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In this contribution we present the least-squares finite element method (LSFEM) for the incompressible Navier-Stokes equa-

tions. In detail, we consider a non-Newtonian fluid flow, which is described by a power-law model, see [1]. The second-order

problem is reformulated by introducing a first-order div-grad system consisting of the equilibrium condition, the incompress-

ibility condition and the constitutive equation, which are written in residual forms, see [2]. Here, higher-order finite elements

which are an important aspect regarding accuracy for the present formulation are investigated.
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1 Introduction

The classical LSFEMs provide some theoretical and computational advantages, see e.g. [3], but there are still difficulties

concerning, e. g. the mass conservation, especially when lower-order interpolants are used, see [4]. Besides the application of

some weighting factors, a possible solution is the consideration of higher interpolations, see e.g. [5]. In the present work, we

compare quadratic and cubic formulations for non-Newtonian fluids by a numerical example.

2 Least-squares method

We consider the velocity-stress-pressure approach for the stationary non-Newtonian fluid equations which are given by the

balance of momentum, mass conservation and the material equation as following

ρ∇v v − div σ = f , div v = 0 and σ − 2ρ ν(DII)∇sv + pI = 0 (1)

with some suitable boundary conditions. Here, σ denotes the Cauchy stresses, f the forcing function, v the velocities, p the

pressure, ρ the density, and ν(·) is the (nonlinear) viscosity. The symmetric part of the deformation rate tensor is defined as

∇sv = 1
2

(∇v + [∇v]T
)

and the second invariant of the deformation rate tensor as DII = 1
2 (2∇sv · 2∇sv). Here, we chose

for the viscosity function the power-law model to describe the non-Newtonian fluid behavior

ν(DII) = ν0 D
n−1

2
II , (ν0 > 0) (2)

where ν0 is the zero shear rate viscosity and n the flow behavior index which distinguishes between different type of fluids.

For n = 1, we recover the Newtonian fluid (constant viscosity). For n > 1 one obtain shear-thickening (or dilatant) fluids

(viscosity increases with increase in shear-rate) and for n < 1 shear-thinning (or pseudoplastic) fluids (viscosity decreases

with increase in shear-rate). Furthermore, we replace the nonlinearities such as the convective term and viscosity term by

the Newton linearization technique. Using quadratic L2-norms, the linearized physically weighted least-squares functional is

constructed as

Jlin(v,σ, p; vk) =
1
2
|| 1√

ρ
(ρ∇vk v + ρ∇v vk − div σ − f) + Qk

conv||20 +
1
2
||div v||20

+
1
2
|| 1

√
ρν(DII)k

(σ − 2 ρ ν(DII)k∇sv − 8 ρ ν
′
(DII)k(∇sv · ∇svk)∇svk + pI) + Qk

vis||20.

(3)

where the index k is taken as either an initial guess or as a known quantity from the immediate previous iteration. Qk
conv and

Qk
vis are denoting terms from the linearization which are only related to known values. The minimization of Jlin requires

the first variation δJlin to be equal to zero. We use mixed finite elements RTmPkPl, where Pk and Pl denote Lagrange

shape functions of polynomial order k for the velocities and l for the pressure. RTm denotes Raviart-Thomas interpolants of

polynomial order m for a conforming discretization of the stresses. Further remarks regarding the minimization of Jlin or the

used finite element spaces are given in [3] and [6].
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3 Numerical example

As a numerical example we solve a fully developed power law fluid flow between parallel plates. Figure 1 shows the flow

domain and the boundary conditions. Due to the symmetry, we consider only the upper half of the domain.

σxy = 0, v = 0u = ufd

v = 0

u = 0, v = 0

σxx = 0
v = 0

[1, 1]

[0,−1]

x
y

Fig. 1: Boundary value problem for a fully developed power law fluid flow between parallel plates.

For the inflow boundary condition, the horizontal velocity ufd = u
uavg

is imposed by the analytical velocity profile (4) and the

vertical velocity is set equal to zero. The upper edge has no-slip boundary conditions, the symmetry line a zero shear-stress

σxy and zero vertical velocity v = 0. The outflow has a zero normal-stress boundary condition σxx = 0 and a zero vertical

velocity v = 0. The material parameter such as the density ρ and the flow consistency ν0, are set to one.

ufd =
2n + 1
n + 1

(1 − y
n+1

n ), y = [0, 1] (4)

Fig. 2: Comparison of the velocity profiles with the analytical solution for various power law index values regarding shear-thickening fluids

for RT0P2P1 (left) and RT1P3P1 (right) discretizations.

Figure 2 depicts various flow behavior index for shear-thickening fluids. On the left, the results for the RT0P2P1 (62,339 dofs)

and on the right the RT1P3P1 (40,643 dofs) discretizations can be seen. The results of the outflow velocities are compared

with the analytical velocity profile (4). As could be expected, an increase of the parameter n in (2) leads to a more steeper

velocity profile. Considering the RT0P2P1 discretization, it turns out that the lower-order discretization shows difficulties to

predict the analytical solutions whereas the higher-order discretization matches very well with the analytical solution.
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