B-STATIONARITY CONDITIONS FOR A CLASS OF
OPTIMIZATION PROBLEMS GOVERNED BY VARIATIONAL
INEQUALITIES OF THE 2ND KIND

J. C. DE LOS REYESf AND C. MEYER?

Abstract. We investigate optimality conditions for optimization problems constrained by a class
of variational inequalities of the second kind. Based on a nonsmooth primal-dual reformulation of the
governing inequality, the differentiability of the solution map is studied. Directional differentiability
is proved both for finite-dimensional and function space problems, under suitable assumptions on
the active set. A characterization of B-stationary optimal solutions is obtained thereafter. Finally,
based on the obtained first-order information, a trust-region algorithm is proposed for the solution
of the optimization problems.
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1. Introduction. Optimization problems with variational inequality constraints
have been intensively investigated in the last years with many important applications
in focus. Problems in contact mechanics, phase separation or elastoplasticity are some
of the most relevant application examples. Special analytical and numerical techniques
have been developed for characterizing and finding optima of such problems, mainly
in the finite-dimensional case (see [17] and references therein).

In the function space framework much of the work has been devoted to optimization
problems constrained by variational inequalities of the first kind:

min j(y,u) (1.1a)
subject to: (Ay,v —y) > (u,v —y), for all v € K, (1.1b)

where A : V +— V* is an elliptic operator and K C V is closed convex set. Such
obstacle type structure has allowed to develop an analytical machinery for such kind
of problems. In addition, different type of stationarity concepts have been investi-
gated in that framework (C-, B-, M- and strong stationary points). The utilized
proof techniques include regularization approaches as well as differentiability prop-
erties (directional, conic) of the solution map or elements of set valued analysis (see
e.g. [1,2,10-12,15,16,18,19,21, 22]).

For problems involving variational inequalities of the second kind:

min j(y,u) (1.2a)
subject to: (Ay,v —y) + o) —p(y) > (u,v —y), for allv €V, (1.2b)

with ¢ continuous and convex, only weak results have been obtained in the past, due
to the very general structure (see e.g. [1-3,20]). In [4] a special class of problems
were investigated, where a richer structure of the nondifferentiability was exploited.
Nonsmooth terms of the type ¢(y) = [ |By| ds were considered there and, by using
a tailored regularization approach, a more detailed optimality system was obtained.
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The results were then extended to problems in fluid mechanics [5], image processing [7]
and elastoplasticity [6]. Thanks to the availability of primal and dual formulations
in elastoplasticity, the kind of optimality systems obtained in [4] were proved to be
equivalent to C-stationary optimality systems in optimization problems constrained
by variational inequalities of the first kind, see [6].

In this paper we aim to characterize further stationary points by investigating differ-
entiability properties of the solution map. In that spirit a B-stationarity concept is in
focus. To avoid problems related to the regularity of the variables, we start by con-
sidering the finite-dimensional case. A reformulation of the variational inequality as
a nonsmooth system of primal dual equations enables us to take difference quotients
and prove directional differentiability of the finite-dimensional solution operator.

The technique is then extended to the function space setting. Since in this context the
regularity of the functions as well as the structure of the active set play a crucial role,
special functional analysis and measure theoretical methods have to be considered.
As a preparatory step, the Lipschitz continuity of the solution operator from L?(§2) —
L°(Q) is proved by using Stampacchia’s technique. The directional differentiability
of the solution map is then proved by assuming that the active set has a special
structure, namely that it consists of the union of a regular subdomain of positive
measure and a set of zero capacity (see Assumption 3.16 below). With the directional
differentiability at hand, the characterization of B-stationarity points is carried out
thereafter.

In the last part of the paper the first order information related to the directional
derivative is utilized within a trust-region algorithm for the solution of the VI-constrai-
ned optimization problem. The computed derivative information is treated as an inex-
act descent direction, which is inserted into the trust-region framework to get robust
iterates. The performance of the resulting algorithm is tested on a representative test
problem, showing the suitability of the approach.

2. Differentiability for a finite dimensional VI of second kind. We start
by considering the following prototypical VI in R™:

(Ay, v —y) + [vl1 =yl > (u, v —y) VveR"™ (2.1)

Throughout this section (., .) = (., .)g» denotes the Euclidean scalar product. More-
over, A € R"*" is positive definite and |v]; = Y7, |v;]. Existence and uniqueness
for (2.1) for arbitrary right hand sides u € R™ follows by classical arguments due to
the maximal monotonicity of A+ 9| ..

DEFINITION 2.1. We denote the solution mapping associated to (2.1) by S : R™ >
u—yeR"

Next let us introduce a dual (slack) variable ¢ € R” by ¢ := u — Ay. If we test (2.1)
with v; = 0, v; = 2y;, and v; = ¢; +y; and v; = y; for all j # 4, then the following
complementarity-like equivalent problem is obtained:

4y = |yil, i=1,2,...,n
lgil <1, i=1,2,..,n,



which can be reformulated as the following system of nonsmooth equations

ayi = lvil, i=1,2,..,n (2.2)
max{|g, 1} = 1, i=1,2,..,n.

In order to derive a directional derivative for S, consider a perturbed version of (2.1),
given by

Ay +q' =utth
max{|g{[,1} =1, i=1,2,....n,

which leads to the following nonsmooth system for the difference quotient:

t t

y -y a—-q

A =h
t + t

nyf — 4iY; — (|yf| — |yil)
t
max{|g{[, 1} — max{lq;|, 1}
t

=0, i=12..,n (2.4)

0, i=1,2,..,n.

In the sequel, we will pass to the limit in (2.4) to obtain the relations determining
the directional derivative of S. For this purpose we test the VI associated with (2.3),
given by

(Ay', v —y"y + o1 — |y > (u+th, v —y") Vv eR", (2.5)

with v = y. If we test (2.1) with v = y* and add both inequalities, we arrive at

t_ 2 t_ t t
Amin(A)‘y t y‘ S<y : y’Ayty>§<h’y : y>

where |.| = |.|gn denotes the euclidian norm and Apin(A) > 0 is the smallest eigen-
value of A. Thus

t
— 1
| < Ih] < o0,
t Amin

(4)
and so there exists a converging subsequence, w.l.o.g. {yt%y} itself, such that
>0

t_
oy, (26)

In Theorem 2.7 below we will see that the limit 7 is unique so that the whole sequence
{(y* —y)/t} converges. This justifies to assume the convergence of the whole sequence
right from the beginning. By definition of ¢ we have

t t
: :h—Ayty:;h—An::)\, (2.7)
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which in particular implies ¢* — q.
LEMMA 2.2. For alli=1,2,...,n there holds

t)t t
q;y; — qyi — (ly;| — lyil) 0

with

fi:R=R, fi(z):= sign(y;)z, y; # 0,

Proof. We start by estimating

tot t
%Y — 8:Yi — (sl = lyi
Y iYi (| ’L| ‘ Z|) _)\lyl—ql7]z+fz(771)

t
t t
¢ —q y' -y
S‘( ; —/\i)yi+qf a4
t
) — |y + tn; ] — |y
+‘Iyzl \z: m|+‘|yz 77tz| lylsz—(m).

Because of (2.6), (2.7), and ¢* — ¢, the first two terms converge to zero. Moreover,
due to (2.6), it holds

yf — Yi
t

=n; + O(t)

and thus the strong triangle inequality gives

Ll gy ) t .
lyi| — lyi + tnil < Yi —Yi — i — O(t) = 0.
t t
Moreover, f; is just the directional derivative of |.|: R — R at y; so that

Yi +tni| — |yi N0
Joi -t = Juil t‘ i = fi(ni) = 0.
Altogether this implies the assertion. O
LEMMA 2.3. The function g : R — R, g(z) = max{|z|,1} is directionally differen-
tiable with
0, |z| <1
g'(z;h) = { sign(x)h, 2| > 1 (2.9)
max{0,zh}, |z|=1L1.

Proof. Let us define
max{|z + th|,1} — max{|z|,1}
; .

If |z| < 1, then |x 4 th| < 1 and thus B; = 0 for sufficiently small ¢ > 0. If |z| > 1,
then |z + th| > 1 for sufficiently small ¢ > 0 and thus

Bt =

_z 4 th| = x| w0

By ; — sign(x)h.

4



If |x| = 1, then a simple distinction of cases shows that for ¢ > 0 sufficiently small
B — 0, hx <0
sign(z)h, hx > 0.

The right hand side is equivalent to max{0,zh} as we will see in the following. This
is clear for hx < 0. If ha = 0, then h = 0 (since |z| = 1) and thus max{0,zh} =0 =
sign(z)h. If hx > 0, then

max{0,xh} = xh = |z||h| = |h| = sign(h)h = sign(z)h.
All in all we have proven the assertion. O
LEMMA 2.4. For every i =1,2,....,n there holds

max{|qf|, 1} - max{|qi|7 1} ﬁ; g'(q"A’)
t (23] 7

with g, as defined in (2.9).

Proof. The proof is similar to the one of Lemma 2.2. We estimate

t
max{|q;|, 1 max{|q;|, 1

t
<’InaXHQH,l}-—InaXHQi4-tAA,1}
- t
max{|q; + tA\;], 1} — max{|q;|, 1
[l 1) =l ) )

The second addend tends to zero due to Lemma 2.3. Moreover, by (2.7) we have
(¢f — @)/t = X\i + O(t) and thus we find for the first addend, by employing the
Lipschitz continuity of « +— max{1,z} and again the strong triangle inequality,

<

max{|gf|, 1} — max{|g; + tAil, 1}’ <| lgi] = “f TN <O(t) =0,

t
which gives the assertion. O

qt—qi —th
t

In view of (2.6), (2.7), and lemmas 2.2 and 2.4, we can pass to the limit as ¢ \, 0 in
(2.4) and obtain in this way:

An+A=nh (2.10a)
sign(yi)ni, yi 7 0, ‘
Aiyi + qini = sien(yi)mi vi 7 i=1,2,...,n (2.10b)
|nl|’ Yi = 07
max{0,q;\;} =0 forallie {1,...,n} with |¢g;| = 1. (2.10c)

(Note that the case |g;| > 1 is obsolete.) The system (2.10) will lead to a VI satisfied
by the limit 1. To see this, we have to reformulate (2.10) in the following way:

LEMMA 2.5. The system (2.10) is equivalent to

An+A=h (2.11a)
Ai =0 forallie{l,..,n} withy; #0 (2.11b)

7, =0 forallie{1,..,n} with |g;| <1 (2.11c)

niq; >0 forallie{1,...,n} withy; =0, |¢;| =1 (2.11d)
Aigi <0 forallie {l,..,n} withy, =0, |¢:| = 1. (2.11e)
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Proof. (2.10) = (2.11):
It is evident that

max{0,q;\;} =01if |¢;| =1 <= ¢\ <0if|¢|=1, (2.12)

which implies (2.11e). Next, let ¢ € {1,...,n} such that y; # 0. Then

Yi
qi =
|yl

(3

= sign(y:),

and hence (2.10b) yields A\;y; = 0, which in turn gives (2.11b) due to y; # 0. Now
take ¢ € {1,...,n} with |¢g;| < 1 arbitrary. Then we have y; = 0, and hence (2.10b)
implies ¢;n; = |n;]. Because of |¢;| < 1 this results in (2.11c). To show (2.11d), let
i€ {l,...,n} with y; = 0 and |¢g;| = 1 be arbitrary. Then (2.10b) gives ¢;n; = |n;| > 0.
(2.11) = (2.10):

Due to (2.11b) and (2.11e) we have \;¢; < 0 whenever |¢;| = 1, which, in view of
(2.12), implies (2.10c). Because of (2.11b), we have

NV +miqi =niq; Yi=1,...,n. (2.13)

Now, if y; # 0, then ¢; = sign(y;) and thus n;q; = sign(y;)n;. If y; = 0 and |¢;| < 1,
then, by (2.11c), we obtain 7;q; = 0 = |n;]. If finally y; = 0 and |¢;| = 1, then
(2.11d) implies n;¢; = ni||¢;| = |n:]- In summary (2.10b) is verified, which yields the
assertion. O

System (2.11) is not yet complete, since there is still one relation missing to derive
the VI fulfilled by n. The missing part is stated in the following lemma.

LEMMA 2.6. There holds

niXi =0 forallie{l,...,n} withy; =0, |¢;| =1.

Proof. Let i € {1,...,n} with y; = 0 and |¢;| = 1 be arbitrary. W.l.o.g. we assume
that ¢; = 1. The case ¢; = —1 can be discussed analogously. If n; = 0, the assertion
is trivially fulfilled. So let 7; # 0. By (2.11d) and ¢; = 1 we then have 7; > 0. Due to
(2.6) this implies

Yi — Yi
% >0 for ¢t > 0 sufficiently small

and thus, due to y; = 0,
yl >0 for t > 0 sufficiently small.

Consequently, ¢! = sign(y!) = 1 for ¢ > 0 sufficiently small and hence, since ¢; = 1 by
assumption,

4 — G

= ()7
N0

which gives the assertion. O



Now we have everything at hand to prove the main result of this section, i.e., the
directional differentiability of S : u > y.

THEOREM 2.7. The solution mapping S of (2.1) is directionally differentiable at
every point w € R™ and the directional derivative n = S'(u;h) in direction h € R"
solves the following VI of first kind:

neK(y), (An,v—n)=(h,v—n) YveK(y) (2.14)
where K(y) is the convex cone defined by
K(y)={veR":v; =0 if |¢:| <1, vig; 2 0 if y; =0, |q;| = 1}. (2.15)

Proof. Define the biactive set by

Fist we show that the limit 1 solves (2.14). We already know that 7 satisfies (2.11) and
in addition 7;A; =0 if y; = 0 and |¢;| = 1. Thus (2.11¢) and (2.11d) imply n € K(y),
i.e., feasibility of . Now let v € K(y) be arbitrary. Then (2.11b), v € K(y), and
(2.11e) yield

i€B ieB ]

Similarly, we infer from (2.11b), n € K(y), and Lemma 2.6 that

ieB
Therefore, if we multiply (2.11a) with v — 7, then we arrive at

<h7 U*U) = <A77: U777>+<)‘7 U>7 <)‘7 77) < <A777 U*’I%

so that the limit n indeed solves (2.14).

Since A is positive definite and K (y) is convex and closed, the operator A+l (,(.) :
R"™ — 28" is maximal monotone, where I K(y) denotes the indicator function of the
set K (y). Thus there is a unique solution of (2.14). Since every accumulation point
n of the difference quotient (y' — y)/t solves (2.14), the limit is thus unique and
consequently a well-known argument gives the convergence of the whole sequence. O
COROLLARY 2.8. Let the biactive set have zero cardinality, i.e. y; = 0 implies |q;| < 1.

Then S is Gateaua-differentiable, i.e. S'(u;h) is linear and continuous w.r.t. h, and
n=5"(u)h is given by the unique solution of the following linear system:

n; =0 forallie{1,..,n} withy; =0 (2.17)

Z Aijnj =h;  forallie{l,..,n} withy; #0. (2.18)
Jy; #0

Proof. If the biactive set has zero cardinality, then (2.11c) implies (2.17). Moreover,
(2.11b) immediately yields (2.18). Since A is positive definite, the same holds for
Az = (Aij)ijer with 7 := {i € {1,...,n} : y; # 0}. Thus Az is invertible and
na = A7'hz. Together with (2.17), i.e. n{,...n\z = 0, this implies that 7 is uniquely
determined by (2.17) and (2.18). Moreover, due to the invertibility of Az, n depends
continuously on h as claimed. O



3. Weak differentiability for a VI of second kind in function space. Next
we extend the result of the preceding section to a VI of second kind in function space.
For this purpose, let @ C R?, d > 1, be a bounded domain with regular boundary
satisfying the cone condition. We consider the following prototypical VI of second
kind:

(g v=g)+ [ pldo [ fplde = wo-y) Voev. (VI2)
Q Q

where we abbreviated V := H}(Q). From now on (., .) denotes the dual pairing in
V. Furthermore A : V — V* stands for the following linear second-order elliptic
differential operator:

d

Ay—Z(;i1

=1

oy oy
Z_a”a—%—i-bz Ba;i) +vy, (3.1)

7]
ox
where a;j,b;,7 € L*(Q), i,j =1, ..,d, are such that A is coercive, i.e.

(Ay, y) > ally|l%, (3.2)

with a constant a > 0. In addition, we require
~v > 0. (3.3)

Moreover, u € V* is given a inhomogeneity.

The plan of this section is as follows. First we state some well known results for
(VI2) concerning existence, uniqueness, and an equivalent reformulation by means of
a complementarity-like system. Then we introduce a perturbed problem, similar to
(2.3), and derive several auxiliary results for the associated difference quotients and
their (weak) limits. In order to show an infinite dimensional analogon to (2.11b), we
unfortunately need to assume some properties of the active set, see Assumption 3.16
below. Based on this assumption, we can derive a weak directional differentiability
result, similar to Theorem 2.7 (see Theorem 3.19 below).

LEMMA 3.1. For every u € V* there exists a unique solution y € V of (VI2), which
we denote by y = S(u). The associated solution operator S : V* — V s globally
Lipschitz continuous, i.e., there exists a constant L > 0 such that

[S(u1) = S(u2)llv < Lluy —uzllve Vui,ug € V*. (3.4)

Proof. Existence and uniqueness for (VI2) follows by standard arguments from the
maximal monotonicity of A + 9||.|[11(q), see for instance [1]. To prove the Lipschitz
continuity we test the VI for y; = S(uq) with yo = S(us2) and vice versa and add the
arising inequalities to obtain

(A(yr — v2), y1 — y2) < (w1 — ua, Y1 — Yo)-

The coercivity of A then yields the result. O

REMARK 3.2. Sometimes we will use S with different domains and ranges, which
may be inferred from the context. By standard arguments based on Fenchel du-
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ality or the Hahn-Banach theorem, the VI in (VI2) can be rewritten in terms of a
complementarity-like system, see e.g. [4]. In this way the following result is obtained:

LEMMA 3.3. For every u € V* there exists a unique function q € L*(Q) such that the
unique solution y € V' of (VI2) fulfills the following complementarity-like system:
(Ay, v) +/ qudr = (u,v) YveV (3.5a)
Q
q(x)y(x) = ly(@)], lg(x)[ <1 ae in Q. (3.5b)

The function q is called slack function in all what follows, and we will refer to (3.5b)
as slackness condition in the sequel.

Next let h € V* be arbitrary and {t,} C RT be an arbitrary sequence of positive
numbers tending to 0. We denote the solutions to the VI associated to u+t,h by y,,
ie.,

(AYn, v — Yn) +/ |v| dz —/ lyn| dz > (u + tph, v —y,) YoveW (3.6)
Q Q
The associated slack function is analogously denoted by ¢, € L?(9), i.e.

Ay, v +/qnvdx= u+tyh, v) Yov eV,
( ) A ( ) (3.7)

gn(@)y(x) = |lyn(x)|, |gn(x)] <1 ae. in Q.

and thus there is a weakly convergent subsequence, denoted the same, and a limit
point n € V such that

By Lemma 3.1 it holds

Vo

Yn — Y
— H < ||n
n v

Yn — Y

P in V. (3.8)

This simplification of notation will be justified by the uniqueness of the weak limit 7,
which implies the weak convergence of the whole sequence by a well-known argument
(see Theorem 3.19 below). For the slack functions we obtain

/uvdx:(h,v>7<Ayn_y7v>%<thn,U> Vv eV,
0 1 t

n n
ie.,

i N Ain V¥,

n
with A\ = h — An. Note that it is in general not possible to show the boundedness of
(gn — q)/tn in any Lebesgue space so that one cannot expect A to be more regular.

Next consider the first equation in the slackness condition (3.5b) for y and y,. By
multiplying these equations with 1/¢,, and an arbitrary ¢ € C§°(€2), integrating over
Q, and taking the difference, we arrive at

/uywdx+/uq¢dx:/wwdr, Vo e Cgo(Q). (3.9
a tn o Itn Q tn
9



In order to pass to the limit in this relation, we have to define the following sets:

DEFINITION 3.4. We define —up to sets of zero measure—

A:={xeQ:y(x)=0}, As :={x € Q:q(z)| < 1}
Z:={zxeQ:y(z)#0}, B:={zeQ:|qx)] =1, y(z) =0} (3.10)
It :={xeQ:y(x) >0}, 7 ={zx e Q:y(zx) <0} '

Bt i={xeQ:q(x)=1, y(x) =0}, B :={re€Q:q(x)=-1, y(z) =0}
The set A is called active set, while As is the strongly active set. Moreover, we call
7T and B inactive and biactive set, respectively.
Note that

N=AUTZ and A=A;UB,
due to (3.5b). The next lemma covers the directional differentiability of the L!-norm.

Its proof is straightforward and therefore postponed to Appendix A.
LEMMA 3.5. For every ¢ € C§°(Q2) it holds

/ Ln' — Iyl pdr — / abs'(y;m) ¢ dx
o In Q
with

abs'(y;n) € L*(Q), abs'(y;n)(z) := {T:Ig(z)(y(x))n(ﬂ zg; i 8.

Together with Lemma 3.5 the weak convergence of (g, — q)/t, in V* and (v, —y)/tn
in V and the strong convergence of y,, to y in V allow to pass to the limit in (3.9),
which results in

(x\,yw>+/ﬂnq<ﬁdw:/ﬂab&"(y;n)s0dw Vo € C°(Q). (3.11)

Using this relation, we can prove the following result, which is just the infinite dimen-
sional counterpart to (2.11c) and (2.11d):

LEMMA 3.6. There holds

n(x) =0 a.e., where |q(z)] <1 (3.12)
n(z)q(z) >0 a.e., where |q(x)] =1 and y(z) = 0. (3.13)

Proof. Let ¢ € C5°(2) with ¢ > 0 a.e. in Q be arbitrary. The slackness condition
(3.5b) implies for all n € N that

gn(z) — q(z)

; y(r) <0 a.e. in Q.

Therefore we have

(A yp) = lim gywdz <0,

n— o0 0 n
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and thus (3.11) yields

/ nqeds > / abs'(y;n) pdx YV € C3°(Q) with ¢ > 0.
Q Q
The fundamental lemma of the calculus of variations thus yields
n(x) q(x) > abs'(y;n)(x) ae. in Q,
which by definition of abs’(y;7) in turn gives

n(x) g(z) > [n(z)]  ae. in A.
Since |g(x)] < 1 a.e. in €, this results in

n(z) q(z) = |n(x)| a.e. in A. (3.14)
As the slackness conditions in (3.5b) implies {z € Q : |¢(z)] < 1} C {x € Q : y(z) =
0}, the result follows immediately from (3.14). O
LEMMA 3.7. There holds (A, n) > 0.
Proof. By inserting the definition of the slack variable ¢ into (VI2) one obtains

/q(v—y)dxg/ \U|dx—/ lylde YveV (3.15)
Q Q Q

and an analogous inequality for ¢, and y,. Inserting y, € V in this inequality and y
in the corresponding one for g, and y,, adding both inequalities and dividing by #2
yields

/qnfqynfydxzol
Q

tn n

Since A is elliptic and bounded, the mapping V > w — (Aw, w) € R is convex and
continuous and thus weakly lower semicontinuous. The equations for ¢ and ¢, and
the weak convergence of (y, —y)/t, in V therefore imply

0 < liminf =4 7Y dx

n—oo  Jq n tn

Shmsup/mwdx
o ¢t

n—oo n tTL

(52 (15, )
< o (020 e (3 2) B

< (h, m) — (An, m) = (A, ).

O

The most delicate issue, when transferring the finite dimensional findings of Section
2 to the function space setting, is to verify the conditions (2.11a) and (2.11e) on .
To do so, we first prove that S is Lipschitz continuous in L>(£2), provided that the
right hand sides in (VI2) are more regular. We employ the well-known technique of
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Stampacchia based on the following lemma, whose proof is presented in Appendix B
for convenience of the reader.

LEMMA 3.8 (Stampacchia). For every function w € V and every k > 0, the function
wy, defined by

w(z) —k, w(x) >k
wi(x) =<0, lw(z)| < k (3.16)
w(z)+k, w) < -k

is an element of V.. Furthermore, if there is a constant o > 0 such that
allwr )3 < / fwpdr YVEk>0 (3.17)
Q

with a function f € LP(QY), p > max{d/2,1}, then w is essentially bounded and there
exists a constant ¢ > 0 so that

[wllz= ) < cllfllLr - (3.18)

LEMMA 3.9. There exists a constant K > 0 such that
1S (u1) = S(u2)l (o) < K [Jur — uz| pr o)

for all uy,ue € LP(QY) with p > max{d/2,1}. Here we identified v € LP(Q2) with an
element of V*.

Proof. We apply Lemma 3.8 to w := y; — y2 with y; = S(u;), i = 1,2. To this end
we shall verify (3.17) with f = u3 — us. For this purpose we test the VI for y; with
y1 — v and the one for yo with y2 + v and add the arising inequalities to obtain:

(A(y1—y2), v)—i—/ (|y1\—l—\yg\—\yl—v\—\yg—i-v\)dx < /(ul—uQ)vdx Vv eV. (3.19)
Q Q

Next let & > 0 be arbitrary and define wy, = (y1 — y2) as in (3.16). In the following
we will prove that

I(z) = [y1 (@) + [y2(@)] = |y1(2) — wi(@)] = [y2(2) + wi(2)| 2 0 ae. in Q, (3.20)

by a simple distinction of cases.

st case: |yi(x) —yo(x)| < k:
In this case we have wy(z) = 0 and thus (3.20) is trivially fulfilled with equality.

2nd case: y1(x) — y2(x) > k:
Now we obtain wg(z) = y1(z) — y2(x) — k and consequently

I(z) = |y1(2)] + [y2(@)] — |y2(z) + k| — [y1(2) — K.
If y1(x) > k and yo(z) < —k, then
I(z) = |y1(z)] + |y2(2)| + y2(2) + k —y1(z) + k = 2k > 0.
If y1 () < k and yo(z) > —k, then

I(x) = |y (@) + ly2(2)] = y2(2) — k +y1(2) — k = 2(y1(2) — y2(2) — k) =0,
12



where we used y; (z) — y2(x) > k for the last estimate.
If y1(z) > k and ya(z) > —k, then

I(x) = ly1(2)] + |y2(2)] = y2(z) — 91 (x) = 0.

If finally y1(x) < k and y2(x) < —k, then

I(z) = |y1 ()] + [y2(2)] + y2(2) + y1(x) >0,

which gives the assertion of (3.20) for this case.

3rd case: y1(x) —yo(x) < —k:

In this case we get that ys(x) —y1(x) > k and thus I(x) = |y1(z)| + |y2(x)] — |y2(z) —
k|—ly1(z)+k|. Interchanging the roles of y; (z) and y2(x) and repeating the arguments
for the second case immediately yields (3.20) in the third case.

Let us now define Ay := {z € Q: |w(x)| > k}. From the first part of Lemma 3.8 we
get that wy € V and so we are allowed to insert wy, as test function in (3.19). Owing
to the coercivity of A, the definition of wy, in (3.16), (3.3), and (3.20), we then obtain

: Buwy O 9
- /A(k) [Z (Zaijalxj %dx+bi %wk + (\wl - k)Q}dx
3 7j=1 7

d d ow Owy ow
< L TR il
- /ﬂ [Z (Za”éhj an dr +bl 8I2 Wr +’ywwk}dx
< (A, w) = (Al — ), w) < [ (1~ )
Q

which is (3.17) with f = u; — us. Since k > 0 was aribitrary, all conditions of Lemma
3.8 are satisfied so that it can be applied and gives the desired result. O

REMARK 3.10. Since S(0) = 0, it immediately follows from Lemma 3.9 that

15l < ellullzray-

COROLLARY 3.11. Ifu,h € LP(Q) with p > max{d/2,1}, then

Yn — Y

Yy i 2(9),

which implies n € L> ().

Proof. By Lemma 3.9 (y, —y)/t, is bounded in L*(£2). Thus, there is a subsequence
converging weakly-x to a element 7 € L°°(2). This subsequence therefore converges
weakly in L2(2) and in view of (3.8) we find

/nvdx:/f]vd:x, Vv e L*(Q).
Q Q

The fundamental lemma of the calculus of variations implies 77 = 1 a.e. in €. Since
the weak limit is therefore unique, a standard argument implies weak-* convergence
of the whole sequence as claimed. 0
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Based on the Lipschitz continuity of S in Lemma 3.9, we can prove a first result
towards an infinite dimensional counterpart to (2.11a).

LEMMA 3.12. Assume that u,h € LP(Q) with p > max{d/2,1}. Let moreover p > 0
be arbitrary and define —up to sets of measure zero—

Ay i={z € Q:y(x) € [-p,p]}.
Then for allv € V with v(xz) = 0 a.e. in A, there holds

(A, v) = 0.

Proof. Let p> 0 and v € V with v(z) = 0 a.e. in A, be arbitrary. Thanks to Lemma
3.9 we have

lYn — yllL=@) < Ktnllh]|Lr) — 0. (3.21)

Therefore, for almost all = € Q with y(z) > p, it follows that
p
yn() 2 y(@) = ly(@) = yn(@) 2 p =y =Yl 2 5 >0, V= Ny,

with Ny € N depending on p but not on x. Therefore, thanks to (3.5b), we have for
all n > N; that

gn(z) = |zngg| = = M =0 faa. zeQwithy(z)>p, (3.22)

where we used that ¢(z) = 1 due to y(z) > p > 0. Completely analogously one can
show the existence of Ny € N, only depending on p, such that

an(x) — q(x)

; =0 fa.a. zeQwithy(z)<—p

for all n > Ny. Therefore, since v(z) = 0 a.e., where y(z) € [—p, p], we obtain

/ In =9 g =0 Vn> max{Ny, Na}.
o In
The convergence (¢, — q)/t, — A in V* thus implies the assertion. O

The aim is now to drive p in Lemma 3.12 to zero. This however requires several
additional assumptions. The first one covers the regularity of y and q.

ASSUMPTION 3.13.

1. We assume that the solution y = S(u) is continuous.
2. The slack function is continuous, i.e. ¢ € C(£2).

REMARK 3.14. Let us point out that Assumption 3.13(1) is not restrictive at all. In-
deed, Lemma 3.3 implies that y solves Ay = u—q and, if u € L*(Q), then y thus solves
a second-order elliptic equation with right hand side in L*()). For problems of this
type, standard regularity theory yields continuity of the solution under mild assump-
tions on the data, see for instance [8]. In contrast to this, Assumption 3.13(2) cannot
be guaranteed in general. Nevertheless, multiple numerical observations indicate that
q s often continuous.

14



If Assumption 3.13 is satisfied, i.e. if y and ¢ have continuous representatives, then
we can define the sets in Definition 3.4 in a pointwise manner, i.e., not only up to sets
of zero measure. The sets arising in this way are denoted by the same symbols, and
we always mean these sets in all what follows when writing A, Z, B etc.

LEMMA 3.15. Under Assumption 3.13 the sets I+ and I~ are strictly separated, i.e.,
there exists § > 0 such that

dist(ZT,Z7) :==min{|z — z|ga :x €IT,2 €I} > 4.

Proof. Since Q is compact, Assumption 3.13(2) implies that g is uniformly continuous.
From the slackness condition (3.5b) we infer ¢ = 1 in Z" so that the uniform continuity
of ¢ yields the existence of § > 0 with

q(x) >1/2 forallz € It + B(0,4). (3.23)

Hence, due to ¢ = —1 on Z~ by (3.5b), this gives the assertion. O

In addition to Assumption 3.13, we need the following rather restrictive assumption
on the active set.

ASSUMPTION 3.16. The active set A = {x € Q : y(z) = 0} satisfies the following
conditions:

1. A=Ay UAy, where Ay has positive measure and Ay has zero capacity.

2. Ay is closed and possesses non-empty interior. Moreover, it holds Ay =
int(Ay).

3. For the set J := Q\ A; it holds

AT\ (DT NAN) = DA \ (DA, N AQ), (3.24)

and both Ay and J are supposed to have regular boundaries. That is the
connected components of J and Ay have positive distance from each other
and the boundaries of each of them satisfies the cone condition.

With the help of Assumption 3.13 and 3.16 we can now prove the following infinite
dimensional counterpart to (2.11a):

LEMMA 3.17. Let u,h € LP(Q), p > max{d/2,1}, be given. Assume that u is such
that Assumptions 3.13 and 3.16 are fulfilled. Then

A\, vy=0 forallveV withv(z) =0 a.e. in A

holds true.

Proof. Let v € V with v(z) = 0 a.e. in A be arbitrary. By Assumption 3.16(3) there
are linear and continuous trace operators 7; : H'(Q) — L*(0J) and 7, : H(Q) —
L?(0A;). Due to v = 0 a.e. in Ay, we have 7,0 = 0 and, by (3.24) and v € V, thus
7;v = 0. Since 07 is regular, there exists a sequence {¢y treny C C5°(J) with ¢ — v
in H(J), see e.g. [9, Lemma 1.33]. In particular it holds

wy, := supp(px) CC J.

We extend ¢y, by zero outside J to obtain a function in C§°(£2), which we denote by
the same symbol for simplicity. Because of v = 0 a.e. in A; it follows that

k—o0

vp — v inV. (3.25)
15



By construction we have J C ZU Ag. Since Ag has zero capacity, there is a sequence
{wm }men C V and a sequence of open neighborhoods of Ay, denoted by {U, }men C
Q, such that

Wy >0 ace. in Q wy =1ae inly, w, — 0in HY(Q).
Now let k,m € N be fixed but arbitrary and define
Th o= (e \Un) NI, T, = (wp \Un) NI .

Since Uy, is open, w \ Uy, is closed. Moreover, in view of J = Z U Ap, it holds
wi \ Uy, C Z. Thus, Lemma 3.15 and the boundedness of {2 yield that Z% and Z,,, are
compact. The continuity of y therefore implies that there is € € Z% such that

y(€) = min y(z)

€L,

and, due to £ € ZT, one obtains p} = y(¢) > 0. Analogously one derives p,, :=
max, ;- y(r) < 0. As in the proof of Lemma 3.12 one proves the existence of N}, € N
such that for all n > N,! there holds

an(x) — q(x)

; =0 faa. z¢eQ withy(z) > p,

see (3.22). Clearly, there is N,,; € N so that the same equation holds for every n > N
and almost all x € Q with y(x) < p.. Consequently, we obtain

qn — 4

;T =0 aeinw \Up =T, UT,., (3.26)

provided that n > N,, := max{N," N }.
Thanks to (3.26) and w,, = 1 a.e. in U,y,, it follows

/qn_qsokwmdx:/ qn_q@kwmdx+/ qn_qﬂpkwmdm
Q t Wk\um, t

n tn m n

(3.27)

:/ q”t_%kdx Vn> N

m

On the other hand yjw,, € V is a feasible test function for (3.5a) and (3.7). If we
insert this test function and subtract the arising equation, then (3.27) together with
Holder’s inequality and Sobolev embeddings yield

/ qn—q%dx:/qn—q(pkwmdx
tn (9] tn

m

:_/V(w>-V((pkwm)dm+/h<pkwmd$
Q t Q

n

Un
— [wm |z @) lekllwro @) + e bl L2 lwmll 2 @) ¢kl 210

=
N ln  NHY(Q)

for all n > N,,,. Therefore, in view of (3.26), the weak convergence (and thus bound-
edness) of (y, — y)/tn gives

Gn — 4 an —q
/ = s%dx:/ ”t o dr < cllwm |z @)llerllw @)
Q U

tn m n
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for all n > N,,, and thus

-4

n

(A, pr) = lim

ordr < cllwm || g @) lerllwr=q)-

Due to w,, — 0 in H*(£2), passing to the limit m — oo yields (), %) < 0. The
above arguments also apply to —py so that (), ¢r) = 0. Since k € N was arbitary,
this equation holds for every £ € N and thus we can pass to the limit & — oco. The
convergence in (3.25) then gives the assertion. O

Similarly to (2.15), we define

K(y):={veV: v(x)=0ae in A, v(z)g(xz) > 0 a.e. in B}
= {veV:v(z)=0a.e., where |¢(z)| < 1, (3.28)
v(x)g(x) > 0 a.e., where |g(z)| =1 and y(z) = 0}
This set will be the feasible set of the VI belonging to the directional derivative of
S (see Theorem 3.19 below). As seen in the proof of Theorem 2.7, in the finite
dimensional setting, there holds ATv < 0 for all v € K(y), see (2.16). The infinite

dimensional analogon is also true, provided that Assumptions 3.13 and 3.16 hold, as
the following lemma shows.

LEMMA 3.18. Let u,h € LP(Q) with p > max{d/2,1} be given, and assume that u is
such that Assumptions 3.13 and 3.16 are fulfilled. Then there holds

(A, v) <0 forallve K(y).

Proof. Let v € K(y) be fixed but arbitrary. Due to A; UBUZ = and v(z) =0 a.e.
in A, we obtain

n - n 1 n 1 n —
/uvdaz:/ i vdx+/ In + vdac+/uvdx, (3.29)
Q tn B+ tn - tn 7z In

Since ¢, € [~1,1] a.e. in Q and gv > 0 a.e. in B, which implies v > 0 a.e. in BT and
v < 0 a.e. in B~, we can further estimate

/uvdxg/uvdxz/ (il
Q tn T tn J tn

where J is the set from Assumption 3.16(3). For the last equality we used that
J =T UA and Ag has zero capacity, thus zero Lebesgue-measure.

We now prove that J = JT U J~, where J+ and J~ possess regular boundaries
and coincide with Z+ and Z~ up to sets of zero capacity. For this purpose, we show
J =7. DuetoZ C J, we clearly have 7 C J. Let ¢ e J be arbitrary. Then there
is a sequence {xp}ren C J so that z, — & If {z;} contains a subsequence in Z,
we immediately obtain & € Z. So assume the contrary, i.e., in view of J = T U Ay,
xp € Ag for all k € N sufficiently large. W.l.o.g. we assume {x;} C Ap for the whole
sequence. Since Ay has zero capacity, thus zero measure, there is, for each xj, a
sequence {x,(cm)}meN C Q\ Ag with x,(cm) — xy, for m — oo. Since xfcm) ¢ Ao, we
have either z,(gm) € A or x,(gm) eI If {:ch")} would contain a subsequence in Ay,
then the closedness of A; would imply x, € A; in contradiction to xj € Ag. Thus
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(m)
k

we may w.l.o.g. assume that {z;’} C Z. Therefore, there is a diagonal sequence

{xzm(k))} C T converging to &, which gives ¢ € 7. Hence we have shown
J=I=ItUI-

with Z+ and Z~ as defined in (3.10). Since ZT and Z~ have positive distance from
each other by Lemma 3.15, there exist sets J, 7~ such that 77U J~ = J and
dist(J T, J7) > §. Moreover, thanks to Lemma 3.15 and J = ZU Ay with cap(Ag) =
0, J+ differs from Z% only by a set of zero capacity and the same holds for J—
and Z~. Finally, because of dist(J+,J7~) > §, Assumption 3.16(3) yields that JT,
J=, Q\JT, and Q\ J~ possess regular boundaries. (This actually implies that
J* =int(TF).)

Since J 1 differs from ZT only on a set of zero measure, the definition of Z* and the

slackness condition (3.5b) imply ¢ = 1 a.e. in J 7, and analogously ¢ = —1 a.e. in
J~. Thus (3.29) can be further estimated by

n n 1 n .
/ In "9 gy §/ 1 max{0, v} d:c—l—/ In— 4 min{0, v} dz
a ln J+ — t
>

n J+ n
<0
1 _
—|—/ n + min{0, v} dx+/ I — 4 max{0,v} dz
- tn T T~ t'n,
0
=0 B

< / dn =4 min{0, v} dzx +/ I 1 max{0, v} dz. (3.30)
g+ In g- tn

Next we show that min{0,v} € HJ(J ') and max{0,v} € H{(J~). The proof of
Lemma 3.15 shows
(Z* + B(0,e)) \I* c {z € Q: q(x) > 1/2, y(z) =0} C A, UB™, (3.31)

see (3.23). Because of v € K(y) we have gv > 0 a.e. in A; UBT and thus (3.31) gives
v > 0ae. in (Z* 4 B(0,)) \ Z*. Since Z* and J* differ only up to a set of zero
measure, we thus get

min{0,v} =0 a.e. in (J+ B(0,e))\ J™.
The regularity of 07 and 9(Q\ J ) therefore gives
min{0,v(z)} =0 a.e. on dJ",

and thus min{0,v} € HJ(J'). An analogous argument shows that max{0,v} €
HY(T 7). Due to the zero trace and the regularity of 7+ by Assumption 3.16(3), we
can extend min{0, v} by zero outside J* to obtain a function in V, i.e., x 7+ min{0,v} €
V, where x 7+ denotes the characteristic function of J+. Thus the weak convergence
(gn — q)/tn, — X in V* gives

/ n — 4 min{0, v} dx = / 4 X7+ min{0, v} dr — (A, x 7+ min{0,v}).
J+ Q

n tn

Since x 7+ min{0,v} =0 a.e. in A C Q\ J T, Lemma 3.17 yields (\, x 7+ min{0,v}) =
0. Analogously

/ qnti ? max{0,v} dz — (), X7~ max{0,v}) =0
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is obtained. Therefore, in view of (3.30), we finally arrive at (A, v) < 0 and, since
v € K(y) was arbitrary, this proves the assertion. O

Now we are finally in the position to prove the main result of this section covering the
“weak directional differentiability of the solution operator associated with the VI in
(VI2).

THEOREM 3.19. Let u,h € LP(Q) with p > max{d/2,1} be given. Suppose further
that Assumptions 3.13 and 3.16 are fulfilled by y = S(u) and the associated slack
variable q. Then there holds

S(u+th)—S(u)
t

—n mV, ast\0, (3.32)
where n € V' solves the following VI of first kind:
neK(y), (An,v—n)>(h,v—n) YveK(y) (3.33)

with K(y) as defined in (3.28).

Proof. Lemma 3.6 yields n € K(y). Furthermore, since An+ A\ = h, Lemmas 3.7 and
3.18 give

<A77,1)—77>—<h,1]—77>=<)\,7]>—<)\,1}>ZO

for all v € K(y), which is just the VI in (3.33).

Since K(y) is nonempty, convex, and closed and A is bounded and coercive, standard
arguments yields existence and uniqueness for this VI of first kind. Thus the weak
limit » is unique, which implies the weak convergence of the whole sequence. O

DEFINITION 3.20. With a little abuse of notation we call the weak limit n in (3.32)
weak directional derivative and denote it by n = S, (u; h).

REMARK 3.21. If B has zero measure, then K(y) turns into
Kly)={veV: v(x) =0 a.e. in As},

i.e., a linear and closed subspace of V.. Thus, in this case, (3.33) becomes an equation.
If As possesses a reqular boundary, then this equation is equivalent to

An=h mZ and n=0 ae in A= A;.

REMARK 3.22. [t is very likely that Theorem 3.19 could be proven without the re-
strictive Assumption 3.16, if the weak limit n would satisfy the conditions in (3.12)
and (3.13) not only almost everywhere, but quasi-everywhere in . In this case, the
feasible set of (3.33) would read

K:={veV:uva) =0 ge., where [g(x)| <1,
v(z)q(x) >0 g.e., where |q(x)] =1 and y(x) = 0}.

However, unfortunately, so far we have neither been able to show that (3.14) holds
quasi everywhere, nor to establish a counterexample which demonstrates that this is
wrong in general. This question gives rise to future research.
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4. Bouligand stationarity. With the differentiability result of Theorem 3.19 at
hand, it is now straightforward to establish first-order optimality conditions in purely
primal form for optimization problems governed by (VI2). To be more precise, we
consider an optimization problem of the form

min J(y,u)

s.t. (Ay,v—y)—i—/ |v|dm—/ lylde > (u, v —y) VveV (4.1)
Q Q

and u € Uyg,

where U,q C LP(Q2), p > max{d/2, 1}, is nonempty, closed, and convex.

As shown in [10, Lemma 3.9], weak convergence of the difference quotient associated
with the control-to-state mapping S : u — y is sufficient to prove that the reduced
objective, defined by

JLP(Q) =R, j(u):=J(S(u),u),

is directionally differentiable. This allows us to formulate the following purely primal
optimality conditions, which, in case of optimal control of VIs of first kind, are known
as Bouligand stationarity conditions.

THEOREM 4.1. Let p > max{d/2,1} and assume that J is Fréchet-differentiable from
V x LP(Q) to R. Suppose moreover that @ € U,q is a local optimal solution of (4.1),
such that y = S(u) and the associated slack variable q satisfy Assumptions 3.13 and
3.16. Then the following primal stationarity conditions are fulfilled:

Ay J (g, u)n + 0uJ (g, u)(u —u) >0 Vu € U, (4.2)

where n € V solves (3.33) with K(y) = K(g) and h = u — 4.

Proof. As mentioned above, [10, Lemma 3.9] and Theorem 3.19 imply that u — j(u)
is directionally differentiable in every direction h € LP(2) with directional derivative
j'(u; h) = 0y J (Y, w)S,(u; h)+0yJ (¥, @)h. Local optimality of @ yields j'(a; u—u) > 0,
which is the assertion. O

Next we derive a variant of the above optimality condition based on the cone tangent to
the admissble set of (4.1). As a result, we obtain an optimality condition which can be
interpreted as the counterpart of the implicit programming approach in the discussion
of finite dimensional MPECs, see [17, Section 3.3]. Note that such similarities have
already been observed in [10].

LEMMA 4.2. Assume that u € LP(Q), p > max{d/2,1}, is such that Assumptions
3.18 and 3.16 are fulfilled. Suppose moreover that the sequences {u,} C LP(Q) and
{t,} CRT satisfy

Uy — U

tn N\ 0,
N\ ™

—h in LP(Q).

Then

S(un) — S(u)

. — 8! (a;h) in V.
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Proof. By adding a zero we obtain

S(un) = S(@) _ S(un) =St tnh) | St tnh)—S(@)

n n n

While the latter addend converges weakly to S7,(@; h) by Theorem 3.19, the Lipschitz
continuity of S by Lemma 3.1 yields for the first addend that

Uy —
ty

H S(up) —S(u+ty,h)

[, =z]
tn v

ﬁ_h’

— 0,
V*

where we used the compactness of the embedding LP(Q2) — V*. O
We define the tangent cone to the admissible set of (4.1) as follows:

DEFINITION 4.3 (Tangent cone). For given u € U,q we define the tangent cone at u
by

T (u) = {(n,h) CV x LP(Q) : 3 {un}nen C Und, {tn} C R such that

“"t_ Y hin IP(Q)  and M

—nn V}.

Since the VI in (4.1) is uniquely solvable such that y is determined by w, this cone
coincides with the standard tangent cone in finite dimensions, except that we replace
strong by weak convergence.

THEOREM 4.4. Suppose that the assumptions of Theorem 4.1 are fulfilled with a local
optimum @ € Uyq of (4.1). Then there holds

OyJ (g, u)n + 0uJ (g, u)h >0 V(n,h) e T(a). (4.3)

Proof. First we show that LP(Q) > h — S/ (a;h) € V is completely continuous.
In view of the coercivity of A, the solution operator associated to the VI in (3.33),
denoted by G : V* — V| is clearly Lipschitz continuous, i.e.

1
|G (h1) — G(ha)|lv < o A1 — hal

v+ YVhy, hy € V*,

where « is the coercivity constant of A. Therefore, if h, — h in LP(2) and con-
sequently h,, — h in V*, then G(h,) — G(h) in V. Since G(h) = S, (u;h) for
h € LP(Q), this yields the desired result.

Now let (n, h) € T (@) be arbitrary. Hence there is {u,} € U,q so that (u, —u)/t, — h
in LP(€)). As seen above, S,(;.) is the solution operator of a VI of first kind with

the cone K(y) as feasible set. Hence, S/ (u;.) is positively homogeneous such that
Theorem 4.1 yields

Up — U Uy — U

0y J (y,1)S,, (a; ) + 0uJ (7, a)( ) > 0. (4.4)

n
The complete continuity of S/, (u;.) together with Lemma 4.2 implies

Uy, — U

S, (ﬁ; ) — S (a;h)=n inV.
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Due to the weak continuity of 9,.J(y,u) the second addend in (4.4) converges to
OuJ (g, w)h, which completes the proof. O

REMARK 4.5. The presented necessary optimality conditions only involve primal vari-
ables. Hence they are only of limited use, in particular for numerical computations.
This especially concerns optimization problems in function space, where a discretiza-
tion yields a highly dimensional control space and thus a large number of optimization
variables. Therefore, one has to derive a qualified optimality system out of (4.2) and
(4.3), respectively, containing an adjoint equation. This is actually a matter of future
research. Nevertheless, in the following section we consider the partial information
obtained through (2.17)-(2.18) in order to compute an inexact adjoint and design a
first numerical algorithm for the solution of the finite-dimensional VI-constrained op-
timization problem.

5. An inexact trust-region algorithm. In this section we propose an inexact
trust-region algorithm for the solution of the finite-dimensional optimization problem:
min J(y, u) (5.1)

subject to: (Ay,v —y) + glv|1 — glylr > (u,v —y), for all v € R", (5.2)

with ¢ > 0. The main difficulty of the method consists in computing a descent
direction along which the algorithm has to perform the next step. In the case of an
empty biactive set, the derivative information is given by (2.17)-(2.18). From the

latter, existence of an adjoint state can be proved and an adjoint calculus may be
performed.

Since the information so obtained does not necessarily correspond to an element of
the subdifferential, in case of a non-empty biactive set, we apply a trust-region scheme
to provide robust iterates. In this context the adjoint related gradient is considered
as an inexact version of a descent direction. Since in the applications we focus on,
the biactive set is either empty or very small, such an approach is justified from the
numerical point of view.

Indeed, by assuming that the biactive set

is empty, the solution operator is Gateaux differentiable and the directional derivative
17 = S’(u)h corresponds to the solution of the following system of equations:

n; =0fori:y, =0,

Z Ai,jnj = hl for i : Yi 7é 0.
Jy; 70

To simplify the description of the algorithm, we confine ourselves to a quadratic cost
functional of the form J(y,u) = 1/2|ly — z||*> + a/2|ul|?, where ||.]|| denotes the
Euclidian norm and z € R™ is a given desired state. Considering the reduced cost
functional

1
3(u) = SIS () = 2| + 5 lull®,
the directional derivative is given by
7(wh = (S(u) — 2,8 (wh) + alu,h) =Y (v — z)n; + @Y uihi.
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Let us recall that the inactive set is given by Z := {i € {1,...,n} : y; # 0}. By
reordering the indices such that the active and inactive ones occur in consecutive
order, and defining the adjoint state p € R™ as the solution to the system:

I o\ _
OA%P—ZJ%

where Az corresponds to the block of A with indexes 7, j such that y; # 0,y; # 0, we

obtain that
j'(u)h = Zp,-hi +a Z uih;
€T i
. ifig T
or, equivalently, j'(u) = au 1 Z #
pi +au; ifiel.

Before stating the trust-region algorithm, let us introduce some notation to be used.
The quadratic model of the reduced cost function is given by

. 1
ar(s) = j(ur) + gi s + §8TH1c5a

where g = j'(ug) and Hy is a matrix with second order information, obtained with
the BFGS method. The trust region radius is denoted by A, and the actual and
predicted reductions are given by

aredy(s*) := j(ug) — j(ug + s) and predy(s¥) = j(ur) — qr(s*), respectively.
The quality indicator is computed by

Ky aredy,(s*)
pr(s") = predy(sF)

The resulting trust region algorithm (of dogleg type) is given through the following
steps:

Trust region algorithm.

1. Choose the parameter values 0 < 71 < 72 < 1, 0 < 79 < 11 < 1 < 79,

2. Choose the initial iterate xg € R™ and the trust region radius Ay > 0, Ay >
Amin 2 0.

3. Compute the Cauchy step s¥ = —t* g, where

—r, i g Hige <0
[lg |l
"=
(gl A > —
min | ————, , if g, Hipgr >0
<9;Hkgk |19kl §
and the Newton step s® = —H, Ygr. If s¥ satisfies the fraction of Cauchy

decrease:

36 € (0,1] and > 1 such that ||s*|| < A, and predy(s¥) > & predy(s¥).
then s* = sk else s* = sk,
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4. If ok (s*) > n2, then
Upy1 = Ug + Sk, Dppr € [Ag, 72A]
Else if 05,(s*) € (11, 72), then
Up+1 = Uk + Sk, Dpy1 € Max(Ammin, 718%), Ak
Else if g5,(s%) < 11, then

Ukg1 = Uk,  Dpy1 € 0Dk, 11Ak]
Repeat until stopping criteria.

5.1. Example. We consider as test example the following finite-dimensional op-
timization problem:

. 1 @
min J(y, ) = Iy — 2| + 2 u)? (5.3
subject to: (Ay,v —y) + glvli — glyl1 > (u,v —y), for all v € R", (5.4)

where A corresponds to the finite differences discretization matrix of the negative
Laplace operator in the two dimensional domain Q =]0,1[%, 2 = 10sin(5z1) cos(4z2)
stands for the desired state and « and g are positive constants. It is expected that as
g becomes larger the solution becomes sparser.

For solving (5.4) within the trust region algorithm a semismooth Newton method is
used. The method is built upon a huberization of the /; norm and the use of dual
information. Specifically, we consider the solution of the regularized inequality:

Ay+qg=u (5.5)
q—hy(y) =0, (5.6)

where (h,(y)), = gm. Considering a generalized derivative of the max func-

tion, the following system has to be solved in each semismooth Newton iteration:

Ady+0g=u— Ay —q (5.7)
Y6y . vyle, y
- ————— +diag(xz,) ———5 7 = —¢+ hy(y), (5.8)
* max(g,vlyl) max(g,7|y|)? |y ")
1 ifylyl > g,
where (xz,), := . il , max(g,v|y|) := (max(g,v|y1]),. .., max(g, v|ya|)"
0 if not.

and the division is to be understood componentwise. By using dual information in
the iteration matrix (as in [13], [5]) the following modified version of (5.8) is obtained:
1y’ q

Yoy :
———— +dia — —q+h . 5.9
max(g,v|y|) g(XI“’)maX(g,’ﬂyDQ max(g, |q|) q +(y) (5.9)

0g —

This leads to a globally convergent iterative algorithm, which converges locally with
superlinear rate.

The used trust region parameter values are n; = 0.25, 72 = 0.75, 7 = 0.5, v9 = 1.5
and § = 1. For the parameter values o = 0.0001 and g = 15, and the mesh size step
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Fic. 5.1. Optimized state: on the left corner the sparse structure of the solution can be observed.

91 1| 51015

Q
0,1 20 | 28 | 53 -
0,01 23|24 | 27| 32

0,001 33 | 48 | 54 | 31

0,0001 69 | 70 | 62 | 34
TABLE 5.1
Number of trust-region iterations for different o and g values. Mesh size step h = 1/40.

h = 1/80, the algorithm requires a total number of 35 iterations to converge, for a
stopping criteria given by |lug+1 — uk|| < le — 4. The optimized state is shown in
Figure 5.1, where a large zone where the state takes value zero can be observed.

The algorithm was also tested for other values of the parameters o and g, yielding
the convergence behaviour registered in Table 5.1. Although the considered derivative
information was inexact, the trust-region approach yields convergence in a relatively
small number of iterations.

Further descent type directions to be used in the context of the trust-region methodol-
ogy, as well as the convergence theory of the combined approach, will be investigated
in future work.

Appendix A. Directional derivative of the L'-norm.

Proof of Lemma 3.5. The definition of A and abs’ imply
‘/ (‘y’n‘ — |yl —abs’(y;n))godx‘
(9} t’n
n| +tn +tn -
g)/ lyn| — 1y nl@dm‘+’/ (Iy gl |y|_|n|)¢dx‘
Q tn A tn

=0

tn - .
+ ‘ / 7@ -t = 1y] — Slgn(y)n)godxl.
V4

(A1)

n
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By the compact embedding H'(2) << L?(Q) we have

LLt_ y — 7 in L2(Q)
and thus
n| tn n -
’/Iyl ly + nl(de‘S/y y+n‘|¢‘dx
Q tn Q tn (A2)
<=L || el - 0.
- 2% L1(Q)

Let z € Q\ A be an arbitrary common Lebesgue point of y and 1. Then the directional
differentiability of R 3 r — |r| € R yields

ly(x) + tan(@)| — [y(@)|
tn

and, since almost all points in {2 are common Lebesgue points of y and n, this pointwise
convergence holds almost everywhere in Q \ A. Due to

y(@) + tan(@)| = [y()]
tn

— sign (y(z))n(z) — 0,

—2fn(a)] < — sign (y(a))n(x) < 2n@)| ae. inQ

Lebesgue dominated convergence theorem thus gives

tnt)| — . .
M —sign(y)n — 0in L'(Q\ A).

Therefore, we arrive at

| /Q\A (W ~ sign(y)n ) dal

ly + tunl — |yl

n

- sign(y)n‘ L

Inserting (A.2) and (A.3) in (A.1) yields the assertion. O

Appendix B. Boundedness for functions in H'(().

For convenience of the reader, we prove Lemma 3.8. The arguments are classical and
go back to [14].

Proof of Lemma 3.8. The truncated function defined in (3.16) is equivalent to
wi(z) = w(z) — min ((max(w(z), —k), k)

and therefore [14, Theorem A.1] implies wy, € V.

It remains to verify the L*°-bound in (3.18). If d = 1, then the assertion follows
directly from (3.17) and the Sobolev embedding H'(Q2) < L> ().

So assume that d > 2. Then let k > 0 be given and set A(k) := {x € Q | |w(x)| > k
Note that wg(z) = 0 a.c. in Q\ A(k). Next let h > k be arbitrary so that w(z) > h >
a.e. in A(h). Then Sobolev embeddings give that

m 2/m
sl 2 clunlmey = [ [hu] - K" o)
A(K)

1.
k

(B.1)
> c/ (h — k)"da®™ = ¢ (h — k)| A(R)|>/™,
A(h)
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where m = 2d/(d — 2), see e.g. ... On the other hand, (3.17) implies
allwg|? < /A(k) fwede < || fllpm cacey) lwellomagy) < el fllpm cay lwellm @)

where m’ is the conjugate exponent to m, i.e. 1/m + 1/m’ = 1. Note that

m' = LN d < =<
S m—1 d/2+17 2

p, ifd=2,

and thus f € Lm/(Q) by the assumption on f in Lemma 3.8. Together with Young’s
inequality, then Holder’s inequality yields

’ 2/ml 7
fund? < [ 1 dn) " < el ey 1AG (B.2)
A(k)

with r =p/(p —m') > 1 so that v’ = r/(r — 1) = p/m/. By setting

_m P .
ST ) "

we infer from (B.1) and (B.2) that

m 1 8
AW < elflfn gy (AWP™)" forallh> k20 (B4)

Since m > 2, we have m’ < 2 and therefore (m’ — 1)(p — m’) < p —m’ < p such
that (B.3) gives in turn s > 1. In this case, according to [14, Lemma B.1], it follows
from (B.4) that the nonnegative and non-increasing function R 3 h +— |A(h)|>/™ € R
admits a zero at

h* =280, [e|QRE=D/M || £l o).

By definition, |A(h*)| = 0 is equivalent to |w(x)| < h* a.e. in Q, which yields the
assertion. O
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