > %91

Moreover, the P-stability region for various values of free
parameters is determined by solving the system of
inequalities(35) and (36). Thus we establish the
following.

Theorem 3. For the present methods, the region of
P-stability satisfies the relation

SpAR={(X,Y):|Y| < —X and |Y| < $(X)}

where
—3X3 4+ 6X2-72
3X3+6 0 for X>—6
o(X) = 3X2—7X +319
—X34+36X%2— 12X +360 for X<—6
. _
3X2_7X +319 ©

for ya3 =0 and Y3, free to choose.

Proof. The proof follows immediately from inequality
(35)).

The Fig.2 shows the different regions of the P-stability
with respect to different values of Y43 and V3.

In the next part of this section, we state the error
estimate for the present methods (4), (5) and (6). Our
error estimate is given by the following theorem:

Theorem 4. Let y, be obtained by the methods (4), (5) and

(6). Then, at each mesh point x,, we have the following

error estimate:
en=|y(xn) —ya| <A™, n=1,2,... (37)

where m = 4,5 and C| is independent of n and h .
Proof. see(Ibrahim et al. )
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The exact solution is

yl(x)=e", y(x) =" —e* 1 x> 0.

Runge-Kutta method

60

Fig. 2 The P-stability region for PMs(0, %) and PM5(0, %91)
(Top-Bottom).

5 Numerical tests

In this section, we present some numerical results using
PMy(Y20,v32) and PMs(Ya2,Ya3) with different values of
free parameters and also compare the results with
Runge-Kutta method. We apply these methods to three
examples for each h = % where N = 4,8,16,32,64 and
128.

Example 1
)= 5o+ 50 0<x<
y(x) = 5e2y(5) + 5y <x<
y(0)=1
The exact solution is y(x) = €.
Example 2
X2
) =1-3(3) 0<x<l
y(0)=0

The exact solution is y(x) = sin(x).
Example 3: Paul [25]

s=2 s=3
N EN RN EN RN
4 7.80E-02 3.83E-03
8 229E-02 1.77 5.19E-04 2.88
16 6.28E-03 1.87 6.81E-05 2.93
32 1.64E-03 193 8.73E-06 2.96
64 42E-04 197 1.11E-06 298
128 1.06E-04 198 1.39E-07 2.99
A class of extended one-step methods
PM4(0, %) PMs5(0, %)
N EN RN EN RN
4 1.04E-05 1.39E-06
8 6.06E-07 4.11 4.05E-08 5.10
16 3.66E-08 4.05 1.23E-09 5.05
32 225E-09 4.03 3.77E-11 5.02
84 1.39E-10 4.01 1.17E-12 5.01
128 8.66E-12 4.01 4.06E-14 4.85

Table 1 Comparison of class extended one-step methods with
Runge-Kutta method for Example 1.

Runge-Kutta method

s=2 s=3
N EN RN EN RN
4 4.95E-03 1.64E-03
8 1.21E-03 2.03 [191E-04 3.10
16 3.38E-04 1.84 2.30E-05 3.05
32 9.17E-05 1.88 2.80E-06 3.04
64 235E-05 196 345E-07 3.02
128 5.94E-06 199 4.28E-08 3.01
A class of extended one-step methods
PM4(07 %) PMs (07 %)
N EN RN EN RN
4 3.46E-06 2.77E-07
8 223E-07 396 7.88E-09 5.13
16 1.42E-08 3.98 2.33E-10 5.07
32 8.92E-10 3.99 7.18E-12 5.03
84 5.59E-11 399 222E-13 5.02
128 3.50E-15 4.00 7.10E-15 4.96

Table 2 Comparison of class extended one-step methods with
Runge-Kutta method for Example 2.
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Runge-Kutta method
y1(x) ¥2(x) [3] Barwell, V. K., Special stability problems for functional
N EV RN EN RN differential equations, BIT 15, 130-135 (1975).
4 6.99E-03 5.87E-03 [4] Bellen, A. and Zennaro, M., Numerical solution of delay
8 9.63E-04 2.86 8.14E-04 2.85 differential equations by uniform corrections to an implicit
16 1.26E-04 293 1.07E-04 2.93 Runge-Kutta method, Numer. Math. 47, 301-316 (1985) .
32 1.62E-05 296  1.37E-05  2.96 [5] Calvo, M. and Grande, T., On the asymptotic stability of the
64 2.05E-06 2.98 1.74E-06 298 0-methods for delay differential equations, Numer. Math. 54,
128 2.57E-07 299 2.19E-07 2.99 257-269 (1988).
Fourth order method PMy(0, %) [6] Engelborghs , K., Luzyanina, T, In’t Hout, K.J., and Roose,
y1(x) y2(x) D., Collocation methods for the computation of periodic
N EN RN EN RN solutions of delay differential equations, SIAM J. Sci.
4 4.00E-06 2.30E-05 Comput. 22, 1593-1609 (2000).
8 5.00E-07 4.10 1.20E-06 4.26 [7] Driver R. D., Ordinary and Delay Differential equations,
16 6.26E-08 4.05 6.82E-08 4.14 Springer-Verlag, New York, 1977.
32 7.80E-09 4.02 4.05E-09 4.07 [8] Guglielmi, N., Delay dependent stability regions of 0-
64 9.74E-10 4.01 2.47E-10 4.04 methods for delay differential equations, IMA J. Numer.
128 4.00E-06 4.01 1.53E-11 4.02 Anal. 18, 399-418 (1998).
PM5(0, 5) [9] Hairer; E., NOresett, S.P. and Wanner; G., Solving Ordinary
yi(x) y2(x) Differential equations I, Non stiff Problems, Springer-Verlag,
N EN RV EN RN New York, 1993.
4 3.19E-05 3.54E-05 [10] Hayashi, H., Numerical Solution of Retarded and Nutral
8 857E-07 522 9.62E-07 5.20 Delay Differential Delay Differential Equations using
16 248E-08 5.11 2.80E-08 5.10 continuous Runge-Kutta Methods, PhD Thesis, University of
32 746E-10 5.05 846E-10 5.05 Toronto 1996.
64 229E-11 5.03 2.60E-11 5.03 [11] Henrici, P, Discrete variable methods in ordinary
128 7.14E-13 5.00 8.00E-13 5.02

Table 3 Comparison of class extended one-step methods with
Runge-Kutta method for Example 3.

6 Conclusion and perspective

we have described a class of numerical methods of order
four and five for solving delay differential equation by
extending the work of Chawla et all. (1994, 1995). These
methods depended on two free parameters, so we can
obtain for every method on a family of methods for
different value of a free parameters. The region of
P-stability for the present methods has been investigated
for different values of a free parameters. The large
-stability region for the present method of order four
occurs at po =0 and 13 = % see Fig. 1, further the
largeP -stability region for the present method of order
five occurs at 3, = 0 and Y43 = 1—29, see Fig. 2. In the last
cases, the present methods are L-stable for solving
ordinary differential equations. All the obtained
numerical results clearly indicate the effectiveness of our
methods.
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