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Abstract: The lattice Boltzmann method is employed for simulating the binary flow of Oxygen/Nitrogen
mixture passing through a highly dense bed of spherical particles. Simulations are performed based on the
latest proposed entropic lattice Boltzmann model for multi-component flows, using the D3Q27 lattice
stencil. The curved solid boundary of the particles is accurately treated via a linear interpolation. To lower
the total computational cost and time of the simulations, implementation on Graphics Processing Units
(GPU) is also presented. Since the workload associated with each iteration is relatively higher than that of
conventional 3D LBM simulations, special emphasis is paid in order to obtain the best computational
performance on GPUs. Performance gains of one order of magnitude over optimized multi-core CPUs are
achieved for the complex flow of interest on Fermi generation GPUs. Moreover, the numerical results for
a three-dimensional benchmark flow show excellent agreements with the available analytical data.
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current research lies in the field of high performance computing for large scale turbulent and multi-phase
flow simulations using lattice Boltzmann and finite volume methods.

1. Introduction

The complex process of binary mixture diffusion has several applications in fluidic systems such as
chemically reacting flows, gas purification, pollutant dispersion and so forth. Diffusion of Oxygen and
Nitrogen, discussed in the present work, is of a crucial importance since these two elements are the major
constituents of atmospheric air and their diffusion plays a great role in combustion systems and
Nitrogen/Oxygen purification processes. Of paramount importance for industry, is the flow of Oxygen
and Nitrogen through highly packed beds of spherical particles, which is widely adapted for production of
purified Oxygen or Nitrogen through an adsorption process. However, multi-component flows generally
involve mass and momentum diffusion of two or more species dealing with complex geometries and/or
boundary conditions such as adsorption and phase change. These conditions make the whole process
difficult to be described and solved using the conventional continuum assumptions as they encompass
many small scale transport phenomena (Nijemeisland and Dixon, 2004).

Recently, there has been a great interest in applying kinetic theory to capture the delicate diffusion
processes in multi-component flows, and several models have been proposed to extend the lattice
Boltzmann models to gas mixture problems. New consistent models for such flows (Arcidiacono et al.,
2006a; 2006b; 2007; 2008) are based on the so-called entropic Lattice Boltzmann Method (LBM) and
were successfully demonstrated to recover the Navier-Stokes and the Stephan-Maxwell diffusion
equations. Despite the outstanding accuracy and flexibility of the new models, the entropic basis of the
algorithm increases the computational cost of simulations to much more than twice for binary mixtures, as
compared to single component Lattice Bhatnagar-Gross-Krook (LBGK) simulations. The situation
aggravates from the computational point of view for the 3D flows as they require more spatial directions
on each lattice point to recover the governing equations in the hydrodynamic limit.

Moreover, despite the well-known standard scheme of imposing the wall no-slip condition in
conventional LBM, especial treatment for curved boundaries becomes necessary in order to maintain the
accuracy of the solution when dealing with a multitude of arbitrary shaped solid particles. These
modifications, in turn, increase the computational cost to at least one order of magnitude for geometries
like highly packed beds.

On the other hand, due to its fully explicit nature of solution, lattice Boltzmann method is widely accepted
to be a well suited candidate for massive parallelization. Besides using multi-core CPUs and compute
clusters, many researchers have performed parallel LBM simulations on many-core Graphics Processing
Units (GPU). Early implementations benefited from graphical languages such as OpenGL (Li et al., 2003;
Zhu et al. 2008). By the advent of the modern programmable graphics cards and the new graphical
programming language, CUDA, by nVIDIA, LBM-based computational fluid dynamics solvers have
been extensively ported to graphics processors in order to facilitate the previously expensive, time-
consuming flow simulations (Tolke and Krafczyk, 2008; Geveler et al., 2011). Fortunately, the new
multi-component entropic model (Arcidiacono et al., 2006a; 2006b; 2007; 2008) still inherits its explicit
nature and massive parallelization is viable through the new heterogenecous, general purpose GPU
architectures.



1.1 Previous works

Considering the celebrated power of the Lattice Boltzmann method for complex geometries, the method
has been also employed for the simulation of single and binary gas flows in packed beds. However, most
of the implementations have assumed several simplifying approximations and were performed for packed
beds of limited number and/or sizes of spheres. Maier et al. (1999) performed their simulations for the
flow in a packed bed of spherical particles of two sizes. They prescribed a linear pressure drop in the axial
direction and utilized the simple bounce-back scheme to satisfy the no-slip condition on the surface of the
particles. Later on, Reynolds et al. (2000) studied the flow in a close-packed bed of spheres of the same
size in a face-centered-cubic arrangement. To lower the total computational cost, they also avoided
modifying the bounce-back condition on the spheres. The binary mixture flow through packed beds has
also been investigated in the works by Manjhiet al. (2006a; 2006b) and Verma et al. (2007). In Manjhi
and Verma (2006a; 2006b) the D3Q19 stencil is adapted to study 3D steady and unsteady velocity and
concentration profiles in a tubular bed of spherical adsorbent particles. It is worth noting that all the
mentioned studies have used simple regular packings with the diameter ratio of tube to particles (d,/d,)

being less than 10.

On the computational side, there have been several reports on porting conventional LBM solvers to
graphics processors. Tolke (2010) was the pioneer in developing highly optimized LBM solutions on
GPUs for 2D LBM using CUDA. Exploiting the fast shared memory space, he reported one order of
magnitude performance gain compared to optimized multiple-CPU codes. Télke and Krafczyk (2008)
extended the implementations to 3D flows and reported efficiency gain of up to two orders of magnitude
using the D3Q13 lattice stencil. Kuznik et al. (2010) employed a high-end platform equipped with
nVIDIA GTX 280 to simulate lattice Boltzmann flows and even performed double precision calculations
on their GPUs. Obrecht et al. (2011) exploited the D3Q19 stencil for their 3D simulations. They were able
to extract more than %86 of the device throughput in their memory transactions without engaging the
precious shared memory buffer. Safi et al. (2011) employed the entropic LBM scheme and developed a
GPU code for simulating 1D binary diffusion of Oxygen and Nitrogen with zero bulk velocity. As a
result, they could gain performance increases of more than one order of magnitude over single-core
processors. Volkov (2010) has also described an efficient GPU implementation of the formidable D3Q27
stencil, with emphasis on following a reversed memory hierarchy to achieve high bandwidth usage and
arithmetic intensity. As the same stencil has been employed in this work, we will briefly point to Volkov's
strategies during the performance analysis part of section 5.

1.2 Paper Contribution and Overview

In this paper an efficient GPU based implementation of the Lattice Boltzmann method for steady state
flow of Oxygen and Nitrogen through a packed bed of spherical particles is presented. In order to show
the extent of improvement in the performance, our GPU implementation is further compared with an
optimized multi-core CPU version based on a serial solver previously developed by Rastegari (2008).
From the physical point of view, this work is distinguished from similar studies as it involves packed beds



of d, / d , being more than 30, which include more than 12000 particles in a variety of sizes. Moreover,

no major physical simplification is introduced into simulations, and the no-slip boundary condition is
accurately treated on the surface of the tube and on the particles, as well. As strictly required by the early
entropic model of Arcidiacono et al. (2006a) we have successfully ported D3Q27 stencil to GPUs. On the
computational side, conventional optimization techniques are considered along with a novel scaling
scheme, so that calculations of both species could be performed in parallel on a single GPU.

In order to verify the accuracy of the presented solution, the 3D bulk flow of Oxygen and Nitrogen
mixture in a tube has been selected as a benchmark and the results are compared to the available
analytical data for this flow. The entropic lattice Boltzmann model for binary mixtures is described in
section 2. A brief review on the GPU programming model is presented in section 3. Section 4 discusses
the optimization strategies and the programming methodology applied to the present implementation. The
results, including the benchmark and the main flow problem measurements as well as the performance
metrics on different platforms are reported and analyzed in section 5. The paper conclusions are presented
in section 6.

2. Lattice Boltzmann Model for Binary Mixtures

In the lattice Boltzmann model, the continuous spectrum of particle velocities is replaced by a set of
discrete velocities of imaginary particles which are forced to move on a lattice structure only. A direct
extension of the discretized velocity lattice Boltzmann equation for multi-component mixtures can be
written as

atfji +Cjiaaafji :jS (1
Where j=1,...M and M is the number of components in the mixture,i =0,...,N, with N being the number

of discrete lattice velocitiesc;

jia» @=1x,y,z}, and Q is the collision term. Equation (1) is further

expanded based on fast-slow decomposition of motion in the vicinity of quasi-equilibrium state, as
proposed by Gorban and Karlin (1994), which guarantees the positive entropy production of the process
and hence satisfies the H-theorem. Therefore, the process is composed of a fast relaxation from the initial

state f to the quasi-equilibrium £, and then moving slowly from the quasi-equilibrium state f~ towards
the equilibrium f* . Expressing the two motions as BGK terms, the final collision term for the LB

equation takes the following form for each species ; :
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where 7;; and 7,; are the two relaxation times corresponding to each of the relaxation stages, with the

condition 7,; >7;; which ensures the stability of the model and puts a limit on the admissible Schmidt

number v /D, , where v is the kinematic viscosity and D,, is the binary diffusion coefficient. This

AB
restriction on the Schmidt number is further discussed at the end of this section. The moments of each
component are defined as,
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where p;,J,, ,P,and O, are the density, the momentum, the pressure tensor and the third order

3)

moment of component j , respectively. For the D3Q27 stencil (see Figure 1) considered in this paper, the

discrete lattice velocities are

(0,0,0) i=0
(£1,0,0)c,,(0,£1,0)c,,(0,0,%1)c, i=1,...,6

7 (#1,£1,0)c, (0,41, 1), (£1,0,+1)e, i=7,...,18
(£1,£1,£1)c, i=19,...,26

“4)

The lattice speed for each component is computed as c¢; =,/3k,T,/m, , where k,is the Boltzmann

constant, 7j is a reference temperature and m ;. is the molecular mass of component j . In the Entropic LB

model proposed by Arcidiacono et al. (2006a) the equilibrium and quasi-equilibrium functions are
obtained based on the minimization of the H-function defined by the following equation,

S
H= % f,n2" )
jo W
which will be minimized under the constraints of conservation of density of each species, p; and the

total mixture momentum J, =J,+J,. The cumbersome process of minimization in three dimensions

which necessitates defining 27 spatial directions (resulting in the D3Q27 stencil (Rastegari, 2008)), leads
to the following final equation for the equilibrium distribution functions,

e - li[ 2¢; —Jc +3u’ 2ua+,lcf+3u§ 6/;(6)
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where u,=J,/p is the mixture velocity in the « direction, and p=p,+p,. The corresponding

weighting factors for each spatial direction are:

i i=0
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Figure 1. D3Q27 lattice stencil

The quasi-equilibrium function fj can be obtained using two complementary approaches; taking either

7

the difference between the momentum of the mixture and the momentum of each component i.e. J, -J,,,
as an extra constraint for the minimization problem, or using the stress tensor, P, ;as the extra quasi-

equilibrium variable. The choice directly depends on the magnitudes of transport coefficients and the
local concentration of the species. Using the difference between momentums as the extra constraint along
with the previous conservation rules, one may derive the quasi-equilibrium function by merely
substituting the velocity of the speciesu,, =J,, / p; instead of U, in Equation (6)

(P = £ (p,8) ®)
The relaxation times 7; and 7,; for each component are related to the transport coefficients of the flow
by using the Chapman-Enskog expansion in the hydrodynamic limit, adapting it to simplify the
conservation equations for each component, and then comparing them to the standard Navier-Stokes and
Stephan-Maxwell diffusion equations. The lengthy mathematical process is beyond the scope of this

paper and the details can be found in Arcidiacono et al. (2006a; 2006b; 2007; 2008). The final set of
equations for the relaxation times for each component are expressed as,

7, =t
1
k,T
n B~0 (9)
- D, ym
Y X, X,P

where u, is the dynamic viscosity of the component j,X, and X, are the mole fractions of

components A and B, n is the total number of moles in the mixture, P =,/k,T,n is the mixture pressure,
and m,, =p,p,/(p,+p,) is the reduced mass of the mixture. Considering these two equations, the

aforementioned restriction on the Schmidt number can now be introduced. Rewriting the Schmidt number
as,

H; T My

Sc= =
pPDy T, X, XpP

(10)



The construction 7,; >7;; leads to the following inequality:

se. =t Yl
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where Y, is the mass fraction of the component j . Note that this restriction is a result of taking J, -/,

as the extra quasi-equilibrium variable. The evaluation of the quasi-equilibrium function using the stress
tensor P, as the extra constraint leads to a complementary inequality,

Sc; > V.Y,
XAXB
which results in covering any arbitrary Schmidt number. Deciding between the two models depends on

(12)

which of the above inequalities is satisfied, considering the magnitudes of the species’ transport
coefficients (Arcidiacono et al., 2007).

2.1 Solid wall treatment

In LBM imposing the no-slip boundary condition on solid surfaces is mainly based on the bounce-back
scheme on the solid nodes. In its simplest form, the bounce-back method needs to propagate the
populations that are directed toward the solid nodes in the reverse directions. Despite the very straight
forward procedure to impose this standard bounce-back, its accuracy for curved boundaries is questioned
since it does not satisfy the no-slip condition on the desired location of a curved wall. Ladd (1994)
showed that the standard bounce-back is of second order accuracy for straight walls when the wall is
located exactly half-way between the solid and the fluid nodes, otherwise and in the case of a curved wall
the accuracy of such a bounce-back will drop to first order (Yu et al., 2003).
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Figure 2. Schematic illustration of curved wall treatment in LBM discrete domain

To annihilate this deviation, several second-order accurate treatments have been suggested for curved
entities (Filippova and Hénel, 1996; Mei et al., 1999; Bouzidi et al., 2001; Yu et al., 2002). One of the
most accurate models, being relatively easy to implement, is the scheme proposed by Yu et al. (2002). As



depicted in Figure 2, after the streaming step, f;(x,) is known while the value of f.(x,) is still unknown.

Having the exact location of the wallX,,, Yu et al. suggested the following linear extrapolation (or

interpolation with regards to the internal nodes) to determine f (x) atX,,,

St 80) =— [ (1= D). [t 4 1)+ A 3,1+ 1)
! 1+A (14)
A (st + 1)

with A being defined as,

=

(15)

|xf - x|
Where x,, x, and X, are positions of s, f/ and jff"as shown in Figure 2.The above treatment requires

each fluid node to search in all spatial directions for any possible link to the neighboring solid nodes.
Then, A has to be calculated for each of the links in order to perform the extrapolation in Equation (14)
and determine the unknown populations. Considering the 27 spatial directions for «, and the complex
arrangement of the spherical particles in the packed bed, these calculations will account for a significant
part of the total simulation time, as they ask for a large number of memory accesses to read data from the
global memory of the graphics processor in a disordered pattern. The effect of the bounce-back step on
the computational efficiency of GPU implementations will be further discussed later in section 5.

3. Efficient Implementation on GPU

CUDA technology is a computational architecture introduced by NVIDIA Corporation and includes
computing innovations at both software and hardware levels. The nVIDIA’s C for CUDA programming
language is an extension to the conventional C language and allows the programmers to define new class
of functions, called kernels which will be launched on GPU. By calling each kernel, N different CUDA
threads will be distributed and executed in parallel on the hardware’s large number of streaming
processors as shown in Figure 3.
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Figure 3. Grids of blocks and block of threads in the GPU programming model

Yet, a critical point in developing efficient CUDA applications is to appropriately manage the memory
accesses between the device’s global memory and the multiprocessors (a group of 32 process cores, €. g.

in Fermi GPUs). Most importantly, the programmers should pay special attention to attain coalescing
during memory accesses as further discussed below.

3.1 Memory access management

In order to efficiently exploit the relatively high effective bandwidth of the GPU devices, the hardware is
designed to combine a number of memory calls requested by a half-warp (in Tesla GPUs) or one warp (in
Fermi and Kepler GPUs) of threads (each warp equals 32 threads) into a single memory transaction. This

behavior is often referred to as coalescing. However, coalescing requires special access patterns by the
threads which is different for devices with and without caches;

In Tesla generation GPUs, the programmer had to consider alignment in his memory calls (nVIDIA,
2010a, 2010b). Memory alignment requires the pointer address value to be a multiple of the size of the
type of the variable. In this pattern, each thread in a half-warp (a group of 16 threads), points to an aligned
address in the global memory space which leads to a single 64-byte transaction, if the block sizes are
chosen as multiples of 16. In contrast, a misaligned pattern of access results in 16 separate transactions

executed in serial which drastically degrades the performance of the simulation and the memory
bandwidth will drop to almost 10% of its maximum value (T6lke, 2010).

In the more recent Fermi and Kepler generation GPUs, the difficulty with the alignment is alleviated,
thanks to the concept of cache-lines. Here the rule in data transfer is that the number of transactions is
equal to the number of cache lines necessary to service an entire warp. In the simplest case, if memory



request corresponding to one warp fits into one cache line, there would be one transaction for that warp
meaning that the coalescing efficiency is 100% and we are close to the peak bandwidth of the device.
However, if the requested memory space falls into # different cache lines, n transactions would be issued
in serial, and thus the efficiency would drop to (100/%2)%. Therefore, misaligned accesses are tolerated if
the memory requests of a certain warp do not leak into a second cache line. The situation could become
more complex for various access patterns and we refer to nVIDIA's documentations for more in-depth
elaborations (nVIDIA, 2012a, 2012b).

3.2 Hardware Occupancy

Since each multiprocessor has a limited amount of registers and shared memory, it will have a certain
capacity to accept threads. By definition, occupancy is the ratio of the number of active threads per
multiprocessor to the maximum number of possible active threads (nVIDIA, 2012b). One can check for
the amount of allocated registers and shared memory in his code by setting the ——ptxas-options=-
v, before compiling the code, and then put an appropriate bound on the maximum permissible register
count using the -maxrregcount compiling option. It should be noted that decreasing the allocated
registers for each thread to a minimum count (in order to maximize the occupancy) might degrade the
computational performance of kernel instructions.

Y
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Figure 4. Configuration of the grid and its blocks in a typical 3D computational domain.

4. Implementation Outlines and Performance Optimizations

The first step in implementing LBM applications on GPUs is to map the computational domain into a grid
of thread blocks. Here, the 3D scheme suggested by Tolke and Krafczyk (2008) is adapted. This scheme
proposes a 2D grid of blocks, with each block being one dimensional, thus covering a three dimensional
space. This requires that each row in the X direction represents a one dimensional thread block of the size
of the domain in this direction, meaning that the size of the X dimension is equal to the block size.
Eventually, a group of thread blocks will fit into the Z-Y plane as illustrated in Figure 4.



The next step is to allocate the distribution functions in the global memory. In order to satisfy the
requirements mentioned in the previous section, most of the previous works (Télke and Krafczyk, 2008;
Toélke, 2010; Kuznik et al., 2010; Obrecht et al. 2011) have advocated the use of a Structure of Arrays
(SOA), in which, each array is defined for one spatial direction. The SOA scheme guarantees that each
thread would access the required memory address in an aligned pattern during the collision step and thus
the memory requested by a warp fits into one cache line which is crucial for high bandwidth utilization in
Fermi devices.

Finally, in order to fully satisfy efficient memory transaction guidelines on GPU, one has to also take care
of the memory accesses during the streaming step. In this step, transfer of data for the rest particles and
for £Y, 7 directions (a total of 9 directions in the Z-Y plane), automatically satisfies the memory
coalescing requirements. For the other misaligned 18 directions; however, the fast shared memory is used
as proposed by Tdlke (2010) to prevent additional cache loading.

In addition to the above conventional optimizations, we have applied a new scaling scheme for the
particular problem of interest in this paper. Here, we have two sets of distribution functions; one for
Oxygen and the other for Nitrogen. Since updating the distributions for each species in a certain grid point
in the computational domain is entirely independent from other species, they can be solved
simultaneously. Therefore, one can set the device to also perform a job parallelization task on a single
GPU and conduct the calculation of different components in parallel. To this end, two different
approaches are viable:

e Launch and execute separate kernels for each component in parallel, using CUDA streams.

e Map the distribution functions of different components in a single grid of blocks and hence a
single kernel.

The first approach does not guarantee a fully concurrent execution of the two kernels and the concurrency
level is restricted by the computational resources of the device and the workload of each kernel. The
second approach, however, ports a single grid of blocks on the device and hence the blocks corresponding
to different components are launched simultaneously. For this purpose, here we have combined the two
set of grids into a hybrid grid of twice the size of a regular 2D grid of blocks. In order to prevent warp
divergence to select the right arrays for a specific component, we have modified the original SOA data
structure such that we launch two arrays as arguments to the kernel; the first array contains the 27
distribution functions in SOA format (27 arrays combined into one) for the first component, followed by
the distributions of the second component. By selecting the domain size to be a multiple of the warp size,
this arrangement implies that the threads could automatically access their desired array elements while the
nice coalescing properties are still preserved. Figure 5 shows how the separate grids of blocks will
constitute a single grid in the proposed manner.
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Figure 5. The grids corresponding to the two distinct computational domains, combined to form a single

one.

The host code eventually launches the following kernels successively:
_global__ void collide_stream_kn1(float *f_in, float *f_out, int *s);
__global__ void bounce_back_kn1(float *f_out, int* s, float *d_sphere);

__global__ void BC_knT(float *f_out, int *s);

where £ in and £ out are the pointers to the incoming and outgoing distribution function arrays
respectively, and s simply indicates whether the boundary state of the node is solid or fluid. The collision
and streaming steps are conducted within a single kernel to avoid redundant memory transactions.
However, the large number of instructions associated with the inlet and outlet boundary conditions are
managed via a separate kernel (BC kn1l), this way keeping the register and shared memory consumption
of the kernels within a reasonable bound. In order to handle the linear extrapolation scheme and the
multiple reads and writes of the modified bounce-back stage, a separate kernel is also considered for the
bounce-back stage, named bounce back knl. Here d sphere is a pointer to a structure containing
geometry data (including center coordinates and diameter) of the spheres in the packed bed.

For the present study, we have analyzed several versions of our code, using the CUDA Visual Profiler
provided by nVIDIA (2012c), to check whether the optimum memory throughput is achieved. The
resulting memory throughput quality will be discussed in the next section.



5. Results and Discussion
5.1 Hydrodynamics

Using the binary lattice Boltzmann model described in section 2, simulations are first performed for the
benchmark flow of Oxygen and Nitrogen mixture in an empty circular tube. Pressure boundary conditions
are imposed at the inlet and outlet of the tube using the so-called Zou-He correlations modified for the
multi-component D3Q27 lattice Boltzmann model (Rastegari, 2008). A slight pressure difference of
P, /P, =099 is imposed and the following uniform molar distribution is considered for the components

at the inlet,
XO2 =47% XN2 =53% (16)

The computational domain includes 64 nodes in X and Y directions and 128 nodes along the Z axis. Both
the simple and the modified bounce-back schemes are imposed on the interior wall of the tube. Figure 6
compares the bulk flow velocity profiles with the analytical parabolic velocity profile along the minor
dimension of the tube, using single precision computations. While the profiles are generally in excellent
agreement with the analytical parabolic answer, it can be seen that using the second order bounce-back
clearly improves the results in the vicinity of the wall.

- Simple BC
"W - e Maodified BC
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1 el P 1 1
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Figure 6. Comparison between the analytical and numerical velocity profiles.

The geometry of the main packed-bed problem consists of a circular tube within a box of size 128°x256
in lattice units. The tube is filled with spherical particles of the size in the range4 <d, <8, resulting in a

tube to particle diameter ratio (d,/d,) of more than 30. The final bed configuration consists of 12753

particles of almost random sizes within the above mentioned range. The average porosity of the bed is
almost 48% which gives a highly dense packed-bed. In order to let the flow develop and become uniform
at inlet and outlet, open sections of 32 lattice units in length are considered at both ends.



The physical total inlet density is selected to be equal to the atmospheric air density at 1.2 Kg/m’and the

molar fractions of O, and N, gases are,
X, =21% , X, =79% (17)

In LBM, the pressure is related to density as,

2

C
Py=prs  (8)

consequently, variations in density directly point to the pressure changes along the tube. The outlet total
pressure is set to P, =0.958 P, , which is a somewhat greater pressure difference as compared to that in
the previous problem, thus giving the flow a boost to overcome the particle obstruction. The no-slip
boundary condition is accurately treated on the solid surfaces using the second order bounce-back scheme
of Yu et al. (2002) described in section 2. Simulations are performed until the following criterion for the

residuals is met,

G

-1

<107 (19)

ct—l

where C, is determined at time ¢ by,

2.2.2.7(0)
¢ = % (20)

And N is the total number of fluid nodes in the domain.



Figure 7. Illustration of the packed bed and the bulk flow streamlines.
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Figure 8. Density (pressure) and velocity contours for Oxygen in the cross section of the flow through the
packed bed. (a) density contour, (b) velocity contour and the streamlines.

A 3D image of the bed geometry with the bulk flow streamlines is presented in Figure 7. Figure 8 shows
the density and velocity contours for Oxygen. Figure 9 and Figure 10 show the X-Y plane averaged
density and velocity variations along the tube, respectively. The resulted linear density (pressure) drop in
Figure 9 agrees with the anticipated linear trend in homogeneous packed beds expressed by the so-called
Ergun correlation (Freund et al., 2003)

AP
—=f(a,b,c,...) (21)
L
where f(a,b,c,...) is a function of density, velocity, fluid viscosity, size of the spheres and porosity of
the packed bed and L is the length of the bed. This agreement further validates the correctness of the
present results. As anticipated, it is evident from Figure 10 that the lighter gas (Nitrogen) can attain higher



velocities under the same driving force. Since no adsorption is applied on the surface of the spheres,
molar distributions will remain unchanged throughout the tube.
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Figure 9. Variations in density along the packed bed for (a) Oxygen, and (b) Nitrogen.
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Figure 10. Average z-velocity fluctuations for both species and the bulk flow along the packed bed.
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Figure 11. Convergence trend of the simulations for two different grid levels.

The convergence trend of the simulations is presented in Figure 11, for two different grid levels. The
residual decay behavior depicts that the condition number of the problem becomes worse as the problem
size increases. The quality of the single and double precision results is also compared in Figure 12 for the
average axial bulk velocity along the tube on two grid levels. It can be seen that there is a slight difference
in the results for each level. The relative error for the coarser level varies between the maximum of 4% at
the inlet, to less than 0.05% in the bed zone, while these values would be slightly higher at 6% and 1%
respectively for the finer level due to smaller time and length scales and hence less accuracy in the single
precision mode. Yet, one can realize that for such complex flows in LBM, single precision computations
can deliver relatively accurate results which suffice our numerical investigations.
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Figure 12. Averaged bulk velocity fluctuations along the packed bed using single and double precision
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5.2 Computational Performance

We have run our implementations on three different configurations. A 6-core (2 threads each) Intel Xeon
X5680 CPU processor at a clock rate of 3.33 GHz and peak memory bandwidth of 32 GB/s and 8 GB of
memory space is selected for multi-core CPU implementations. On the GPU side two nVIDIA Fermi
GPUs including a GTX-480 and a Tesla C2070 are employed. The latter is a high-end computing GPU
with no graphics output. Table 1 presents a summary of the major specifications of the GPUs in use. Note
that although the Tesla GPU is superior with regards to the available memory and peak double precision
power (by factor of 4 and 3 respectively), its single precision support and the maximum bandwidth are
still inferior to those for the GTX 480 by factors of 1.3 and 1.2 respectively.

Table 1: Major specifications of different GPU devices used in the present work. DP=Double Precision,
SP=Single Precision, GFLOPS=Giga Floating point Operations Per Second, MTB=Maximum Theoretical
Bandwidth, MEB=Maximum Effective Bandwidth

GPU Type No. of Thread  Processor = Memory Max DP  Max SP MTB MEB
Processors Clock(MHz)  (GB) GFLOPS GFLOPS (GB/sec) (GB/sec)

GTX 480 15%32 70 1.5 168 1350 177.4 138

Tesla C2070 14x32 57.5 6 515 1003 144.0 106

The above devices are employed via a 64-bit Ubuntu 12.04 operating system with Intel C compiler and
CUDA 5.0 installed. The CPU code is thus compiled under icpc compiler with SSE 4.2 option activated
and uses OpenMp directives for a multi-core implementation. The GPU code is compiled using nvce
command and the third level optimization flag (-O3) is turned on for both CPU and GPU codes.

The computational performance for different problem sizes on different Fermi GPUs as well as a multi-
core CPU for the two problems discussed in the previous section (empty tube and packed bed) is
presented in Figure 13. Note that the maximum problem size on each device is restricted by the amount of
the available memory. The performance metrics for both problems are calculated in terms of Millions of



Lattice Updates Per Second (MLUPS). One could notice that an order of magnitude speedup is gained
over an optimized 6-core CPU implementation using both GTX and Tesla GPUs in single precision
mode. In double precision, the performances on both GPUs are around twice that for a multi-core CPU.

Although the 6 GB memory space of Tesla C2070 allows for implementing large problem sizes, yet, its
double precision performance could not take over that of GTX 480. This seems to be against our
expectations since the double precision arithmetic power of Tesla C2070 is 3.06 times higher than that for
the GTX 480. This is mainly due to the fact that the current problem is memory bound rather than being
compute bound, and thus, instead of the floating point power, the memory bandwidth is the key factor in
limiting the performance. Therefore, the GTX 480 with 1.2 time higher bandwidth exhibits a slightly
better performance (a factor of 1.08 for both problems).
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Figure 13. Computational performance on different platforms and different problem sizes. (a) flow
through a packed bed, (b) flow in an empty tube.

A closer look at Figure 13 reveals that the CPU performance drop from the empty tube to the packed bed
problem is not substantial, while on the GPU side the performance of the packed bed problem is
significantly lower than that for the empty tube problem by a factor of ~1.3. This performance loss is
partly due to the warp divergence during the collision step to find the fluid nodes leading to warp
serialization, but to some greater extent because of the disordered memory accesses and hence poor
bandwidth usage in the bounce-back kernel. In a CPU implementation, however, the large available
caches annihilate such effects and the performance difference is negligible.



Table 2. Single precision performance metrics for flow in a packed bed for different kernels on Tesla
C2070. BW= Percentage of the achieved bandwidth to the device's maximum effective bandwidth.
PTGT= Percentage of the Total GPU Time

32x64 64x128 96x192 128x256
Performance (MLUPS) 28.2 40.6 45.0 46.2
collide stream_ knl Max BW(%) 62.2 90.5 88.7 91.3
bounce back knl Max BW(%) 15.0 28.0 32.1 33.6
collide stream_knl Occupancy (%) 16.6 32.9 30.8 32,7
bounce back knl Occupancy (%) 16.6 31.3 44.0 56,6
collide_stream_knl PTGT 47.0 53.5 57 57.5
bounce back knl PTGT 50.7 45.1 42 41.5

In order to provide a better insight into the packed bed problem, various performance metrics as well as
the kernel contribution to the total GPU time in the flow through packed bed are listed in Table 2 for
different problem sizes on Tesla C2070. The data for the two most expensive kernels have been presented
in this table. The best computational performance is achieved for the largest problem size of 128°x256 to
around 46.2 MLUPS which best exploits the computing power of the GPU. A maximum of 91.3% of the
effective memory bandwidth is attained in the collide stream kernel which is comparable to the values
reported for single component D3Q19 cavity flow by Obrecht et al. (2011) and also is close to the
measurements in the D3Q27 stencil study by Volkov (2010). However, the highly erratic memory access
pattern in the bounce back kernel results in poor bandwidth efficiency for a packed bed problem. As the
bounce-back kernel contributes to almost 40-50% of the total GPU time, optimizing this kernel with
regards to memory accesses would lead to significant improvement in the overall performance.

For the collide_stream kernel the occupancy of the device is maintained in the range of 16% to 32%. The
large number of memory accesses and instructions in D3Q27 LBM significantly increases the kernel’s
register demand (53 registers in single and 63 in double precision), which restricts the maximum number
of threads managed simultaneously by the multiprocessor, and lowers the multiprocessors occupancy. On
the other hand, the relatively high performances achieved, admits the fact that launching a large number
of blocks (y-dimxz-dim) of small sizes (up to 128 here) pays off for heavy stencils, e. g. D3Q27 by
allowing each thread to compute more outputs and take advantage of the large on-chip register space
available on Fermi devices. The idea was first introduced by Volkov (2010) where he showed that using
more registers than shared memory and thus following an inverse memory hierarchy for heavy stencils,
results in higher arithmetic intensity and bandwidth usage at a rather low occupancy (Volkov, 2010)

6. Summary and Conclusions

A 3D, 27 stencil lattice Boltzmann flow solver for the binary flow of Oxygen and Nitrogen mixture has
been developed and implemented on GPUs. The no-slip boundary condition is treated accurately on the
solid surface of the spherical particles which further increases the computational cost of the simulations in
a dense packed bed. As such, and to exploit the maximum computational power of GPUs we used an
optimized algorithm and scaled the work flow in a way that the transport equations for both species can
be managed in parallel. It is shown that using modern many-core graphics processors, it is possible to
obtain one order of magnitude faster simulations over our optimized multi-core CPU implementations for
such subtle simulations. Yet, one could further enhance the computational efficiency by improving the
memory access layout particularly in the expensive bounce-back kernel for packed bed problems. The
single precision computations show to be very promising in providing relatively accurate results.



Although the problem size of the present simulations is limited by the available GPU memory resources,
porting the problem to large GPU-based clusters alleviates such restrictions.

Another challenge for future work would be to simulate unsteady effects via adding adsorption properties
to the spherical particles which requires modifying the surface boundary conditions. This, along with
scaling the problem size to real dimensions, is certainly of high interest for the industry. Early results are
very promising and are subject to our future publications.
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Figure 2. Schematic illustration of curved wall treatment in LBM discrete domain



Figure 3. Grids of blocks and block of threads in the GPU programming model
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Figure 4. Configuration of the grid and its blocks in a typical 3D computational domain.
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Figure 7. Illustration of the packed bed and the bulk flow streamlines.
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Figure 8. Density (pressure) and velocity contours for Oxygen in the cross section of the flow through the
packed bed. (a) density contour, (b) velocity contour and the streamlines.
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Figure 9. Variations in density along the packed bed for (a) Oxygen, and (b) Nitrogen.
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Figure 12. Averaged bulk velocity fluctuations along the packed bed using single and double precision
computations for two different grid levels.
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Figure 13. Computational performance on different platforms and different problem sizes. (a) flow
through a packed bed, (b) flow in an empty tube.

Table 1: Major specifications of different GPU devices used in the present work. DP=Double Precision,
SP=Single Precision, GFLOPS=Giga Floating point Operations Per Second, MTB=Maximum Theoretical
Bandwidth, MEB=Maximum Effective Bandwidth

GPU TYPE No. of Thread Processor Memory Max DP  Max SP MTB MEB
Processors Clock(MHz) (GB) GFLOPS GFLOPS (GB/sec) (GB/sec)

GTX 480 15%32 70 1.5 168 1350 177.4 138

Tesla C2070 14x32 57.5 6 515 1003 144.0 106

Table 2. Single precision performance metrics for flow in a packed bed for different kernels on Tesla
C2070. BW= Percentage of the achieved bandwidth to the device's maximum effective bandwidth.
PTGT= Percentage of the Total GPU Time

32x64 64x128 96x192 128x256
Performance (MLUPS) 28.2 40.6 45.0 46.2
collide stream_knl Max BW (%) 62.2 90.5 88.7 91.3
bounce back knl Max BW (%) 15.0 28.0 32.1 33.6
collide stream_knl Occupancy (%) 16.6 329 30.8 32,7
bounce back knl Occupancy (%) 16.6 31.3 44.0 56,6
collide stream knl PTGT 47.0 53.5 57 57.5

bounceibackilznl PTGT 50.7 45.1 42 41.5




