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Abstract

In this paper, we consider goal-oriented adaptive finite element methods for Signorini’s problem. The
basis is a mixed formulation, which is reformulated as nonlinear variational equality using a nonlinear
complementarity (NCP) function. For a general discretization, we derive error identities with respect
to a possible nonlinear quantity of interest in the displacement as well as the contact forces, which
are included as Lagrange multiplier, using the dual weighted residual (DWR) method. Afterwards, a
numerical approximation of the error identities is introduced. We exemplify the results for a low order
mixed discretization of Signorini’s problem. The theorectical findings and the numerical approximation
scheme are finally substantiated by some numerical examples.

Keywords: Signorini’s problem, mixed finite element method, goal-oriented a posteriori error esti-
mation

1 Introduction

Contact problems play an important role in the modelling of many physical or engineering
processes, see for instance [15, 25]. Consequently, the efficient and accurate numerical solution
of contact problems has been a focus of research over the last decades. On the one hand
efficient solution algorithms are indispensable. On the other hand, adaptive algorithms ensure
that a minimal effort is needed to achieve a given error tolerance. The main ingredient of
the adaptive algorithm is an accurate a posteriori error estimator. In many applications, one
is interested in controlling the error in a user-defined quantity of interest, which in contact
problems frequently involves the contact forces. Thus, goal-oriented estimators are often of
special interest.

A posteriori error estimators in the energy norm for the obstacle problem are frequently
studied in literature. We refer for instance to |1, 3, 10, 13, 21, 24, 29, 39]. Convergence
results for adaptive algorithms in the context of obstacle problems are proven in [12; 11,
37]. A posteriori error estimates in the energy norm for Signorini’s problem are discussed,
e.g., in [14, 19, 28, 34, 40]. Multibody contact problems are considered in [26, 41|. One
popular technique for the derivation of a posteriori error estimates with respect to user-
defined quantities of interest is the dual weighted residual (DWR) method, cf. |2, 4]. A
basic ingredient is the representation of the quantity of interest by the solution of a so-called
dual problem. Comparable arguments are used in |30, 31| to derive similar a posteriori error
estimates. First results on DWR methods for contact problems are discussed in |7, 8] and
are summarized in [38]. They are based on a dual variational inequality and consider linear
quantities of interest in the displacement. An alternative approach based on a linear dual
problem is presented in [36], where also nonlinear quantities of interest in the displacement
are considered. It is extended in [32]. Based on a linear mixed dual problem not depending
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on the primal problem, the error in quantities of interest in the displacement as well as
the Lagrange multiplier, which coincides with the contact forces, are estimated. The later
approach also significantly improves the localization of the error estimate. However, in both
approaches the contact conditions enter by extra additive terms in the estimate, which consist
in some product of the dual solution with the error of the primal solution. In particular, the
error in the contact conditions does not directly enter the estimate and the extra terms
strongly depend on the numerical approximation of the error in the primal solution. The
approach presented in this article overcomes these drawbacks. It is based on a reformulation
of Signorini’s problem in mixed form as a nonlinear and nonsmooth variational equality using
a nonlinear complementarity (NCP) function, see for instance [20]. The arising dual problem
is also a linear mixed problem, but it depends on the active and inactive set of the primal
contact problem. Applying the DWR framework taking into account the nonsmoothness of
the equation leads to the usual error identities. However, the arising remainder terms are of
first order in the error of the discrete active set. The discussed numerical results substantiate
that the remainder terms can be neglected. The presented analysis applies to a wide range
of discretization schemes. The application on mixed discretization schemes like the ones
presented in [17, 23] is straight forward. If Newton like methods are used for solving the
discrete contact problem, the dual problem coincide with the transposed system of the last
Newton step. If displacement based discretization schemes such as [5, 27, 42| are used, an
approximation to the Lagrange multiplier has to be constructed in a post processing step,
cf. e.g. [10]. Afterwards, a numerical approximation of the error identity depending on the
different discretization approaches has to be realized. We exemplify such a strategy for the
mixed discretization introduced in [17].

The paper is organized as follows: In Section 2, we introduce the strong and the mixed
formulation of Signorini’s problem. Furthermore, the assumption on the discretization are
formulated. Section 3 focuses on the derivation of the error identities involving the primal as
well as the primal and the dual residual. Moreover, the connection between primal und dual
residual is clarified. The basic ideas for the numerical approximation of the error identities are
explained in Section 4. Afterwards, the ideas are exemplified for a concrete mixed discretiza-
tion. The numerical results presented in Section 5 substantiate the theoretical findings and
the numerical approximation schemes. The paper concludes with a discussion of the results
and an outlook on further tasks.

2 Problem formulation

Let Q@ ¢ R? d = 2,3, be a domain with sufficiently smooth boundary T' := 9Q. More-
over, let I'p C T be closed with positive measure and let I'c C T'\I'p with T € I'\I'p.
The usual Sobolev spaces are denoted by L2(Q), H'(Q) with I > 1, and H/*(I'¢) . We
set H(Q) := {ve H(Q)|y(v) =00onTp} and V = (H}, (Q))d with the trace operator
~v. The space H=72(T'¢) denotes the topological dual space of HY?(I'¢) with the norms
| |=1sre and || - [lior,, respectively. Let (-,-)ow, (-,-)or be the usual L?-scalar prod-
ucts on w C Q and I C T. Note that the linear and bounded mapping o := Ve -
HL(Q) — H'*(T¢) is surjective due to the assumptions on T'c, cf. [25, p.88]. For func-
tions in L2 (I'¢), the inequality symbols > and < are defined as “almost everywhere”. We
set HiL/Q(FC) ={ve H'/? (Fc)‘ v >0}. Furthermore, we define the dual cone of er/Q (Te)
by A, = {/L e H'/? (I‘C)’ Yo € er/2 Te) : (u,v) > O}. For the displacement field v € V,
we specify the linearized strain tensor as e(v) := % (Vv + (VU)T) and the stress tensor as
o(v)ij == Zk,l Cijrie(v)ir describing a linear-elastic material law where Cjjp € L*°(£2) with

Cijkl = Cjilk = Cklij and Zk,l Cijleikal > IiTin for 7 € L2(Q)§y>;ff and a x > 0. In what fOHOWS7
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n denotes the vector-valued function describing the outer unit normal vector with respect to
I' and ¢ the k x (k — 1)-matrix-valued function containing the tangential vectors. We define
Op i= 0N, Opp =1 0N, Ot i= tlTJn, and v,, == (’yc(v))Tn.

Signorini’s problem is to find a displacement field u € V' N H? () such that

—div(o(u)) = fin Q, o,(u)=bon 'y, (1)
Up — g <0, opp(u) <0, opp(u) (uy, —g) =00n ', (2)
Ont (u) =0o0n I'¢g, (3)

where we assume that f € (LZ(Q))d, b € (LQ(I‘N))d and g € H/*(I'¢). Equation (1)
is the usual equilibrium equation of linear elasticity with the volume and surface loads f
and b. The conditions in (2) describes the geometrical contact: We assume that T'¢ is pa-
rameterized by a sufficiently smooth function ¢ : R4' — R such that, without loss of
generality, the geometrical contact condition for a displacement field v in the d-th compo-
nent is given by ¢(x) + va(z, ¢(z)) < ¥ (21 +vi(z, 9(x)), ..., T4-1 + v4—1(z,o(x))) with
r = (x1,...,74-1) € R%! and a sufficiently smooth function 1 describing the surface
of an obstacle. The linearization of this condition gives us v, < ¢ in (2) with g(x) :=
(Y(x) — p(z)) (1+ (ch(x))TVgo(:L‘))_l/Q, cf. [25, Chapter 2|. The second condition is a sign
condition for the normal contact force describing pressure. The complementarity condition in
(2) ensures that pressure only occurs in the case of contact. Here, no friction is considered,
which is expressed by (3).
With the symmetric, continuous and V-elliptic bilinear form, due to Korn’s inequality,

a(w,v) = (o(w),e(v))o

on V x V as well as the continuous linear form (¢,v) := (f,v)o + (b,on)qr, and using some
standard arguments of convex analysis (cf., e.g., [15, 16, 25, 35|), we obtain that the tuple
(u, \p) € V x A, is a saddle point of the contact problem (1-3) if and only if,

a(u,v) + A, o) = (€ 0), (4)
<:un — Any Uy — g> < 0, (5)

for all v € V and all u,, € A,. Note that a unique solution exists under the presented assump-
tions. Moreover, the Lagrange multiplier A, coincides assuming some additional smoothness
properties with the normal contact stress —oy,,(u).

The contact conditions expressed in inequality (5) can equivalently be formulated as

g—up € er/2 (Te), M€, (Mu,—g)=0. (6)

Under the assumptions Cijp; € WH(Q) and g € H”?(T¢), the solution u is contained in

(H? (QO))d for every compact subset €y in Q\{I'p ULy}, cf. [25, Theorem 6.5]. Then
equation (4) implies A € L? (I'¢). Now, the contact conditions given in (6) simplify to

g—up € er/2 Te), A >0ae onTe, Ay (up—g)=0ae onTle, (7)

compare [22, Section 2.1| Using a NCP function, cf.; e.g., [22, Chapter 4|, these conditions
can also be expressed by

Ap — max {0, A\, +u, — g} =0 ae. onTe. (8)
Testing equality (8) with an arbitrary function u, € L? (I'¢), we obtain

C(w) () := (pn, A, — max {0, Ay, + up, — 9})0,Fc =0
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with w = (u, Ap). It should be remarked here that the semilinear form C' is not Fréchet
differentiable in general. Defining the semilinear form

A (w) (@) = a(u,v) + (An, vn)or — (6 v) + C(w) (1)

with ¢ = (v,un) € W := V x L?(I'¢), Signorini’s problem (4-5) is written as the nonlinear
problem find w € W with
Ve W: A(w) (p) =0.

Our a posteriori error analysis is not limited to a special discretization. It applies to all
discrete approximations wy to w, which fulfill the following assumption:

Assumption 1. The discrete solution wy, is included in a finite dimensional subspace Wy, =
Vi x Ay, of W. Furthermore, equation (4) holds for the discrete solution wy, i.e.

a (un, vn) + (Anhs U)o = (L vn) (9)
for all v, € Vy,.
Remark 2. Equation (9) directly implies Galerkin orthogonality, i.e.
a(u—up,vp) + (A = Anpy Vhn)gp, =0 (10)

for all vy, € V},.

Remark 3. Assumption 1 only requires A, ; C L?(I'¢) and not Apn € A, Consequently,
nonconforming approximations of the Lagrange multiplier are included in the analysis.

3 A posteriori error analysis

In this section we derive a goal oriented a posteriori error estimate based on the DWR method.
Here, we are interested in estimating the discretization error w.r.t. a possibly nonlinear
quantity of interest J : W — R, which can involve the displacement u as well as the Lagrange
multiplier \,. To represent the quantity of interest we employ the following dual problem:
Find z = (y,&,) € W with

a(v,y) = b(&,v) = J,(w)(v), (11)
(1ns yn)o,rc +c(&nspin) = J;\n (w) (pn) - (12)
for all (v, up,) € W with
b:L?(Tg)xV =R, b(w,v) = / wx vy, do,
Te
c: L?(I'c) x L* (I'¢) — R, c(w,p) = / w [l — x| pdo,
Te
o 1, if A, +u,—9g>0,
X7 Vo, i A, —g <O

The forms b and ¢ correspond to weighted L?-scalar products on I'c, where the weight is given
by the indicator function of the active respectively inactive contact set. However, they are no
scalar products anymore, because the indicator function is not greater than zero. Furthermore,
we obtain the trivial identity

max {0, A, +up — g} = x (A +un —9),
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which will be frequently used in the following calculations. It should be remarked that the
dual problem (11-12) corresponds to A’ (w) ((v, i), z) = J' (w) (v, p) if the Fréchet derivative
C" of C exists. Let z, = (yn,&n,n) € Wp be an approximation to z. Using the introduced
notations, we obtain the following error estimate in the primal residual only:

Proposition 4. Assuming that the second Fréchet derivative of J, J" : W — L(W,W*),
exists and that Assumption 1 is valid, there holds

J(w)—J(w) = plwy)(z—z1) = C(wp) (Eap) +RY +RY, (13)

with the primal residual

p (wn) (p) = —A(wp) (¢)-

The remainder terms RSQ) and Rf) are given by

1
Rg) = —/ J" (wp, + sew) (ew, ew) sds,
0
RY = A —qld
A ‘fnex [ n,h + uh,n g] 0,
le

with €, = W — Wy, €, = X — Xp, and

Yh 1) 7f )‘n,h + uh,n —4g > 0?
h = .
0, if /\n,h +upp—9g < 0.

Remark 5. The term C (wp,) (§,,5) measures the violation of the contact conditions (7).

Remark 6. By R(JZ), we obtain the usual remainder term of the DWR method for linear
)

problems with nonlinear quantities of interest, cf. [2, Proposition 6.6]. If J is linear, Rff
vanishes.

Remark 7. The remainder 7'\’,5‘2) vanishes, once the analytic active set is exactly resolved by
the discrete one. It will be discussed in more details in Section 4.

PrRoOOF. The application of the box quadrature rule with its remainder term leads to

J(w) — J (wp) = /01 J' (wh, + sew) (ew) ds = J (w) (ew) + R
T (w) (en) + 5, (w) (er,) + R
with e, = v —uy, and ey, = A\, — Ay ;. The definition of the continuous dual problem implies
T () (e0) + 7 () (ex) = a(ew ) —b(Ensew) + (e yndog + ¢ (Emens).
By Galerkin orthogonality (10), we obtain

a(ew,y)+(ex,, Yn)ory = @ (€usey)t(exn,, eyn)or, = (ey)—a (un, ey)—(Ann eym)or,, - (14)
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We use the contact conditions and the definition of the dual problem to derive
c (5717 )\n - )\n,h) —-b (gnu u — ’U,h)

= &nll—x]en, do— EnXeun do = / &n{en, — xler, +eul} do
e T'o e

= gn P\n — X P\n + up — g]] do — fn [)\n,h - X [)\n,h + Up,n — QH do
I'e e

= &n [An — max {0, A, + u,, — g}] do — En [Anh — Xb [Anp + Unn — g]] do
I'c T'e

+ ‘Snex [/\n,h + Uppn — g] do
Ie

= C(w) (&)~ C (wp) () + RY = ~C (wn) (€0 — &np) — C (wn) () + RS-
Finally, merging all equations leads to
T (w) — J (wy)
= a(u—upy) = b(&n,u—un) + (A = Anp, Yo, +¢(ns An = Anp) + RSQ)
= Ly —yn) —aluny —yn) = AnnYn — Yna)or, — C (wi) (€n = &npp)
—C (wp) () + R +RP
= p(wnn) (2 — ) — C (wn) (Enp) + RY + RY,
the assertion. ]

To obtain an error identity in the primal and dual residual, we have to specify the dual
residual.

Proposition 8. Let the third Fréchet derivative of J, J" : W — L(W,L(W,W™)) exist and
Assumption 1 hold. Then we have the error representation

J(w) — J (w) = %p (wp) (e5) + %p* (wh, 21) (ew) — C (wn) (Enn) + RY + RY) (15)

where

p* (whszn) (0) = J (wa) (@) = a(v,yn) +bp (Enhv) = (s Ynm)or, = h (Enhs bin)

with the bilinear forms by, : Ay p x Vi, = R and ¢cp, : Ay p, X Ay, = R given by
bp (w,v) = / WX RV do,
Te
) = [ wl-xludo
Te
The remainder RSS) 18 given by
3 I
RS) = 5/ J" (wp, + sew) (ew, ew, ew) s(s — 1) ds
0

and the remainder Rf) by

1

Ry = 2 /r ex {&n [Ann + tnn — 9] + Enn [An + un — g]} do.
C
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Remark 9. The remainder Rgg) corresponds to the usual remainder of the DWR method, see
[2, Proposition 6.2] and compare Remark 6. If J is linear or quadratic in w, R((]g) is zero.

Remark 10. If the analytic active set is exactly resolved by the discrete one, the remainder

RS’) vanishes. However, due to the missing regularity of C, it is of the same order in e, as
2)

RY.

PRrOOF. Using the Trapezoidal quadrature rule with its remainder term leads to

1
T) =) = [ ot sen) (en) ds = 57" () (e) + 57" () ) + R
= ST (o) + 54, () er,) + 5 () (ea) + 575, () en,) + RS

Proposition 4 directly implies

57 () () + 375, () (e2,)
1 1

= 5:0 (wh) (ez) - 50 (wh) (‘fn,h) + % - £nex P\n,h + Uh,n — g] do.

The contact conditions together with the definition of the discrete dual problem are used to
derive

ch (Enhren,) — bn (En s €u) = / Enn [1— Xn) e, do — En,hXheu do
e T'e

= Enn {ex — xnlen, +eu} do
NG}

- gn,h [)\n — Xh [An + up — g]] do — fn,h [)\n,h — Xh [)\n,h + Uhn — g]] do
I'e T'e

= gn,h [>\n — X [>\n + up — QH do + gn,hex [)\n + up — g] do
I'e Le

- gn,h P\n,h — max {07 >\n,h + Uh,n — g}] do

INe;
= g Enh [An —max {0, N, + u, — g}] do+ /F En ey [An + Uy — g] do — C (wp) (&n.n)
= C(w) (§n,n) + . En,h€x [An + un — g] do — C (wp,) (fn,h)
= - gn,hex P‘n + Up — g] do—C (wh) (gmh) .

Inserting the Galerkin orthogonality relation (10), the foregoing calculation shows

Ty (w) (eu) + Jy, (wn) (ex,)
= J’; (wh) (eu) + Jé\ (wh) (eAn) —a (ew yh) - (e)\n7 yh,n)ojc

—Cp (én,hy e)\n) + bh (gn,h; eu) + /I“ gn,hex [)\n + Up — g] do—C (wh) (gn,h)

= p"(wn,2n) (ew) + g Enney [An + up — g] do— C (wy) (§n,p) -
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All in all, we obtain
J (w) = J (wp)

1 1 1
= 5:0 (wp) (ez) — 50 (wp) (ein) + 2 Enex [)‘n,h + Uhn — g do
T'e

1 1 1
50" (i zn) (ew) = 5C (wn) (Gua) + 5 [ Ennex o+ un —g] do+ RS
Lo

= S (e)+ 3" (wnzar) ew) — € (un) (60p) + RS + R

and therewith the assertion. ]
In the following proposition, we compare the primal and the dual residual:

Proposition 11. Assume that the second Fréchet derivative of J, J" : W — L(W,W™*), exists
and that Assumption 1 is valid. The difference between the primal residual p and the dual
residual p* is given by

P (wp, zp) (W —wp) = p(wp) (z — 2zp) + AT + AC,

where
1
AJ = —/ J” ('U)h+8€u)) (6w7€UJ) ds
0
AC - / €X {efn [An + Up — g] - é‘n [eAn + euvn]} dO.
e

Remark 12. Proposition 11 says that the difference between the primal and the dual residual
is of second order in the error. Thus it is of higher order in the error than the remainder

terms Rf) and RS’). Consequently, we cannot use the difference between the primal and dual
residual to estimate the remainder Rf) as it is possible for smooth nonlinear problems, cf.
[2, Proposition 6.6 and Remark 6.7].

Remark 13. For quantities of interest J, which are linear in w, AJ vanishes.

PROOF. Starting from the definition of the dual residual p* and the continuous dual problem,
we obtain using (14)

p* (wn, zn) (€w)
= J (wp) (ew) = a(eus yn) + bn (€nns€u) = (€xnsYnn)ore — Ch (Ennser,)
= J' (wn) (ew) = a(eu yn) + bn (§nps €u) = (€x05 Yoy = Ch (nhs€n)
—J (w) (ew) + a(ew,y) = b(&neu) + (ex,, Yn)or, + ¢ (nsen,)

1
— _/ J" (wp, + sew) (ew, ew) ds + a ey, e.) + (e, e%”)O,Fc
0

+bp, (§n,hseu) — b (Ensen) — cn (Enhren,) +¢(&nsen,)
= AJ+p(wp) (2 — 2n) + C (wp) (ee,)
—len (Ennrern) = bn (Ennreu)] +c(&nren,) —b(&nseu) -

From the proof of Proposition 4, we know

c (gn; eAn) —b (§n7 eu) =-C (wh) (fn) + /F gnex [)\n,h + Unp — g] do.
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In the proof of Proposition 8, we have seen

Ch (gn,ha eAn) - bh (fn,hy eu) =-C (wh) (gn,h) + - fn,hex [)\n + Uy — g] do.

These two equations together with the foregoing calculation lead to

AC = C(wp)(eg,) = [en (Enhrern) = br (§nny )] + c(Ensen,) — b (En, eu)
= C (wh) (ein) +C (wh) (gn,h) - /F fn,hex [)\n + Uy — g] do

—C (wp) (§n) + Enex P‘n,h + Up,p — g] do

Ie
= fnex P\n,h + Upn — g] do — gn,hex [)‘n + Uy — g] do.
I'c |Ne]
Using
‘Sn [An,h + Uh,n — g] - ‘fn,h [)‘n + Uy — g]
‘Sn [An,h - )\n + Up,p — un] + £n [)\n + Up — g] - gn,h [)\n + Up — g]
= _fn [6/\ + Vn (eu)] + e [)‘n + Vn (u) - g]
finishes the proof. [

4 Numerical evaluation of the error identities

The error identities (13) and (15) from Proposition 4 and 8 cannot be evaluated numerically,
since they involve the analytic solutions w and z as well as the remainder terms are unknown.

The remainder terms 7{(12) and RSS) are of second and third order in the error, respectively.

Thus they are of higher order and can be neglected. The remainder terms Rf) and Rf)
are first order in the error in the active set. Numerical experiments show that this error is

(2)

fast decreasing. However, a strict mathematical analysis of the convergence order of R};” and

Rf) is an open question and depends on the chosen discretization. The numerical results

in Section 5 substantiate that it is possible to neglect also Rf) and RS’). Furthermore, we
have to numerically approximate w and z. The corresponding operator is called A, which
is discretization dependent. We refer to |2, Section 4.1 and Section 5.2| for an overview of
possible choices and their mathematical justification under strong smoothness assumptions.
All in all, we obtain the primal error estimator

J(w) = J(wy) = np:=pwp) (Azn) — 2n) — C (wn) (&n,n)

and the primal dual one

T () =T (un) = 5 (un) (A(2) = 21) + 50 (o, 20) (A Cun) = wn) — € () (E).

Up to now, the complete analysis has been developed for a general discretization. Hence-
forth, we concretize the results for a mixed discretization, which was first proposed in [17]
and extended to higher order methods in [35]. However, we solve the discrete problems by a
primal-dual-active-set-strategy, see 6], in contrast to the Schur-complement approach in the
mentioned references. To be precise, let Tj, be a finite element mesh of ) with mesh size h
and let &o be a finite element mesh of I'c with mesh size H, respectively. The number of
mesh elements in 7, is denoted by Mq and in Ec by Mc. We use line segments, quadrangles
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or hexahedrons to define 7 or . But this is not a restriction, triangles and tetrahedrons
are also possible. Furthermore, let U7 : [~1,1]¢ = T € Tj, and ®p : [-1,1]9"! — E € & be
affine and d-linear transformations. We define

Vh::{v€V|VT€7ﬁ: vi|To\I/T€Q1},
Appi={peL?Tc)| VE €& ppo®g € Po, up >0},

where Q1 is the set of d-linear functions on [—1,1]¢ and Py the set of piecewise constant basis
functions for the Lagrange Multiplier on [—1,1]"!. The discrete saddle point problem is to
find (up, An,m) € Vi x Ay g such that

Vvh € Vh : a (uh,vh) + (A”vH’Uha”)O,FC = <l,vh> , (16)
v,U/n,H € An,H : (,Ufn,H - )\n,Hyuh,n - g)o,pc < 0. (17)

It is well-known, that there exists a unique discrete saddle point (up, An,m) € Vi X Ay m,
if a discrete inf-sup condition is fulfilled. In the case of quasi-uniform meshes the discrete
inf-sup condition holds if the quotient of the mesh sizes h/H is sufficiently small, cf. [18]. It
is noted that different mesh sizes h and H implies that the Lagrange multiplier is defined on
a coarser mesh which may lead to a higher implementational complexity than using a surface
mesh £c which is inherited from the interior mesh 7;. In compliance with the mentioned
reference, we observe in our experiments that the choice H = h leads to oscillating Lagrange
multipliers whereas H = 2h results in a stable scheme. Thus, we use meshes with H = 2h in
the experiments of Section 5.

To motivate our definition of the discrete dual solution, we give here the details of the
solution algorithm, cf. [6, Section 5.4.1]. We begin with a reformulation of the contact
conditions (17):

/ (uh,n - g)¢H do <0,
Te

An,HYH do >0, (18)
T'e

/ /\n,HwH do/ (uhm — g)sz do =0,
e I'c

which have to hold for all ¥y € A, g. We specify the coupling matrix N & RMexM with
respect to the bases of Vi, = (¢1,...,¢5) and Ay g = (¢, ..., Yn.) by

Nl'j = 1/JZ(¢]) -n dO,
I'e
the mass matrix M € RMe*xMc of the Lagrange Multiplier
My = [y do
Te

and the gap vector g € RMe
gi = / gy do .
T'e

By a bar, we denote the vector-valued representation of the corresponding discrete function
in the belonging basis. The contact conditions (18) read in algebraic form

Nup —g <0, MA\yg >0, (MA\yu), (Nap—g); =0Vi=1,...,Mc . (19)

i
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Using the NCP function
CON (@hs Anyir)i o= (M )i — max {0, (MAn g)i + cn(Nip — §)i }

with a positive constant ¢, the weak contact conditions (19) are equivalently expressed by

CN(ﬂh, )\n,H) =0. (20)
Define the characteristical function y; by

o L, (Mj‘n,H +Cn(Nah _g))z > 0’
o , (MM i+ en(Nuy, — g)), < 0.

The generalized derivative of the NCP function with variations dup, 6\, g is then given by

C;V(ahv j‘n,H)((ﬁ‘ha 53‘n,H)Z = —Xi (_M(;}n,H + an(siuh) - (M5}\n,H)

In order to solve (20), we use a semi-smooth Newton’s method
Ch (= Mh) (8un, o0 ) = =Cw (a7 A8

where the new iterates are calculated by uf := aﬁfl + &Lﬁ and S‘Z,H = S\fle + (57)\271{. The
active and inactive indices in Newton step k are determined by
Ay ={ie{l,...,Mc} | (MA\ng + cn(Nup —g)), >0} (21)
IF={ie{l,....Mc} | (MAnm+ca(Nup—g)), <0} . (22)

Then the new iterate (ﬂ’fL,Xﬁ H) of Newton’s method is given by the solution of the linear
System

K'ZTL];:L‘FNT;\?L’H: f,
(MN; j)i= 0, i€ TF,

with the symmetric and positive definit stiffness matrix K € RM*M and the load vector
f € RM . Using a suitable numbering, it corresponds to a saddle point problem of the form

K NI NJ ik f

N, 0 0 < th > =1 9 |,
~ n,H

0 0 My ’ 0

where Nj,, Ni and M, are submatrices of N and M specified by AX and ZF as well as g a
subvector of g.
The discrete dual solution zj, = (yp,&p i) is defined by the transposed system of the last

Newton step, i.e. B
K NJ

0 _
- k i
LV a8
Nk 0 Mk n,H An
Here, J, represents the assembled vector of J;, (wy) (¢) and Jy, the one of J§ (wp) (¢)).

We consider higher order reconstructions of the discrete solutions for the approximation
of w and z. This approach is computionally cheaper than to calculate higher order solutions.
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(a) Mesh with patch structure (b) Corresponding patch mesh

Fig. 1: Illustration of the patch structure of the finite element mesh

3
_——— (D
— —A— Ly (&)
,, \\\ 4 \
N w
L ~*¥f N <.

Fig. 2: Tllustration of 2&2

We approximate u and y using patchwise d-quadratic reconstruction, cf., e.g., [2, Section

4.1] for this well known procedure. Let zgl) be the corresponding interpolation operator.
For the evaluation of igi), a special structure of the adaptively refined finite element mesh
is required. This so-called patch-structure is obtained through the refinement of all sons of
a refined element, provided that one of these sons is actually marked for refinement. It is
illustrated in Figure 1. For the higher order interpolation of the Lagrange multipliers, we use

a patchwise linear interpolation zgg, it is illustrated in Figure 2. We define A’ ((vh, ptn 1)) ==

(igl)vh, Zé%/,bn’[{) and obtain the error estimators

mp = plwn) (A" (z1) = 20) = C (wn) (Gnn)
1 1,
n = 5p(wn) (A" (2n) = 20) + 5" (wn, 2n) (AT (wn) = wn) = C (wn) (€nn)-

To utilize the error estimators 7, and 1 in an adaptive refinement strategy, we have
to localize the error contributions given by the residuals with respect to the single mesh
elements T' € T, leading to local error indicators 17 . Here, the filtering technique developed
in [9] is applied, which implies less implementational effort than the standard approach using
integration by parts outlined for instance in [2|. An alternative localization method was
recently proposed in [33]. The terms connected to C are added to the adjacent volume cells
to the boundary cells.

5 Numerical results

In this section, we test the theoretical findings by some examples and substantiate the nu-
merical approximation techniques.
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von Mises stress
0.0 1,0 2,0 3.0 4,0
[ [N I

-—

=3
- s -
s -

_ lambda —
0,000 0,1125 0,2250 0,3375 0,4500
[ . .

(a) Plot of u in 2 and the obstacle (b) A\n,mr

Fig. 3: Numerical solution of the first 2D example for Mg = 24576 and Mc = 64

Mg L Erel (Ja,l) Lo (Ja,l’ 77p) Lo (Ja,l’ 77)
384 0 | 2.57243 1072 0.91869 0.38317
1536 1 | 1.36313 - 10~2 1.60751 0.99145
6144 2 | 3.76048 - 1073 1.02681 1.01653
24576 3 | 9.49684 - 1074 1.00536 1.00546
98304 4 | 2.37789-107* 1.00134 1.00137
393216 5 | 5.94706 - 10~° 1.00034 1.00034
1572864 6 | 1.48691 - 10~° 1.00008 1.00008

Tab. 1: Results of the presented error estimators for .J,

5.1 First example: Known analytical solution

At first, we consider a 2D Signorini problem with known analytical solution, see also [32]. The
domain is given by Q := (—3,0) x (—1,1), where homogeneous Dirichlet boundary conditions
are prescribed on I'p := {—3} x [-1,1] and homogeneous Neumann boundary conditions
on 'y := (=3,0) x {—1,1}. The possible contact boundary is denoted by I'c := {0} X
[—1,1]. As material law, we apply Hooke’s law with Young’s modulus E := 10 and Poisson
number v := 0.3 using the plain strain assumption. By L the number of uniform refinements
based on a coarse initial triangulation is denoted. The analytical solution is called u(zx,y) :=
(u1(z,y), uz(z,y)) ", where

2 2 2
() = { @) R W<t
B 0 else
. (4 3
e {<”) = 1P+ 3+ = DY+ D7 bl <
| 0, else.

The volume force is then given by f := —div(o(u)) and the obstacle by g(y) := u;1(0,y). The
discrete solution wy, is illustrated in Figure 3.
First, we consider the quantities of interest

Joau) = /Q w—05() [ul? de,
1
Jo2 (A\n) = / (0.5tanh (20(0.25 — |y — 0.125])) + 0.5) A2 (y) dy,

-1

where wy,(x) = 0.5 (tanh(20(d — |z — (m,0)|2)) + 1) is a cut off function w.r.t. the disc
B ((m,0)), d = 0.5 and m € [—3,0]. The relative discretization error w.r.t. the quantity of



5 Numerical results 14

Mg L Erel (Ja,2) Lo (Ja,27 np) Lo (Ja,Qa 77)
384 0 [ 9.59089 - 102 1.13982 0.14453
1536 1 | 2.50765 - 10+ 1.17490 0.85087
6144 2 | 5.50751 - 102 1.06133 0.95967
24576 3 | 1.32901 - 102 1.08439 0.99017
98304 4 | 3.29218-1073 1.09121 0.99752
393216 5 | 8.21155-10~* 1.09293 0.99938
1572864 6 | 2.05171-104 1.09337 0.99984

Tab. 2: Results of the presented error estimators for J, »

1.0014

1.0012 -

1.0010 -

effectivity index Iog

1.0008

midpoint coordinate m

Fig. 4: Plot of the effectivity indices in depence of the midpoint of the quantity of interest m
for Mg = 98304

interest is given by | (us An) = J (U An,)|
Uy Ay ) — Up,, n,H

| (u, An) ’

Eio (J) =

and the effectivity index by

Ieff(J,ﬁ) — J (’U,, )\n) - :] (uh, )‘H,H) '
n
In Table 1, the results for the quantity of interest J,; are listed. We found by analyzing the
data that the effectivity indices seem to converge of order h? to 1 for 7p and 7, which is almost
optimal. When regarding .J, 2, see Table 2, we observe an almost constant effectivity index
of 1.09 for n,. However, the effectivity index is very good. In contrast to 7,, the effectivity
index for 1) seems to converges to 1 with order h?. From the numerical experiments in [32], we

know that ig})\n,H is not of higher order in the integral over I'c. But, in this approach, the
contribution of the terms involving zgllz, is so small that we could not observe this behavior on
the considered meshes. Consequently, we obtain an accurate but not asymptotic exact error
estimator. It is one advantage of this approach that it is sufficient to work with the higher
order reconstruction to obtain reasonable results.

To substantiate this result even more, we consider the quantity of interest

Ja,m (1) ::/me(x)HuHde

for m € [—3,0]. The effectivity indices of 7 and 7, in dependence of m are depicted in Figure
4. We obtain effectivity indices in the range of 1.0008 to 1.0014. Thus, the estimate is very
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_.-"'f ”OIIBH%G_NI
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Von-Mises equivalent stress 0,025
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(a) Plot of up in Q and the obstacle (b) An,m

Fig. 5: Numerical solution of the second 2D example for Mq = 65536 and Mo = 64

[ T T T TTTTT] T T T TTTTT] T T T TTTTT] T T T TTTTT]
i —o— uniform | |
1072 . E
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o F ' 1
) [ i
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El E
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10° 10* 10° 109
number of cells Mg

Fig. 6: Comparison of adaptive and uniform refinement

accurate on the one hand and on the other hand there is no real depence on m. In contast
to this, the estimators developed in [32]| show, if higher order reconstruction is used, a strong
dependence on m. There, the effectivity indices become worse for m approach zero.

5.2 Second example: Adaptivity

In the last section, we have examined the accuracy of the error estimator. Now, we address
adaptive refinement based on 7. We set  := (0,0.05) x (0,0.2), I'p := [0,0.05] x {0},
I'c :={0.05} x [0.15,0.2], and I'y := OQ\(I'c UT'p). We apply Hooke’s law under the plain
stress assumption with modulus of elasticity £ := 10 and Poisson ratio v := 0.33. The volume
force is constant and given by f := (0.5, O)T. The gap function is also constant, g := 0.005.

The solution is illustrated in Figure 5. We show the von-Mises equivalent stress

2 2 2
o4 + 055 + 30
o ’2(0’06): \/ 11 22 21

Oe¢

=1
£
i
]

Fig. 7: Adaptive mesh in the 5" iteration
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Mg L Erel Lo
256 0 | 1.98594 - 102 1.26467
436 1 | 7.41959 -1073 1.96084
830 2 | 3.88619-10"3 1.39197
1660 3 | 1.68179-103 1.14467
3244 4 ] 9.29281-10~* 1.28651
6028 5 | 4.28825-10~* 1.07428
11536 6 | 2.38628 -10~* 1.01518
21388 7 | 1.12832-10~* 1.08988
39448 8 | 5.77479-10~° 0.09065
72604 9 | 2.60956 - 107° 0.13039

Tab. 3: Detailed results of the adaptive algorithm for the second example

with o, := 1. We have three different sources of large error in this example: Stress peaks in
the left corners of the domain, where the Dirichlet boundary conditions change to Neumann
boundary conditions as well as the transition zone of contact to non-contact. All these three
regions have to be resolved by the adaptive algorithm. We choose J(u) := [5Vu : Vudz
with B = [0,0.05]? as quantity of interest. Here, B corresponds to the left end of the bar.
At first, we solve this problem based on a uniform mesh refinement and obtain a reference
value Jeof = 5.934693870188204 - 1076 by extrapolation over all calculated values of J. We
use Jyor to determine the relative error E,q approximately. The error on the different meshes
is plotted in Figure 6, where we do not recover the optimal order of convergence. Afterwards,
an adaptive algorithm based on 7 and a fixed fraction strategy with 0.2% refinement fraction,
which is used for comparison with the results in [32], where the same example is considered,
is employed. In Figure 6, we observe that the adaptive algorithm reaches the optimal order of
convergence as expected. The adaptive mesh in the 5% iteration of the adaptive algorithm is
depicted in Figure 7. We observe strong adaptive refinements in the left corners of the domain
and on the left end of the active contact zone, which matches our expectations. The adaptive
mesh generated based on 7 is very similar to the ones created by the error estimator based on
the mixed dual problem in [32]. The details of the adaptive algorithm are outlined in Table
3. We observe very good effectivity indices up to the last iterates. Since the convergence rate
also accelerates in the last iterates, the calculated error seems to be too small due to the used
reference value.

5.3 Third example: Three-dimensional

Finally, we consider an example in three dimensions. The domain 2 is given by
Q:={zeR’|0<21 <025 0 <z, 23 <1}.

We assume homogeneous Dirichlet boundary conditions on I'p := {z € 9Q |21 = 0}. As pos-
sible contact zone, we choose I'c := {x € 0Q |x1 = 0.25, 0 < x9, 3 < 0.5}. On the remaining
boundary I'y = 9Q\(I'c UT'p), homogeneous Neumann boundary conditions are presribed.
Here, we use Hook’s law with the material parameters E := 10° and v := 0.3 and apply no vol-
ume or surface loads. The obstacle is parametrized with z(x) = /(22 — 0.25)2 + (z3 — 0.25)2
by

[ 0.25+0.05 (655362 — 1), =z <0.25,
Y(w) = { 0.25, else.
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lul

0,05

(a) Numerical solution (b) Adaptive mesh

Fig. 8: Plot of the numerical solution of the 3d example on an adaptive mesh with 43688 cells
in the 7" iteration of the adaptive algorithm

The numerical solution is illustrated in Figure 8. As the quantity of interest, we choose the
functional

J (u, M) := 103/

B

o(u) : o(u)dz -l—/ An ds

e
with B := {z € Q|0 < z; <0.25, 0.625 < 29, 3 < 0.875}. The adaptive mesh with 43688
cells in the 7" iteration of the adaptive algorithm is also illustrated in Figure 8. We observe
mainly refinements at the boundary of the active contact zone. In this example, the term
C (wp) (&n,m) is comparatively large in the first iterations and then fast decreasing.

6 Conclusions and outlook

In this article, we have presented a new approach to goal oriented a posteriori error estimation
in contact problems. The main advantages compared to other methods are that the numerical
evaluation by higher order reconstruction methods is not asymptotically exact but accurate
that the error in the contact conditions of the discretization scheme is directly measured and
that the dual problem is linear. On the other hand, we obtain a remainder term, which we
cannot control analytically. This is a topic of further research. The direct measurement of the
error in the contact conditions is crucial for two planned extension. This property is necessary
for an accurate goal oriented adaptive scheme in dynamic contact problems, where the precise
resolution of the impact points is very important. Furthermore, it provides the opportunity to
construct model adaptive algorithms, e.g. for switching between linear and nonlinear contact
conditions.
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