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Abstract: The lattice Boltzmann method is employed for simulating the binary flow of Oxygen/Nitrogen 
mixture passing through a highly dense bed of spherical particles. Simulations are performed based on the 
latest proposed entropic lattice Boltzmann model for multi-component flows, using the D3Q27 lattice 
stencil. The curved solid boundary of the particles is accurately treated via a linear interpolation. To lower 
the total computational cost and time of the simulations, implementation on Graphics Processing Units 
(GPU) is also presented. Since the workload associated with each iteration is relatively higher than that of 
conventional 3D LBM simulations, special emphasis is paid in order to obtain the best computational 
performance on GPUs. Performance gains of one order of magnitude over optimized multi-core CPUs are 
achieved for the complex flow of interest on Fermi generation GPUs. Moreover, the numerical results for 
a three-dimensional benchmark flow show excellent agreements with the available analytical data. 
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1. Introduction 

The complex process of binary mixture diffusion has several applications in fluidic systems such as 
chemically reacting flows, gas purification, pollutant dispersion and so forth. Diffusion of Oxygen and 
Nitrogen, discussed in the present work, is of a crucial importance since these two elements are the major 
constituents of atmospheric air and their diffusion plays a great role in combustion systems and 
Nitrogen/Oxygen purification processes. Of paramount importance for industry, is the flow of Oxygen 
and Nitrogen through highly packed beds of spherical particles, which is widely adapted for production of 
purified Oxygen or Nitrogen through an adsorption process. However, multi-component flows generally 
involve mass and momentum diffusion of two or more species dealing with complex geometries and/or 
boundary conditions such as adsorption and phase change. These conditions make the whole process 
difficult to be described and solved using the conventional continuum assumptions as they encompass 
many small scale transport phenomena (Nijemeisland and Dixon, 2004). 

Recently, there has been a great interest in applying kinetic theory to capture the delicate diffusion 
processes in multi-component flows, and several models have been proposed to extend the lattice 
Boltzmann models to gas mixture problems. New consistent models for such flows (Arcidiacono et al., 
2006a; 2006b; 2007; 2008) are based on the so-called entropic Lattice Boltzmann Method (LBM) and 
were successfully demonstrated to recover the Navier-Stokes and the Stephan-Maxwell diffusion 
equations. Despite the outstanding accuracy and flexibility of the new models, the entropic basis of the 
algorithm increases the computational cost of simulations to much more than twice for binary mixtures, as 
compared to single component Lattice Bhatnagar-Gross-Krook (LBGK) simulations. The situation 
aggravates from the computational point of view for the 3D flows as they require more spatial directions 
on each lattice point to recover the governing equations in the hydrodynamic limit.  

Moreover, despite the well-known standard scheme of imposing the wall no-slip condition in 
conventional LBM, especial treatment for curved boundaries becomes necessary in order to maintain the 
accuracy of the solution when dealing with a multitude of arbitrary shaped solid particles. These 
modifications, in turn, increase the computational cost to at least one order of magnitude for geometries 
like highly packed beds. 

On the other hand, due to its fully explicit nature of solution, lattice Boltzmann method is widely accepted 
to be a well suited candidate for massive parallelization. Besides using multi-core CPUs and compute 
clusters, many researchers have performed parallel LBM simulations on many-core Graphics Processing 
Units (GPU). Early implementations benefited from graphical languages such as OpenGL (Li et al., 2003; 
Zhu et al. 2008). By the advent of the modern programmable graphics cards and the new graphical 
programming language, CUDA, by nVIDIA, LBM-based computational fluid dynamics solvers have 
been extensively ported to graphics processors in order to facilitate the previously expensive, time-
consuming flow simulations (Tölke and Krafczyk, 2008; Geveler et al., 2011). Fortunately, the new 
multi-component entropic model (Arcidiacono et al., 2006a; 2006b; 2007; 2008) still inherits its explicit 
nature and massive parallelization is viable through the new heterogeneous, general purpose GPU 
architectures. 



 

 

1.1 Previous works 

Considering the celebrated power of the Lattice Boltzmann method for complex geometries, the method 
has been also employed for the simulation of single and binary gas flows in packed beds. However, most 
of the implementations have assumed several simplifying approximations and were performed for packed 
beds of limited number and/or sizes of spheres. Maier et al. (1999) performed their simulations for the 
flow in a packed bed of spherical particles of two sizes. They prescribed a linear pressure drop in the axial 
direction and utilized the simple bounce-back scheme to satisfy the no-slip condition on the surface of the 
particles. Later on, Reynolds et al. (2000) studied the flow in a close-packed bed of spheres of the same 
size in a face-centered-cubic arrangement. To lower the total computational cost, they also avoided 
modifying the bounce-back condition on the spheres. The binary mixture flow through packed beds has 
also been investigated in the works by Manjhiet al. (2006a; 2006b) and Verma et al. (2007). In Manjhi 
and Verma (2006a; 2006b) the D3Q19 stencil is adapted to study 3D steady and unsteady velocity and 
concentration profiles in a tubular bed of spherical adsorbent particles. It is worth noting that all the 
mentioned studies have used simple regular packings with the diameter ratio of tube to particles ( )t pd d

 
being less than 10. 

On the computational side, there have been several reports on porting conventional LBM solvers to 
graphics processors. Tölke (2010) was the pioneer in developing highly optimized LBM solutions on 
GPUs for 2D LBM using CUDA. Exploiting the fast shared memory space, he reported one order of 
magnitude performance gain compared to optimized multiple-CPU codes. Tölke and Krafczyk (2008) 
extended the implementations to 3D flows and reported efficiency gain of up to two orders of magnitude 
using the D3Q13 lattice stencil. Kuznik et al. (2010) employed a high-end platform equipped with 
nVIDIA GTX 280 to simulate lattice Boltzmann flows and even performed double precision calculations 
on their GPUs. Obrecht et al. (2011) exploited the D3Q19 stencil for their 3D simulations. They were able 
to extract more than %86 of the device throughput in their memory transactions without engaging the 
precious shared memory buffer. Safi et al. (2011) employed the entropic LBM scheme and developed a 
GPU code for simulating 1D binary diffusion of Oxygen and Nitrogen with zero bulk velocity. As a 
result, they could gain performance increases of more than one order of magnitude over single-core 
processors. Volkov (2010) has also described an efficient GPU implementation of the formidable D3Q27 
stencil, with emphasis on following a reversed memory hierarchy to achieve high bandwidth usage and 
arithmetic intensity. As the same stencil has been employed in this work, we will briefly point to Volkov's 
strategies during the performance analysis part of section 5.  

1.2 Paper Contribution and Overview 

In this paper an efficient GPU based implementation of the Lattice Boltzmann method for steady state 
flow of Oxygen and Nitrogen through a packed bed of spherical particles is presented. In order to show 
the extent of improvement in the performance, our GPU implementation is further compared with an 
optimized multi-core CPU version based on a serial solver previously developed by Rastegari (2008). 
From the physical point of view, this work is distinguished from similar studies as it involves packed beds 



of /t pd d  being more than 30, which include more than 12000 particles in a variety of sizes. Moreover, 

no major physical simplification is introduced into simulations, and the no-slip boundary condition is 
accurately treated on the surface of the tube and on the particles, as well. As strictly required by the early 
entropic model of Arcidiacono et al. (2006a) we have successfully ported D3Q27 stencil to GPUs. On the 
computational side, conventional optimization techniques are considered along with a novel scaling 
scheme, so that calculations of both species could be performed in parallel on a single GPU. 

In order to verify the accuracy of the presented solution, the 3D bulk flow of Oxygen and Nitrogen 
mixture in a tube has been selected as a benchmark and the results are compared to the available 
analytical data for this flow. The entropic lattice Boltzmann model for binary mixtures is described in 
section 2. A brief review on the GPU programming model is presented in section 3. Section 4 discusses 
the optimization strategies and the programming methodology applied to the present implementation. The 
results, including the benchmark and the main flow problem measurements as well as the performance 
metrics on different platforms are reported and analyzed in section 5. The paper conclusions are presented 
in section 6. 

2. Lattice Boltzmann Model for Binary Mixtures 

In the lattice Boltzmann model, the continuous spectrum of particle velocities is replaced by a set of 
discrete velocities of imaginary particles which are forced to move on a lattice structure only. A direct 
extension of the discretized velocity lattice Boltzmann equation for multi-component mixtures can be 
written as 

t ji ji ji jif c f  (1) 
Where 1,...,j M  and M  is the number of components in the mixture, 0,...,i N , with N  being the number 
of discrete lattice velocities jic , { , , }x y z , and ji  is the collision term. Equation (1) is further 

expanded based on fast-slow decomposition of motion in the vicinity of quasi-equilibrium state, as 
proposed by Gorban and Karlin (1994), which guarantees the positive entropy production of the process 
and hence satisfies the H-theorem. Therefore, the process is composed of a fast relaxation from the initial 
state f  to the quasi-equilibrium *f , and then moving slowly from the quasi-equilibrium state *f  towards 

the equilibrium eqf . Expressing the two motions as BGK terms, the final collision term for the LB 
equation takes the following form for each species j : 

1 2

1 1( ) ( )eq
ji ji ji ji ji

j j

f f f f  (2) 

where 1j  and 2j  are the two relaxation times corresponding to each of the relaxation stages, with the 

condition 2 1j j  which ensures the stability of the model and puts a limit on the admissible Schmidt 

number / ABD , where  is the kinematic viscosity and ABD  is the binary diffusion coefficient. This 
restriction on the Schmidt number is further discussed at the end of this section. The moments of each 
component are defined as, 
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where j , jJ , jP and jQ  are the density, the momentum, the pressure tensor and the third order 

moment of component j , respectively. For the D3Q27 stencil (see Figure 1) considered in this paper, the 
discrete lattice velocities are 
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The lattice speed for each component is computed as 03 /j B jc k T m , where bk is the Boltzmann 

constant, 0T  is a reference temperature and jm  is the molecular mass of component j . In the Entropic LB 

model proposed by Arcidiacono et al. (2006a) the equilibrium and quasi-equilibrium functions are 
obtained based on the minimization of the H-function defined by the following equation, 

ln ji
ji

j i i

f
H f

W
 (5) 

which will be minimized under the constraints of conservation of density of each species, j  and the 

total mixture momentum A BJ J J . The cumbersome process of minimization in three dimensions 
which necessitates defining 27 spatial directions (resulting in the D3Q27 stencil (Rastegari, 2008)), leads 
to the following final equation for the equilibrium distribution functions, 

2 2 2 2
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where /u J  is the mixture velocity in the  direction, and A B . The corresponding 
weighting factors for each spatial direction are: 
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depicted in Figure 2, after the streaming step, ( )i sf x is known while the value of ( )sif x  is still unknown. 

Having the exact location of the wall wx , Yu et al. suggested the following linear extrapolation (or 

interpolation with regards to the internal nodes) to determine ( )sif x  at wx , 

1( , ) (1 ). ( , ) . ( , )
1

. ( , )

f i f i si

ffi

f x t t f x t t f x t t

f x t t
 (14) 

with  being defined as, 

f w

f s

x x

x x
 (15) 

Where sx , fx
 and ffx

 are positions of ,s f and ff as shown in Figure 2.The above treatment requires 

each fluid node to search in all spatial directions for any possible link to the neighboring solid nodes. 
Then,  has to be calculated for each of the links in order to perform the extrapolation in Equation (14) 
and determine the unknown populations. Considering the 27 spatial directions for , and the complex 
arrangement of the spherical particles in the packed bed, these calculations will account for a significant 
part of the total simulation time, as they ask for a large number of memory accesses to read data from the 
global memory of the graphics processor in a disordered pattern. The effect of the bounce-back step on 
the computational efficiency of GPU implementations will be further discussed later in section 5. 

 

3. Efficient Implementation on GPU 

CUDA technology is a computational architecture introduced by NVIDIA Corporation and includes 
computing innovations at both software and hardware levels. The nVIDIA’s C for CUDA programming 
language is an extension to the conventional C language and allows the programmers to define new class 
of functions, called kernels which will be launched on GPU. By calling each kernel, N different CUDA 
threads will be distributed and executed in parallel on the hardware’s large number of streaming 
processors as shown in Figure 3.  
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The next step is to allocate the distribution functions in the global memory. In order to satisfy the 
requirements mentioned in the previous section, most of the previous works (Tölke and Krafczyk, 2008; 
Tölke, 2010; Kuznik et al., 2010; Obrecht et al. 2011) have advocated the use of a Structure of Arrays 
(SOA), in which, each array is defined for one spatial direction. The SOA scheme guarantees that each 
thread would access the required memory address in an aligned pattern during the collision step and thus 
the memory requested by a warp fits into one cache line which is crucial for high bandwidth utilization in 
Fermi devices.  

Finally, in order to fully satisfy efficient memory transaction guidelines on GPU, one has to also take care 
of the memory accesses during the streaming step. In this step, transfer of data for the rest particles and 
for Y , Z  directions (a total of 9 directions in the Z-Y plane), automatically satisfies the memory 
coalescing requirements. For the other misaligned 18 directions; however, the fast shared memory is used 
as proposed by Tölke (2010) to prevent additional cache loading.  

In addition to the above conventional optimizations, we have applied a new scaling scheme for the 
particular problem of interest in this paper. Here, we have two sets of distribution functions; one for 
Oxygen and the other for Nitrogen. Since updating the distributions for each species in a certain grid point 
in the computational domain is entirely independent from other species, they can be solved 
simultaneously. Therefore, one can set the device to also perform a job parallelization task on a single 
GPU and conduct the calculation of different components in parallel. To this end, two different 
approaches are viable: 

Launch and execute separate kernels for each component in parallel, using CUDA streams. 

Map the distribution functions of different components in a single grid of blocks and hence a 
single kernel. 

The first approach does not guarantee a fully concurrent execution of the two kernels and the concurrency 
level is restricted by the computational resources of the device and the workload of each kernel. The 
second approach, however, ports a single grid of blocks on the device and hence the blocks corresponding 
to different components are launched simultaneously. For this purpose, here we have combined the two 
set of grids into a hybrid grid of twice the size of a regular 2D grid of blocks. In order to prevent warp 
divergence to select the right arrays for a specific component, we have modified the original SOA data 
structure such that we launch two arrays as arguments to the kernel; the first array contains the 27 
distribution functions in SOA format (27 arrays combined into one) for the first component, followed by 
the distributions of the second component. By selecting the domain size to be a multiple of the warp size, 
this arrangement implies that the threads could automatically access their desired array elements while the 
nice coalescing properties are still preserved. Figure 5 shows how the separate grids of blocks will 
constitute a single grid in the proposed manner.  
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The physical total inlet density is selected to be equal to the atmospheric air density at 31.2 /Kg m and the 
molar fractions of 2O  and 2N gases are, 

2 2
21% , 79%O NX X  (17) 

In LBM, the pressure is related to density as, 

2

3j j
cP  (18) 

consequently, variations in density directly point to the pressure changes along the tube. The outlet total 
pressure is set to 0.958out inP P , which is a somewhat greater pressure difference as compared to that in 
the previous problem, thus giving the flow a boost to overcome the particle obstruction. The no-slip 
boundary condition is accurately treated on the solid surfaces using the second order bounce-back scheme 
of Yu et al. (2002) described in section 2. Simulations are performed until the following criterion for the 
residuals is met, 

7

1

1 10t

t

c
c

 (19) 

where tc  is determined at time t  by, 

1
2

2

1

N

j
j i

t

J i
c

N
 (20) 

And N is the total number of fluid nodes in the domain. 
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velocities under the same driving force. Since no adsorption is applied on the surface of the spheres, 
molar distributions will remain unchanged throughout the tube.  

(a) (b) 
Figure 9. Variations in density along the packed bed for (a) Oxygen, and (b) Nitrogen. 

 

 

 

Figure 10. Average z-velocity fluctuations for both species and the bulk flow along the packed bed.  
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Figure 11. Convergence trend of the simulations for two different grid levels. 

The convergence trend of the simulations is presented in Figure 11, for two different grid levels. The 
residual decay behavior depicts that the condition number of the problem becomes worse as the problem 
size increases. The quality of the single and double precision results is also compared in Figure 12 for the 
average axial bulk velocity along the tube on two grid levels. It can be seen that there is a slight difference 
in the results for each level. The relative error for the coarser level varies between the maximum of 4% at 
the inlet, to less than 0.05% in the bed zone, while these values would be slightly higher at 6% and 1% 
respectively for the finer level due to smaller time and length scales and hence less accuracy in the single 
precision mode. Yet, one can realize that for such complex flows in LBM, single precision computations 
can deliver relatively accurate results which suffice our numerical investigations. 
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Figure 12. Averaged bulk velocity fluctuations along the packed bed using single and double precision 
computations for two different grid levels.  

5.2 Computational Performance 

We have run our implementations on three different configurations. A 6-core (2 threads each) Intel Xeon 
X5680 CPU processor at a clock rate of 3.33 GHz and peak memory bandwidth of 32 GB/s and 8 GB of 
memory space is selected for multi-core CPU implementations. On the GPU side two nVIDIA Fermi 
GPUs including a GTX-480 and a Tesla C2070 are employed. The latter is a high-end computing GPU 
with no graphics output. Table 1 presents a summary of the major specifications of the GPUs in use. Note 
that although the Tesla GPU is superior with regards to the available memory and peak double precision 
power (by factor of 4 and 3 respectively), its single precision support and the maximum bandwidth are 
still inferior to those for the GTX 480 by factors of 1.3 and 1.2 respectively. 
 
Table 1: Major specifications of different GPU devices used in the present work. DP=Double Precision, 
SP=Single Precision, GFLOPS=Giga Floating point Operations Per Second, MTB=Maximum Theoretical 
Bandwidth, MEB=Maximum Effective Bandwidth 

GPU Type No. of  Thread 
Processors 

Processor 
Clock(MHz) 

Memory 
(GB) 

Max DP 
GFLOPS 

Max SP 
GFLOPS 

MTB 

(GB/sec) 
MEB

(GB/sec) 
GTX 480 
Tesla C2070 

15×32 
14×32 

70 
57.5 

1.5 
6 

168 
515 

1350 
1003 

177.4 
144.0 

138 
106 

 
The above devices are employed via a 64-bit Ubuntu 12.04 operating system with Intel C compiler and 
CUDA 5.0 installed. The CPU code is thus compiled under icpc compiler with SSE 4.2 option activated 
and uses OpenMp directives for a multi-core implementation. The GPU code is compiled using nvcc 
command and the third level optimization flag (-O3) is turned on for both CPU and GPU codes. 
 
The computational performance for different problem sizes on different Fermi GPUs as well as a multi-
core CPU for the two problems discussed in the previous section (empty tube and packed bed) is 
presented in Figure 13. Note that the maximum problem size on each device is restricted by the amount of 
the available memory. The performance metrics for both problems are calculated in terms of Millions of 
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Lattice Updates Per Second (MLUPS). One could notice that an order of magnitude speedup is gained 
over an optimized 6-core CPU implementation using both GTX and Tesla GPUs in single precision 
mode. In double precision, the performances on both GPUs are around twice that for a multi-core CPU.  

Although the 6 GB memory space of Tesla C2070 allows for implementing large problem sizes, yet, its 
double precision performance could not take over that of GTX 480. This seems to be against our 
expectations since the double precision arithmetic power of Tesla C2070 is 3.06 times higher than that for 
the GTX 480. This is mainly due to the fact that the current problem is memory bound rather than being 
compute bound, and thus, instead of the floating point power, the memory bandwidth is the key factor in 
limiting the performance. Therefore, the GTX 480 with 1.2 time higher bandwidth exhibits a slightly 
better performance (a factor of 1.08 for both problems). 

(a) (b) 
Figure 13. Computational performance on different platforms and different problem sizes. (a) flow 

through a packed bed, (b) flow in an empty tube. 
 

A closer look at Figure 13 reveals that the CPU performance drop from the empty tube to the packed bed 
problem is not substantial, while on the GPU side the performance of the packed bed problem is 
significantly lower than that for the empty tube problem by a factor of 1.3. This performance loss is 
partly due to the warp divergence during the collision step to find the fluid nodes leading to warp 
serialization, but to some greater extent because of the disordered memory accesses and hence poor 
bandwidth usage in the bounce-back kernel. In a CPU implementation, however, the large available 
caches annihilate such effects and the performance difference is negligible. 

 

 

 

 

 



Table 2. Single precision performance metrics for flow in a packed bed for different kernels on Tesla 
C2070. BW= Percentage of the achieved bandwidth to the device's maximum effective bandwidth. 
PTGT= Percentage of the Total GPU Time 
 32x64 64x128 96x192 128x256 
Performance (MLUPS) 28.2 40.6 45.0 46.2 
collide_stream_knl Max BW(%) 62.2 90.5 88.7 91.3 
bounce_back_knl Max BW(%) 15.0 28.0 32.1 33.6 
collide_stream_knl Occupancy (%) 16.6 32.9 30.8 32,7 
bounce_back_knl Occupancy (%) 16.6 31.3 44.0 56,6 
collide_stream_knl PTGT 47.0 53.5 57 57.5 
bounce_back_knl PTGT 50.7 45.1 42 41.5 

In order to provide a better insight into the packed bed problem, various performance metrics as well as 
the kernel contribution to the total GPU time in the flow through packed bed are listed in Table 2 for 
different problem sizes on Tesla C2070. The data for the two most expensive kernels have been presented 
in this table. The best computational performance is achieved for the largest problem size of 1282×256 to 
around 46.2 MLUPS which best exploits the computing power of the GPU. A maximum of 91.3% of the 
effective memory bandwidth is attained in the collide_stream kernel which is comparable to the values 
reported for single component D3Q19 cavity flow by Obrecht et al. (2011) and also is close to the 
measurements in the D3Q27 stencil study by Volkov (2010). However, the highly erratic memory access 
pattern in the bounce_back kernel results in poor bandwidth efficiency for a packed bed problem. As the 
bounce-back kernel contributes to almost 40-50% of the total GPU time, optimizing this kernel with 
regards to memory accesses would lead to significant improvement in the overall performance. 

For the collide_stream kernel the occupancy of the device is maintained in the range of 16% to 32%. The 
large number of memory accesses and instructions in D3Q27 LBM significantly increases the kernel’s 
register demand (53 registers in single and 63 in double precision), which restricts the maximum number 
of threads managed simultaneously by the multiprocessor, and lowers the multiprocessors occupancy. On 
the other hand, the relatively high performances achieved, admits the fact that launching a large number 
of blocks (y-dim×z-dim) of small sizes (up to 128 here) pays off for heavy stencils, e. g. D3Q27 by 
allowing each thread to compute more outputs and take advantage of the large on-chip register space 
available on Fermi devices. The idea was first introduced by Volkov (2010) where he showed that using 
more registers than shared memory and thus following an inverse memory hierarchy for heavy stencils, 
results in higher arithmetic intensity and bandwidth usage at a rather low occupancy (Volkov, 2010) 

6. Summary and Conclusions 

A 3D, 27 stencil lattice Boltzmann flow solver for the binary flow of Oxygen and Nitrogen mixture has 
been developed and implemented on GPUs. The no-slip boundary condition is treated accurately on the 
solid surface of the spherical particles which further increases the computational cost of the simulations in 
a dense packed bed. As such, and to exploit the maximum computational power of GPUs we used an 
optimized algorithm and scaled the work flow in a way that the transport equations for both species can 
be managed in parallel. It is shown that using modern many-core graphics processors, it is possible to 
obtain one order of magnitude faster simulations over our optimized multi-core CPU implementations for 
such subtle simulations. Yet, one could further enhance the computational efficiency by improving the 
memory access layout particularly in the expensive bounce-back kernel for packed bed problems. The 
single precision computations show to be very promising in providing relatively accurate results. 



Although the problem size of the present simulations is limited by the available GPU memory resources, 
porting the problem to large GPU-based clusters alleviates such restrictions.  

Another challenge for future work would be to simulate unsteady effects via adding adsorption properties 
to the spherical particles which requires modifying the surface boundary conditions. This, along with 
scaling the problem size to real dimensions, is certainly of high interest for the industry. Early results are 
very promising and are subject to our future publications. 
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(a) (b) 
Figure 9. Variations in density along the packed bed for (a) Oxygen, and (b) Nitrogen. 

 

 

 

Figure 10. Average z-velocity fluctuations for both species and the bulk flow along the packed bed.  
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Figure 11. Convergence trend of the simulations for two different grid levels. 

 

Figure 12. Averaged bulk velocity fluctuations along the packed bed using single and double precision 
computations for two different grid levels.  
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(a) (b) 
Figure 13. Computational performance on different platforms and different problem sizes. (a) flow 

through a packed bed, (b) flow in an empty tube. 
 
 
 

Table 1: Major specifications of different GPU devices used in the present work. DP=Double Precision, 
SP=Single Precision, GFLOPS=Giga Floating point Operations Per Second, MTB=Maximum Theoretical 
Bandwidth, MEB=Maximum Effective Bandwidth 
GPU TYPE No. of  Thread 

Processors 
Processor 

Clock(MHz) 
Memory 

(GB) 
Max DP 
GFLOPS 

Max SP 
GFLOPS 

MTB 

(GB/sec) 
MEB

(GB/sec) 
GTX 480 
Tesla C2070 

15×32 
14×32 

70 
57.5 

1.5 
6 

168 
515 

1350 
1003 

177.4 
144.0 

138 
106 

 

Table 2. Single precision performance metrics for flow in a packed bed for different kernels on Tesla 
C2070. BW= Percentage of the achieved bandwidth to the device's maximum effective bandwidth. 
PTGT= Percentage of the Total GPU Time 
 32x64 64x128 96x192 128x256 
Performance (MLUPS) 28.2 40.6 45.0 46.2 
collide_stream_knl Max BW (%) 62.2 90.5 88.7 91.3 
bounce_back_knl Max BW (%) 15.0 28.0 32.1 33.6 
collide_stream_knl Occupancy (%) 16.6 32.9 30.8 32,7 
bounce_back_knl Occupancy (%) 16.6 31.3 44.0 56,6 
collide_stream_knl PTGT 47.0 53.5 57 57.5 
bounce_back_knl PTGT 50.7 45.1 42 41.5 
 


