
Restricted Element-Wise Projection

for the Finite Element Method

P. Zajac∗

February 4, 2014

Abstract

In this work, we propose a projection operator based on restricted element-wise projec-

tions, which can be applied to a large set of finite element spaces. In contrast to most other

projectors, such as the standard interpolation operator or the well-known Clément’s operator,

our projection operator does not utilise the node functionals defining the basis functions of

the finite element space. Moreover, our operator can be implemented as a modified version of

a standard assembly method, thus making it a ‘black-box’ algorithm, which does not require

more information about a finite element space than is already needed for the assembly of a

PDE discretisation. Important applications for our operator are its usage as a prolongation

and restriction operator for geometric multigrid methods as well as pre- and post-processing

like visualisation. We provide local and global L2-error estimates along with numerical exper-

iments verifying the theoretical results.
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1 Introduction

Projections of analytical functions into finite element spaces play an important role in both the
theory and the practical implementation of the finite element method. In theory, projections – and
especially the standard interpolation operator – are used as ‘polynomial-preserving operators’ for
the a-priori error analysis. In conjunction with the Bramble-Hilbert-Lemma, one obtains asymp-
totical error bounds against powers of the mesh width, thus ensuring the convergence of the finite
element method.

From the practical point of view, projections are often required as ‘auxiliary’ components
in a larger context. The first noteable application is the projection between two finite element
spaces defined on different meshes – primarily for use in geometric multigrid methods. The second
important application is pre- and post-processing, where one either needs to project an analytical
or discrete function into the finite element space being used for solving a particular PDE or to
write the resulting discrete output into a file, which is later on used for e.g. visualisation.

In addition to the standard interpolation, several other projection operators have been proposed
in the literature. The most famous example is the ‘locally regularised’ interpolation proposed by
Clément in [5], which performs a local L2-projection into the space of polynomials (of appropriate
degree) over a patch of a finite element basis function in the first step, and later on interpolates this
polynomial locally. The advantage of this operator is that it can be applied for any L1 function,
whereas its major practical disadvantage is the necessity of performing a L2-projection over a
whole patch. Another drawback is that (e.g. in the case of iso-parametric finite element spaces)
Clément’s operator in general is not a projection.

In [15], Schieweck presented a projection operator based on restricted element-wise interpo-
lation. In contrast to the standard interpolation operator, his approach requires the function to
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be projected to be smooth only element-wise, thus making it a suitable candidate for multigrid
prolongation operators for nonconforming finite elements such as e.g. the Crouzeix-Raviart or
Rannacher-Turek elements, see [8] and [9]. Furthermore, the author also proposes a regularised
version, which can be applied to project any L1 function.

However, the two previously mentioned projection operators require the application of the finite
element node functionals to the function to be projected, which is a severe drawback when it comes
to implementing the operator in a software package. Although this is simple enough for Lagrange-
type finite elements, the node functionals may require far more information and effort than only
evaluation in a set of points. One example are Hermite or Argyris elements used for higher-order
PDEs, see e.g. [1], where the application of the node functionals onto the function to be projected
requires computation of the function’s partial derivatives, which, however, may not be available.
Furthermore, there exist finite element spaces whose basis functions are constructed in a more
‘exotic’ way, e.g. by a local optimisation approach as in [14].

Another projection approach was proposed by Scott and Zhang in [13]. Their projection op-
erator performs local projections on either an element or a facet, depending on the type of the
node functional of a basis function. Although this operator is shown to be a boundary-condition-
preserving projection, it has only been defined for Lagrange elements. Moreover, the projection
over facets requires the function to be projected to have sufficient smoothness to ensure that its
trace over any facet is well-defined. In consequence, this rules out its application for nonconforming
finite elements.

Finally, one also has the possibility of performing a ‘real’ L2-projection into the finite element
space. Although this projection is easy to implement and applicable for any finite element space,
it requires to solve a (usually large) linear system with the mass matrix – which is unproblematic if
only a handful of projections are to be perfomed. However, especially in the context of geometric
multigrid methods, the L2-projection is not a candidate for prolongation operators due to its fre-
quent application and relatively high computational cost, unless one applies some sort of lumping

to the mass matrix, which may not possible for all finite element spaces.

These practical drawbacks serve as motivation for our new projection operator, whose primary
design goals are:

• In the special case of projections between two finite element spaces, it shall be possible to
assemble the projection operator into a sparse matrix efficiently, thus allowing its application
to be reduced to a sparse matrix-vector multiplication.

• The implementation of the projection shall only utilise software components which are already
required for the assembly of a mass matrix and a right hand side vector.

• The projection shall be applicable for a large set of finite element spaces, especially noncon-
forming and higher order ones.

• The domain (of definition) of the projection shall contain the set of all L2(Ω) functions.

• The projection error shall be uniformly bounded by the discretisation error.

• The projection shall have a ‘local’ character in the sense that the projection uh of a function
u restricted onto a single element T shall only depend on u restricted onto a vicinity of T .

In this work, we present a new projection operator, which fulfills all these requirements. Its con-
struction is related to the one proposed by Schieweck in [15], whereas we perform element-wise
L2-projections instead of element-wise interpolations. As the motivations for our projection oper-
ator are primarily of practical nature, we estimate the projection error against the discretisation
error rather than against powers of the mesh width in our theoretical a-priori error analysis. The
discretisation error itself can then be estimated using other interpolation operators, such as the one
proposed by Clément, which is a fundamental part of every a-priori finite element space analysis.

Our theoretical analysis will yield a set of abstract assumptions, which we later on verify
for parametric finite element spaces on shape-regular conforming meshes, thus proving that our
projection operator is applicable for a significantly large set of finite element spaces.
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We also discuss the practical aspects of our projection operator and show how it can be im-
plemented efficiently as a modified matrix and right-hand-side assembly algorithm, utilising only
standard finite element software functionality. Finally, we present a set of numerical examples,
which practically verify our theoretical results.

2 Basic Definitions and Notations

For n ∈ N, let Ω ⊂ R
n denote a bounded open domain with a Lipschitz boundary ∂Ω. For any

non-empty subset T ⊂ Ω, we denote by vol(T ) :=
∫
T
1 the volume of T , and for any u, v ∈ L2(T ),

we denote by 〈u, v〉0,T the L2 scalar product over T and by ‖u‖0,T the L2 norm of u over T . By Th

we denote a mesh discretising the domain Ω ⊂ R
n, i.e. a finite decomposition of Ω into elements

T ∈ Th in the sense of Ciarlet, see [1]. For any set of elements δ ⊆ Th we use the short notations

‖u‖0,δ :=
(∑

T∈δ

‖u‖20,T
) 1

2

, vol(δ) :=
∑
T∈δ

vol(T ).

Let Vh ⊂ L2(Ω) denote a finite element space defined on Th and let Bh = {ϕ1, ..., ϕm} denote the
basis of Vh. Then for any T ∈ Th we denote by

I(T ) := {
i ∈ {1, ...,m} ∣∣ supp(ϕi) ∩ T 	= ∅ }

(1)

the dof-set of T , i.e., the set of all indices of basis functions ϕi, whose supports intersect with the
element T , and its counterpart, the patch of i, by

σ(i) :=
{
T ∈ Th

∣∣ i ∈ I(T ) }. (2)

Furthermore, we denote by
δ(T ) :=

{
T ′ ∈ σ(i)

∣∣ i ∈ I(T ) } (3)

the dof-vicinity of T , i.e. the set of all elements T ′ ∈ Th, which share at least one common basis
function ϕi of Vh with T . We define the corresponding discontinuous space of Vh by

Ṽh :=
{
ṽh ∈ L2(Ω)

∣∣ ∀ T ∈ Th : ṽh|T ∈ Vh|T
}
, (4)

where for any T ∈ Th we have

Vh|T :=
{
vh|T ∈ L2(T )

∣∣ vh ∈ Vh

}
.

For any T ∈ Th and any i ∈ I(T ) we define

ϕ̃T,i(x) :=

{
ϕi(x), for x ∈ T

0, otherwise.
(5)

3 The Projection Operator

Throughout this section, we consider a set of basis functions Bh spanning a finite element space
Vh on a mesh Th discretising a domain Ω ⊂ R

n. Before we begin with the construction of our
projection operator, we first need to make an assumption on the basis Bh that will be cruicial for
this work: We shall assume that

∀ T ∈ Th : card
(I(T )) = dim(Vh|T ), (BA)

i.e., the number of basis functions which do not vanish on an element T ∈ Th shall be equal to
the dimension of the space that these basis functions span on the element T . This assumption is
not restrictive, as it is fulfilled for the vast majority of all nodal finite element spaces. Under this
assumption, we directly see that the set of all ϕ̃T,i as defined in (5) forms a basis spanning Ṽh and

this allows us to represent any ṽh ∈ Ṽh by its corresponding unique coefficients ṽT,i ∈ R for T ∈ Th

and i ∈ I(T ) by

ṽh =
∑
T∈Th

∑
i∈I(T )

ṽT,i · ϕ̃T,i. (6)
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The discontinuous L2-projection operator P̃h

We denote by P̃h : L2(Ω) → Ṽh the L2-projection into Ṽh, i.e. for any u ∈ L2(Ω) it shall hold

∀ ṽh ∈ Ṽh :
〈
u− P̃h(u), ṽh

〉
0,Ω

= 0, (7)

and, as Ṽh is discontinuous, we have that (7) is equivalent to

∀ T ∈ Th, ∀ ṽh ∈ Ṽh :
〈
u− P̃h(u), ṽh

〉
0,T

= 0. (8)

It is well known that for any u ∈ L2(Ω) the coefficients ũT,i ∈ R of the projection∑
T∈Th

∑
i∈I(T )

ũT,i · ϕ̃T,i = ũh := P̃h(u) (9)

are given by the solution of the linear systems

MT · ũT = u∗
T (10)

for any T ∈ Th, where for (j1, ..., jl) := I(T ) we have

(MT )k,i :=
〈
ϕ̃T,ji , ϕ̃T,jk

〉
0,T

(ũT )i = ũT,ji , (u∗
T )k :=

〈
u, ϕ̃T,jk

〉
0,T

. (11)

At this point, we have to investigate the local mass matrix MT in (10): The size of the matrix

equals the cardinality of I(T ), whereas its rank is equal to the dimension of Ṽh|T = Vh|T . Now,
under the assumption (BA) those two quantities coincide, and therefore the local mass matrix MT

is regular for any T ∈ Th.

The primal restriction operator Rω
h

We now define the primal restriction operator Rω
h : Ṽh → Vh, such that it maps any ũh ∈ Ṽh

represented by its unique coefficients ũT,i,

Rω
h (ũh) :=

m∑
i=1

( ∑
T∈σ(i)

ωT,i · ũT,i

)
· ϕi, (12)

where the coefficients ωT,i ∈ R are user-chosen weights describing a convex combination of all ũT,i

for any i, i.e., it shall hold that for all i ∈ {1, ...,m}:
∀ T ∈ σ(i) : 0 ≤ ωT,i ≤ 1 and

∑
T∈σ(i)

ωT,i = 1. (13)

There are various possible choices for the weights: The most simple choice is to set

ωT,i :=
1

card(σ(i))
, (14)

which leads to the arithmetic average of all local contributions. Another example, which we will
consider in the numerical experiments later, is the volume-weighted average

ωT,i :=
vol(T )

vol(σ(i))
. (15)

The projection operator Pω
h

With our primal restriction operator Rω
h and the previously defined discontinuous L2-projection

operator P̃h, we can now formally define our projection operator Pω
h as a composition thereof:

Pω
h := Rω

h ◦ P̃h : L2(Ω) → Vh. (16)

As a first result, the following lemma will show that the operator Pω
h is in fact a projection, which

will be an important property for the proofs of the a-priori error estimates.
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Lemma 1

The operators Rω
h and Pω

h defined in (12) and (16), respectively, are projections, i.e. for any

vh ∈ Vh ⊂ L2(Ω) it holds

Rω
h (vh) = Pω

h (vh) = vh. (17)

Proof. Let vh ∈ Vh be arbitrary, let m := dim(Vh) and let vi ∈ R denote the coefficients of vh. By

construction of the basis of Ṽh in (5), by (6) we have that

∀ i ∈ {1, ...,m}, ∀ T ∈ σ(i) : vi = ṽT,i. (∗)
Now let v′h := Rω

h (vh), then for the coefficients v′i ∈ R of v′h we have for any i ∈ {1, ...,m}

v′i
(12)
=

∑
T∈σ(i)

ωT,i · ṽT,i
(∗)
=

∑
T∈σ(i)

ωT,i · vi (13)
= vi,

and therefore Rω
h (vh) = vh. Furthermore, as P̃h : L2(Ω) → Ṽh is a projection by definition, it also

holds for any vh ∈ Vh that

Pω
h (vh) = Rω

h ◦ P̃h(vh) = Rω
h (vh) = vh.

�

Correlation to the interpolation operator

Our projection operator Pω
h requires the solution of local linear systems MT · ũT = u∗

T as given in
(11). The assembly of the mass matrix MT and the local right-hand-side vector u∗

T requires inte-
gration over the corresponding element T ∈ Th, and in practice these integrals are approximated
by cubature formulas. In consequence, the choice of the cubature formula has an impact on our
projection operator Pω

h , i.e., two different cubature formulas will in general yield two different pro-
jection operators, unless the order of the cubature formula is high enough such that the integration
error is negligible.

In the case of Lagrange elements, i.e., when the basis Bh is associated with a set of nodal points,
see e.g. [1], one may choose a lumped cubature formula, i.e., a cubature rule whose cubature points
coincide with the nodal points of the basis Bh. In this case, the local mass matrix MT becomes
diagonal, and one can easily show that for any choice of restriction weights ωT,i the projection
operator Pω

h coincides with the interpolation operator of Vh, which is usually denoted as Πh. As
an example one may consider the standard P1 or Q1 space, whose basis functions are associated with
the function values in the vertices of the mesh Th, in combination with the trapezoidal cubature
rule.

4 A-priori Estimates

In this section, we want to deduce a-priori stability and error estimates for the projection operator
Pω
h . In contrast to most estimation techniques, we will not directly bound the error against

powers of the mesh width, but we show that the local and global L2-errors are bounded by the
discretisation error of the corresponding finite element space Vh instead. This approach has two
advantages: First, we will require few abstract assumptions on the underlying finite element space,
thus allowing us to provide estimates without using the actual definition of Vh, and, second, the
discretisation error is a quantity that is usually estimated by powers of the mesh width (and
possibly other quantities such as e.g. the element aspect ratio) as part of the standard analysis of
a finite element space.

4.1 L2-Stability Estimates

As our projection operator is in general not an orthogonal projection with respect to the L2 scalar
product, we will first prove a local stability estimate for the primal restriction operator Rω

h , which
is a key ingredient for the error estimates. The following theorem summarises all requirements on
the finite element space that are necessary for the stability estimate.
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Theorem 2: Local L2-Stability of Rω
h

Let Vh denote a finite element space defined on a mesh Th, whose basis Bh fulfills the assumption

(BA), and assume there exists a uniform constant c1 > 0, such that for any T ∈ Th there exists a

τT > 0, such that the norm equivalence

c−1
1 · τT · |||ṽh|||0,T ≤ ‖ṽh‖0,T ≤ c1 · τT · |||ṽh|||0,T (A1)

holds for any T ∈ Th and any ṽh ∈ Ṽh, where

|||ṽh|||0,T :=
( ∑

i∈I(T )

|ṽT,i|2
) 1

2

(18)

denotes the euclidean norm of all coefficients ṽT,i contained in the dof-set of T . Furthermore,

assume there exists a second uniform constant c2 > 0, such that for any T ∈ Th and any T ′ ∈ δ(T )
it holds that

τT ≤ c2 · τT ′ . (A2)

Then the primal restriction operator Rω
h : Ṽh → Vh fulfills the local stability estimate

‖Rω
h (ṽh)‖0,T ≤ cR ‖ṽh‖0,δ(T ) (19)

for all ṽh ∈ Ṽh and all T ∈ Th with cR = c21c2.

Before we continue with the proof of the theorem, let us first take a closer look at the two new
assumptions the theorem introduced. The two assumptions (A1) and (A2) require that the L2-
norm over an element T is equivalent to the euclidean norm of all basis function coefficients on
that element, where we allow an element-dependent parameter τT , which shall be bounded in the
vicinity of T . Although these assumptions seem unusual, we will see in section 4.3 that these
assumptions are not restrictive, as they are fulfilled for all parametric finite elements on shape-
regular conforming meshes – which covers the majority of all commonly used finite element spaces.
Moreover, note that the theorem does not refer to a particular choice of weights ωT,i ∈ R for the
restriction operator Rω

h – the above estimate holds true for all possible choices of weights that form
a convex combination, as we will now see in the following proof.

Proof of Theorem 2. Let T ∈ Th and ṽh ∈ Ṽh be arbitrary and let ṽT,i ∈ R denote the coefficients
of ṽh, then

‖Rω
h (ṽh)‖20,T

(A1)

≤ c21 τ2T |||Rω
h (ṽh)|||20,T

(12)
= c21 τ2T

∑
i∈I(T )

∣∣ ∑
T ′∈σ(i)

ωT ′,i · ṽT ′,i

∣∣2,
and application of the Cauchy-Schwarz inequality to the inner sum yields

‖Rω
h (ṽh)‖20,T ≤ c21 τ2T

∑
i∈I(T )

( ∑
T ′∈σ(i)

|ωT ′,i|2
)
·
( ∑

T ′∈σ(i)

|ṽT ′,i|2
)
. (∗)

By assumption (13) we have 0 ≤ ωT ′,i ≤ 1 and therefore∑
T ′∈σ(i)

|ωT ′,i|2 ≤
∑

T ′∈σ(i)

ωT ′,i
(13)
= 1. (∗∗)
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By combining (∗) and (∗∗) we get

‖Rω
h (ṽh)‖20,T ≤ c21 τ2T

∑
i∈I(T )

∑
T ′∈σ(i)

|ṽT ′,i|2

(3)

≤ c21 τ2T
∑

T ′∈δ(T )

∑
i∈I(T ′)

|ṽT ′,i|2

(18)
= c21 τ2T

∑
T ′∈δ(T )

|||ṽh|||20,T ′

(A1)

≤ c41 τ2T
∑

T ′∈δ(T )

τ−2
T ′ ‖ṽh‖20,T ′

(A2)

≤ c41 c22
∑

T ′∈δ(T )

‖ṽh‖20,T ′

= c41 c22 ‖ṽh‖20,δ(T ).

�

As a direct consequence of the stability of the restriction operator Rω
h , we can also provide a

stability estimate for the projection operator Pω
h .

Corollary 3: Local L2-Stability of Pω
h

Under the assumptions of Theorem 2 it holds for any u ∈ L2(Ω):

‖Pω
h (u)‖0,T ≤ cR ‖u‖0,δ(T ). (20)

Proof. Let u ∈ L2(Ω) be arbitrary, then for ũh := P̃h(u) we have by (8) that for any T ∈ Th

‖ũh‖0,T ≤ ‖u‖0,T , (∗)
because P̃h is the orthogonal L2-projection into Ṽh. By definition we have Pω

h (u) = Rω
h (ũh), so

(19) and (∗) imply the assumption. �

4.2 L2-Error Estimates

With the stability estimates we have established so far and by the fact that the operator Pω
h is

a projection, we can now easily derive a local error estimate, which bounds the L2-error on an
element T ∈ Th by the error of the optimal approximation in the vicinity of T .

Theorem 4: Local L2-Error Estimate
Under the assumptions of Theorem 2 the projection operator Pω

h : L2(Ω) → Vh fulfills the local

estimate

‖u− Pω
h (u)‖0,T ≤ cP · inf

vh∈Vh

‖u− vh‖0,δ(T ) (21)

for all T ∈ Th and all u ∈ L2(Ω) for cP = 1 + 2cR.

Proof. Let u ∈ L2(Ω), vh ∈ Vh and T ∈ Th be arbitrary and let ũh := P̃h(u) ∈ Ṽh denote the

L2-projection of u into Ṽh, then

‖u− Pω
h (u)‖0,T (16)

= ‖u− vh + vh −Rω
h (ũh)‖0,T

(17)

≤ ‖u− vh‖0,T + ‖Rω
h (ũh − vh)‖0,T

(19)

≤ ‖u− vh‖0,T + cR ‖ũh − vh‖0,δ(T )

≤ ‖u− vh‖0,δ(T ) + cR ‖ũh − u+ u− vh‖0,δ(T )

≤ (1 + cR) · ‖u− vh‖0,δ(T ) + cR ‖u− ũh‖0,δ(T ). (∗)
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Now as ũh is the L2-projection of u into Ṽh, by (8) we have that ‖u − ũh‖0,δ(T ) ≤ ‖u − vh‖0,δ(T )

for any vh ∈ Vh ⊆ Ṽh and with (∗) we finally obtain

‖u− Pω
h (u)‖0,T ≤ (1 + 2cR) · ‖u− vh‖0,δ(T ).

�

With the local error estimate from the previous theorem, we can prove a global one under one
additional assumption, which we shall analyse more closely in the next section.

Theorem 5: Global L2-Error Estimate
Let the assumptions of Theorem 4 hold and furthermore assume there exists a uniform constant

c3 > 0, such that for any T ∈ Th it holds that

card
(
δ(T )

) ≤ c3, (A3)

then the projection operator Pω
h : L2(Ω) → Vh fulfills the global estimate

‖u− Pω
h (u)‖0,Ω ≤ c · inf

vh∈Vh

‖u− vh‖0,Ω (22)

for all u ∈ L2(Ω) with c = cP c3.

Proof. Let u ∈ L2(Ω) and vh ∈ Vh be arbitrary, then

‖u− Pω
h (u)‖20,Ω

(21)

≤ cP
∑
T∈Th

‖u− vh‖20,δ(T ) = cP
∑
T∈Th

∑
T ′∈δ(T )

‖u− vh‖20,T ′ , (∗)

and by (A3) we have that any T ′ ∈ Th appears at most c3 times in the double sum, so we obtain

‖u− Pω
h (u)‖20,Ω

(∗)

≤ cP c3
∑
T∈Th

‖u− vh‖20,T = cP c3 · ‖u− vh‖20,Ω.

�

4.3 Parametric families on conforming shape-regular meshes

The estimates we have obtained so far introduced three assumptions (A1), (A2) and (A3) in
addition to the basis assumption (BA), which was already required to ensure that our projection
operator Pω

h is well-defined. In this section, we want to show that all these four assumptions are
fulfilled for all parametric finite element spaces on conforming shape-regular meshes, where a mesh
Th is said to be conforming if for any two different elements T, T ′ ∈ Th the intersection T ∩ T ′ is
either the empty set, a common vertex or a common k-dimensional face of both elements for some
0 < k < n. Throughout this section, we implicitly assume that the mesh Th is conforming.

Shape-Regularity

First of all, we define the geometric vicinity of an element T ∈ Th by

Δ(T ) :=
{
T ′ ∈ Th

∣∣ T ∩ T ′ 	= ∅ }
. (23)

In the following, we will investigate the cardinality of the geometric vicinity and the volumes of
its members, and for this purpose, we need to restrict ourselves to shape-regular meshes. Unfor-
tunately, the definition of shape-regularity depends on the geometric shape of the elements T and
various approaches have been proposed in the literature, see e.g. [6], [7], [10], [2] or [3]. Therefore,
we exemplarily restrict ourselves to the two-dimensional case of shape-regular triangular meshes,
where we provide geometrical arguments rather than formal proofs. We emphasise that the follow-
ing arguments can be adapted to shape-regularity definitions of other element shapes and higher
dimensions, as long as the shape-regularity prohibits ‘extreme’ cases such as e.g. quadrilateral
elements degenerating to triangles.
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Definition 6: Shape-Regularity by Zlámal [10]
A triangular mesh Th is shape-regular is there exists a uniform constant γ > 0, such that for any

triangle T ∈ Th the inner angle of the two edges adjacent to any of the triangle’s vertices is bounded

below by γ.

As a direct result of this definition, we obtain a couple of properties:

a) For any vertex of the mesh the number of elements T ∈ Th adjacent to that vertex is bounded
above by �2π/γ�. Furthermore, as any two different triangles T, T ′ ∈ Th with T ∩ T ′ 	= ∅ share at
least one common vertex for a conforming mesh and the fact that a triangle has three vertices, we
directly obtain for all T ∈ Th that

card
(
Δ(T )

) ≤ M := 3�2π/γ�. (24)

b) If the basis Bh of our finite element space Vh is local in the sense that the support of
any basis function ϕi ∈ Bh, which is associated with a single geometric entity1, is limited to all
elements T ∈ Th which are adjacent to that particular entity, then by (3) and (23) we directly
obtain δ(T ) ⊆ Δ(T ) and (24) implies our assumption (A3) with c3 = M .

c) Moreover, we can show by basic trigonometry2 that for any two triangles T, T ′ ∈ Th, which
share a common edge, the areas of the two triangles are equivalent in the sense that


−1 · vol(T ′) ≤ vol(T ) ≤ 
 · vol(T ′) (25)

for 
 := 1
2 sin3(γ)

> 1. Now consider two triangles T, T ′ ∈ Th, which share a common vertex but

no common edge. By the fact that our domain Ω is assumed to have a Lipschitz boundary and
that the mesh Th is assumed to be conforming, we obtain that there exists a finite set of triangles
{T1, ..., Tm} ⊆ Δ(T ), such that T1 = T , Tm = T ′ and Ti shares a common edge with Ti+1 for all
1 ≤ i < m. Combining this observation with (24) and (25), we obtain for any T ∈ Th and any
T ′ ∈ Δ(T ) that


−M · vol(T ′) ≤ vol(T ) ≤ 
M · vol(T ′), (26)

which will be an important property for the verification of assumption (A2) later on.

Parametric Finite Element Spaces

For the verification of our other assumptions, we first need to provide a definition of a parametric
finite element space.

Definition 7: Parametric Finite Element Space
Let Vh denote a finite element space defined on a mesh Th and let Bh = {ϕ1, ..., ϕm} denote the

basis of Vh. We call Vh a parametric space, if there exists

1. a reference element T̂ ⊂ R
n,

2. a reference basis ϕ̂1, ..., ϕ̂l of a space V̂h ⊂ L2(T̂ ),

and for any T ∈ Th

3. a C1-diffeomorphism FT : T̂ → T ,

4. a bijection jT : {1, ..., l} → I(T ),
such that it holds for all 1 ≤ k ≤ l:

ϕjT (k)|T ◦ FT = ϕ̂k. (27)

1A geometric entity may be a vertex, an edge, a face (in 3D) or an element.
2More precisely, by using the ‘ASA rule’ for triangle area computation.
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Let us investigate the assumption (BA) for parametric finite element spaces: By construction of

the discontinuous space Ṽh we have by (5) and (27) that

ϕ̃T,jT (k)|T ◦ FT = ϕ̂k, (28)

and 2., 3. and 4. of the previous definition directly imply that for any T ∈ Th the functions ϕ̃T,i|T
form a basis of Ṽh|T = Vh|T , which assures that the assumption (BA) holds.

Lemma 8

Let Vh denote a parametric finite element space defined on a conforming mesh Th. If there exists

a uniform constant cJ > 0 such that for all T ∈ Th the Jacobian determinant JT : T̂ → R of FT

fulfills

∀ x̂ ∈ T̂ : c−1
J · vol(T ) ≤ JT (x̂) ≤ cJ · vol(T ), (29)

then the assumption (A1) holds for τT =
√

vol(T ).

Before we continue with the proof of the lemma, let us investigate the new condition (29), which
requires the Jacobian determinant JT to be bounded against the volume of the element T . Note
that the lemma does not directly require the mesh to be shape-regular, but in fact condition (29)
is one of the basic estimates that are shown for shape-regular meshes. In [1, Theorem 4.3.3],
Ciarlet provides an estimate for this condition in the case of isoparametric simplicial mappings
and furthermore [7, Lemma 8] handles the case of bilinear quadrilateral mappings.

In the special case of shape-regular triangular meshes, which we have considered before, the
mapping FT is affine and its Jacobian determinant JT therefore constant, so one can easily verify
condition (29), where the constant cJ depends only on γ and other fixed quantities such as the

volume of T̂ . Moreover, the result of the lemma combined with the estimate (26), which we have
shown before, implies the last required assumption (A2) with c2 = 
−M .

We can now complete this section with the proof of the previous lemma.

Proof of Lemma 8. Let l := dim(V̂h), then the equivalence of norms on finite dimensional spaces

implies that there exists a constant ĉ > 0, which only depends on T̂ and V̂h, such that for all x ∈ R
l

ĉ−1 ‖x‖2 ≤ ‖
l∑

k=1

xk · ϕ̂k‖0,T̂ ≤ ĉ ‖x‖2, (∗)

where ‖ · ‖2 denotes the euclidean norm on R
l and ‖ · ‖0,T̂ denotes the L2 norm on T̂ .

Now let T ∈ Th and ṽh ∈ Ṽh be arbitrary and let ṽT,i ∈ R denote the coefficients of ṽh. Then by
(18) we have that

|||ṽh|||0,T = ‖(ṽT,jT (1), ..., ṽT,jT (l))‖2,
and combining this observation with (∗) and

v̂h := ṽh ◦ FT =
l∑

k=1

ṽT,jT (k) ·
(
ϕ̃h
T,jT (k)|T ◦ FT

) (28)
=

l∑
k=1

ṽT,jT (k) · ϕ̂k (∗∗)

directly leads us to the norm equivalence

ĉ−1 |||ṽh|||0,T ≤ ‖v̂h‖0,T̂ ≤ ĉ |||ṽh|||0,T . (†)

Furthermore, change of variables and (∗∗) lead to

‖ṽh‖20,T =

∫
T

ṽh(x)
2 dx =

∫
T̂

|JT (x̂)| · v̂h(x̂)2 dx̂, (††)

and the upper bound of (29) yields

‖ṽh‖20,T
(††)

≤ cJ · vol(T ) · ‖v̂h‖20,T̂
(†)

≤ cJ · vol(T ) · ĉ2 · |||ṽh|||20,T . (‡)
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Analogously, we have that

|||ṽh|||20,T
(†)

≤ ĉ2 · ‖v̂h‖20,T̂ = ĉ2
∫
T̂

v̂h(x̂)
2 dx̂ = ĉ2

∫
T

|J−1
T (x)| · ṽh(x)2 dx. (‡‡)

The inverse function theorem yields

sup
x∈T

∣∣J−1
T (x)

∣∣ = sup
x̂∈T̂

∣∣(JT (x̂))−1∣∣ = (
inf
x̂∈T̂

∣∣JT (x̂)∣∣)−1

,

and with the lower bound of (29) we obtain

|||ṽh|||20,T
(‡‡)

≤ cJ · vol(T )−1 · ĉ2 · ‖ṽh‖20,T ,

which together with (‡) proves (A1) for τT :=
√

vol(T ) and c1 =
√
cJ · ĉ. �

5 Practical aspects

We now focus on the implementational aspects of our projection operator. In particular, we want
to consider two scenarios:

1. The projection of an arbitrary function u ∈ L2(Ω) into a finite element space Vh ⊂ L2(Ω).

2. The projection of a discrete function u
(1)
h of one finite element space V

(1)
h into another finite

element space V
(2)
h – possibly defined on a different mesh.

Obviously, the latter case is a special case of the former one, however, for this scenario we will

assemble our projection operator into a sparse matrix, such that any u
(1)
h ∈ V

(1)
h can be projected

into V
(2)
h by simply performing a matrix-vector multiplication with the coefficient vector of u

(1)
h .

Both operations can be implemented as modified versions of standard assembly operations,
utilising only software components which are already required for the assembly of a right hand side
vector and a mass matrix. We will not go into technical details of the standard assembly process
and we refer the interested reader to [11, Section 3] or [12, Section 4] for more information.

5.1 Projections of arbitrary functions

In the following, let u ∈ L2(Ω) be an arbitrary function and let Bh = {ϕ1, ..., ϕm} denote a basis
of a finite element space Vh defined on a mesh Th. For any T ∈ Th let lT := card(I(T )) and let
jT : {1, ..., lT } → I(T ) denote a bijection as in Definition 7. Within the algorithms, we omit the
subscript T and write l and j instead of lT and jT for better readability.

The following algorithm describes the steps required assemble the coefficient vector u ∈ R
m of

the projection uh := Pω
h (u).

Algorithm 1: Projection Assembly

1. Allocate the vector u ∈ R
m, a weight vector w ∈ R

m and initialise their entries to zero.

2. For each T ∈ Th with j : {1, ..., l} → I(T ) do:

(a) Assemble the local right-hand-side vector u∗
T ∈ R

l,
i.e. for all 1 ≤ i ≤ l compute

u∗
T,i ←

∫
T

u · ϕj(i) dx.

(b) Assemble the local mass matrix MT ∈ R
l×l,

i.e. for all 1 ≤ i, k ≤ l compute

MT,i,k ←
∫
T

ϕj(i) · ϕj(k) dx.

11



(c) Compute the solution uT ∈ R
l of the local system MT · uT = u∗

T .

(d) Choose a local weight vector wT ∈ R
l with non-negative entries.

(e) Incorporate the local vector uT into u by a weighted scatter-add operation,
i.e. for all 1 ≤ i ≤ l update

uj(i) ← uj(i) + wT,i · uT,i.

(f) Incorporate the local weight vector wT into w by a scatter-add operation,
i.e. for all 1 ≤ i ≤ l update

wj(i) ← wj(i) + wT,i.

3. Scale the vector u by the reciprocals of the weights, i.e. for all 1 ≤ i ≤ m update:

ui ← ui/wi.

In section (3) we have proposed two possible choices of the weights ωT,i ∈ R and we now want to
show how the local weight vectors wT have to be chosen to obtain these weights ωT,i. The first
choice, namely the arithmetic average, is obtained by choosing

∀ T ∈ Th : wT ≡ 1 =⇒ ωT,i =
1

card(σ(i))
,

and the volume-weighted average is obtained by

∀ T ∈ Th : wT ≡ vol(T ) =⇒ ωT,i =
vol(T )

vol(σ(i))
.

As assembling the local mass matrix MT already requires the usage of a cubature rule on each
element T ∈ Th, one can also use this cubature rule to compute the volume of T at no additional
cost.

5.2 Projections between Finite Element spaces

Let B
(1)
h = {ϕ(1)

1 , ..., ϕ
(1)
m } and B

(2)
h = {ϕ(2)

1 , ..., ϕ
(2)
n } denote the bases of two finite element spaces

V
(1)
h and V

(2)
h defined on a mesh Th. We now want to derive an assembly for our projection

operator Pω
h : L2(Ω) ⊃ V

(1)
h → V

(2)
h from the previous assembly Alg. 1 we have presented for

the projections of arbitrary functions. The first important observation is that any u
(1)
h ∈ V

(1)
h

is uniquely determined by its coefficient vector u(1) ∈ R
n, which allows us to replace the local

assembly of u∗
T in step (2.a) of Alg. 1 by the assembly of a local inter-space mass matrix NT , which

uses V
(1)
h as the ansatz space and V

(2)
h as the test space. In consequence, we assemble a projection

matrix P ∈ R
m×n, such that u(2) := P · u(1) denotes the coefficient vector of u

(2)
h := Pω

h (u
(1)
h ),

where u(1) ∈ R
m is the coefficient vector of some u

(1)
h ∈ V

(1)
h . As our projection operator only

performs element-wise L2-projections by construction, the matrix P has the same sparsity pattern
as the global inter-space mass matrix N ∈ R

m×n, which can be pre-computed before assembling
the actual matrix, see e.g. [16].

Algorithm 2: Projection Matrix Assembly

1. Allocate the projection matrix P ∈ R
m×n, a weight vector w ∈ R

m and initialise their entries
to zero.

2. For each T ∈ Th with j(1) : {1, ..., l} → I(1)(T ) and j(2) : {1, ..., r} → I(2)(T ) do:

(a) Assemble the local inter-space mass matrix NT ∈ R
l×r,

i.e. for all 1 ≤ i ≤ l and all 1 ≤ k ≤ r compute

NT,i,k ←
∫
T

ϕ
(2)

j(2)(i)
· ϕ(1)

j(1)(k)
dx.
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(b) Assemble the local target space mass matrix MT ∈ R
l×l,

i.e. for all 1 ≤ i, k ≤ l compute

MT,i,k ←
∫
T

ϕ
(2)

j(2)(i)
· ϕ(2)

j(2)(k)
dx.

(c) Compute the solution PT ∈ R
l×r of the local system MT · PT = NT .

(d) Choose a local weight vector wT ∈ R
l with non-negative entries.

(e) Incorporate the local matrix PT into P by a weighted scatter-add operation,
i.e. for all 1 ≤ i ≤ l and all 1 ≤ k ≤ r update

Pj(2)(i),j(1)(k) ← Pj(2)(i),j(1)(k) + wT,i · PT,i,k.

(f) Incorporate the local weight vector wT into w by a scatter-add operation,
i.e. for all 1 ≤ i ≤ l update

wj(2)(i) ← wj(2)(i) + wT,i.

3. Scale the rows of P by the reciprocals of the weights,
i.e. for all 1 ≤ i ≤ m and 1 ≤ k ≤ n update:

Pi,k ← Pi,k/wi.

5.2.1 Prolongation Matrices for Geometric Multigrid Methods

One of the main applications of our projection operator is its usage as a prolongation and restriction
operator for geometric multigrid methods, see e.g. [4]. Assume that a mesh Th has been created

by some sort of refinement of another mesh T2h and let V
(1)
h denote the coarse mesh space defined

on T2h and let V
(2)
h denote the fine mesh space defined on Th. Under the assumption that the two

meshes Th and T2h are nested, i.e. ∀T ∈ Th : ∃T ′ ∈ T2h : T ⊆ T ′, then the assembly algorithm

for the projection operator Pω
h : V

(1)
h → V

(2)
h is identical to the one proposed in Alg. 2, with the

modification that for each T ∈ Th one first has to determine the corresponding parent element
T ′ ∈ T2h, such that T ⊆ T ′, and consider the mapping j(2) : {1, ..., r} → I(2)(T ′) instead.

The practical challenge is the assembly of the local inter-space mass matrix NT in step (2.a):
The integral is usually approximated by a cubature formula, which requires that the cubature
points are mapped onto the corresponding parent element T ′ ∈ T2h to evaluate the basis functions

of V
(1)
h . However, this problem is not specific to our projection operator, but arises for any type

of assembly with test and ansatz spaces defined on different meshes. In consequence, if a finite
element software package is capable of assembling an inter-space mass matrix for test and ansatz
spaces on different meshes, then the corresponding assembly method can easily be modified to
obtain the assembly method for our projection operator as proposed in Alg. 2.

5.2.2 Post-Processing of the Projection Matrix

In the case of nested finite element spaces, i.e. where V
(1)
h ⊆ V

(2)
h , the projection matrix P will

often have much less non-zero entries than the corresponding inter-space matrix sparsity pattern.
Therefore, one may think about the possibility of filtering the projection matrix P after its as-
sembly, i.e., removing all ‘non-zeroes’ whose absolute value is below a tolerance parameter close
to machine precision, thus reducing memory consumption and avoiding redundant multiplications
with zeroes when applying the projection.

Consider the case where V
(1)
h is the Q1 finite element space defined on a 3D structured n×n×n

tensor-product mesh T2h, and V
(2)
h is the Q1 space on the corresponding refined 2n×2n×2n tensor-

product mesh Th, then the standard inter-space matrix sparsity pattern has 125n3+O(n2) entries,
whereas the projection matrix P contains only 27n3 + O(n2) actual non-zero entries – therefore
filtering the projection matrix reduces its size by (asymptotically) 78, 4%.
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6 Numerical Experiments

In this section, we perform a set of numerical experiments to analyse our new projection operator
Pω
h , where we use the volume-weighted average as given in (15) for its definition. We compare

the projection L2-errors with those of the standard interpolation operator Πh as well as the L2-
projection, which we shall denote as P ∗

h . We investigate four different triangular elements: The
H1-conforming first- and second-order Lagrange P1 and P2 elements, the H2-conforming quintic
Argyris (Ar) element, see e.g. [1], as well as the nonconforming first-order Crouzeix-Raviart (CR)
element, see [8]. All our experiments are performed on the domain Ω := (−1, 1)2 ⊂ R

2. The mesh
sequence we use for our experiments is generated by successively refining a coarse mesh. The coarse
mesh consists of eight triangles, which emerge from ‘cutting’ the domain Ω along all lines connecting
two edge midpoints, see Fig. 1a. The refinement procedure subdivides each parent triangle into
four children along the edges that emerge from connecting the parent triangle’s edge midpoints, see
Fig. 1b. Moreover, we ‘emulate’ a grid deformation process for the second experiment by replacing
each vertex coordinate vi of the refined mesh using the formula

v′i := sin(πvi/2),

which results in a mesh with smaller but more anisotropic elements near the boundary, see Fig.
1c.

(a) coarse mesh (b) refined mesh (c) adapted mesh

Figure 1: Left: The level 1 (coarse) mesh. Middle: The level 2 (refined) mesh. Right: The level 4
adapted mesh.

6.1 Cosine-Bubble Function

The first experiment is the projection of the cosine-bubble function

u(x, y) = cos(πx/2) cos(πy/2).

Table 1 summarises the L2-errors of the standard interpolation operator Πh, our projection operator
Pω
h and the L2-projection P ∗

h for the P1, P2, Crouzeix-Raviart and Argyris elements for the first six
non-adapted mesh refinement levels. All three projection techniques yield the full approximation
order for all four tested elements, where the errors of our new projection operator are almost
identical to the errors of the full L2 projection.

6.2 Exponential Function

For the second experiment, we consider the function

u(x, y) =
(e10 − e10x

2

) · (e10 − e10y
2

)

(e10 − 1)2
.

As the function has steep gradients at the domain boundary, we perform this experiment on
the adapted mesh sequence. Note that the adapted mesh sequence violates the shape regularity
condition from Definition 6 as the minimal inner angle tends to zero for triangles at the domain
boundary. In consequence, our a-priori estimates are not applicable for this numerical experiment.
However, Table 2 shows that even in this case the errors of our projection operator Pω

h are only
slightly greater than the errors of the full L2-projection operator P ∗

h .
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Level P1 : Πh P1 : Pω
h P1 : P ∗

h P2 : Πh P2 : Pω
h P2 : P ∗

h

2 1.417E-01 6.271E-02 6.020E-02 6.459E-03 3.943E-03 3.858E-03
3 3.601E-02 1.528E-02 1.504E-02 8.610E-04 6.522E-04 6.335E-04
4 9.042E-03 3.730E-03 3.717E-03 1.092E-04 9.563E-05 9.362E-05
5 2.263E-03 9.262E-04 9.256E-04 1.370E-05 1.286E-05 1.272E-05
6 5.659E-04 2.312E-04 2.312E-04 1.714E-06 1.662E-06 1.653E-06
7 1.415E-04 5.777E-05 5.777E-05 2.143E-07 2.110E-07 2.105E-07

Level CR : Πh CR : Pω
h CR : P ∗

h Ar : Πh Ar : Pω
h Ar : P ∗

h

2 7.307E-02 4.640E-02 4.640E-02 1.033E-04 6.923E-05 1.619E-05
3 1.814E-02 1.151E-02 1.151E-02 1.614E-06 1.106E-06 2.313E-07
4 4.530E-03 2.868E-03 2.868E-03 2.523E-08 1.905E-08 3.442E-09
5 1.132E-03 7.163E-04 7.163E-04 3.943E-10 3.172E-10 5.249E-11
6 2.830E-04 1.790E-04 1.790E-04 6.161E-12 5.101E-12 8.106E-13
7 7.075E-05 4.475E-05 4.475E-05 9.625E-14 3.397E-13 1.276E-14

Table 1: L2-Errors for the cosine-bubble function.

Level P1 : Πh P1 : Pω
h P1 : P ∗

h P2 : Πh P2 : Pω
h P2 : P ∗

h

2 5.680E-01 2.191E-01 2.154E-01 1.733E-01 9.476E-02 8.834E-02
3 1.259E-01 5.060E-02 4.984E-02 2.180E-02 1.658E-02 1.558E-02
4 4.189E-02 1.856E-02 1.805E-02 3.685E-03 3.271E-03 3.140E-03
5 1.074E-02 4.347E-03 4.321E-03 4.742E-04 4.572E-04 4.495E-04
6 2.704E-03 1.069E-03 1.068E-03 5.971E-05 5.905E-05 5.872E-05
7 6.772E-04 2.663E-04 2.663E-04 7.477E-06 7.450E-06 7.437E-06

Level CR : Πh CR : Pω
h CR : P ∗

h Ar : Πh Ar : Pω
h Ar : P ∗

h

2 2.992E-01 1.680E-01 1.680E-01 8.673E-02 1.666E-01 3.987E-03
3 6.060E-02 3.841E-02 3.841E-02 3.940E-03 4.577E-03 3.307E-04
4 2.010E-02 1.341E-02 1.341E-02 5.966E-05 6.581E-05 5.229E-06
5 5.129E-03 3.358E-03 3.358E-03 9.513E-07 1.075E-06 7.950E-08
6 1.290E-03 8.384E-04 8.384E-04 1.495E-08 1.757E-08 1.237E-09
7 3.230E-04 2.094E-04 2.094E-04 2.340E-10 2.788E-10 1.932E-11

Table 2: L2-Errors for the exponential function.

7 Conclusions

In this work, we have shown how the L2-projection operator can be approximated by a set of
element-wise L2-projections in combination with a weighted restriction operator. The resulting
operator can be realised as a modified standard assembly algorithm, which proves to be a benefit
over other interpolation operators utilising the finite element spaces node functionals, as it can
be implemented as a ‘black-box’ method. Moreover, the fact, that our projection operator can be
directly assembled as a sparse matrix for projections between two finite element spaces, makes it an
ideal candidate for use as a prolongation and restriction operator in geometric multigrid methods.

Our theoretical analysis revealed that under a small set of abstract assumptions, which can be
verified for a large set of finite elements, the L2-error of our projection operator is bounded by the
discretisation error, which we have verified in numerical examples in two dimensions.
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