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Abstract

Space-time finite element methods for dynamic Signorini problems are discussed in this article. The
discretization scheme is based on a mixed space-time formulation of the continuous problem, where the
Lagrange multipliers represent the contact stress. To construct the trial space for the displacement and
the velocity, we use piecewise polynomial and globally continuous basis functions in space and time.
It is combined with a test space consisting of piecewise polynomial and possibly discontinuous basis
functions in time. The Lagrange multiplier is approximated by piecewise discontinuous polynomials
in space and time. By suitable combinations of the polynomial degrees as well as the underlying
meshes, we ensure the stability of the presented scheme, which is substantiated by some numerical
experiments.
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1 Introduction

Dynamic contact problems play an important role in many engineering processes. We ex-
emplify grinding processes here. The contact of the tool and the workpiece is typically the
main source of dynamic deflections of the grinding machine, where the contact arises only in a
small area. Consequently, it is essential in the simulation of such processes to use an accurate
and reliable numerical scheme to approximate the contact. We refer to [47] for an elaborated
description of a grinding process and the corresponding simulation approach.

The inclusion of geometrical and frictional constraints leads to inequality conditions in
addition to the usual systems of partial differential equations arising from the modeling of
mechanical processes, cf. [31, 36, 49]. The numerical solution of dynamic contact problems
is a challenging task and a huge number of approaches are presented in literature. We refer
to the monographs [36, 49| and the survey articles [18, 35| for an overview. Usually, finite
difference schemes are used for the discretization of the temporal direction and finite element
methods are applied for the approximation of the spatial problems. In general, Rothe’s
method is employed, i.e. the temporal variable is discretized first. Discretization schemes for
dynamic contact problems using special parameters in the Newmark [39] or in the generalized-
a method [12] are proposed in [5, 13, 46]. An important topic during the discretization is the
conservation of energy and momentum. Discretization methods based on these conservation
properties are developed in [3, 37|. A second crucial issue are arising oscillations in the contact
forces. One approach to circumvent these oscillations but preserving energy conservation is
to redistribute the mass in the system by changing the mass matrix. In [30], the mass matrix
is modified by optimization algorithms, whereas special quadrature rules are used in [21]. A
complete implicit treatment of the contact constraints is implemented in the Newmark method
in [28, 29]|. This scheme is stable but energy dissipative. Using a modified predictor step in
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the Newmark method, an L2-projection of the predicted displacement on the admissible set, a
stable scheme is introduced in [15, 34|, which is only slightly energy dissipative. Furthermore,
a consistency result and an adaptive time stepping for this method are presented in [32].
Space adaptive discretizations are discussed in [8, 9]. A penalty method to solve dynamic
contact problems is developed in [45]. Special finite elements to smooth the contact forces are
applied in [38, 41]|. A Nitsche finite element method for dynamic contact problems is proposed
in [10, 11].

The time discretization leads to a sequence of semi-discrete contact problems, which are
similar to static contact problems. Consequently, the same solution techniques are applied.
Concerning the numerical solution of static contact problems, a huge number of contributions
exist. Again, we refer to the monographs [36, 49|. This field of research is still an important
subject and we refer to the recent works [16, 26, 27, 33, 48]. We employ the techniques
developed in [17, 22, 23, 24] and extended to higher order finite elements in |7, 43, 44].

In this article, we focus on the holistic discretization of dynamic contact problems, i.e. the
temporal and spatial discretization are carried out simultaneously. This approach allows for
the consideration of space-time effects in a simpler way. Thus, the analysis of the approach
is simpler and provides more inside in the interaction of space and time. Our approach relies
on a mixed formulation in space-time, which is explained in Section 2. After the introduction
of the continuous problem formulation, we present the higher order finite element scheme
in more detail. Globally continuous basis functions in space and time are used to form the
trial space for the displacement and the velocity. The corresponding test space consists of
possibly discontinuous basis functions in time but globally continuous ones in space. The
Lagrange multiplier is discretized by possibly discontinuous basis functions in space and time.
We proof in Section 3 that this approach is energy conserving. The choice of a discontinuous
test space is crucial for this discretization, because it enables us to decouple the single time
intervals and to derive a time stepping scheme, cf. Section 4. The arising discrete problem
in every time step has the same structure as static contact problems and is solved by the
techniques presented in [7|. In [44], it was shown that the higher order mixed method for
contact problems is stable, if the quotient of the polynomial degree of the displacement and
of the Lagrange mutiplier times the quotient of the corresponding mesh widths is sufficiently
small. In Section 5, we substantiate by some numerical experiments that this result carries
over to the space-time setting. Unfortunately, a second assumption for stability is found,
which correlates the spatial mesh width with the time step length. We conclude the paper
with a discussion of the results and an outlook on further tasks.

2 Continuous formulation

In this section, we discuss the continuous formulation of the dynamic Signorini problem. The
initial point is the strong formulation, which is reformulated in the weak sense as mixed
problem. The mixed formulation is the basis for the presented discretisation. The section
concludes with some remarks on the analytic properties of the dynamic Signorini problem.

2.1 Strong formulation

The basic domain is Q € RY, d = 2,3 and I = [0,7] the time interval. The boundary S
of € is divided into three mutually disjoint parts I'p, I'c and I'y with positive measure.
Homogeneous Dirichlet and Neumann boundary conditions are prescribed on the closed set
I'p and on the relatively open set 'y, respectively. Contact may take place on the sufficiently
smooth set I'c, T'c C CT'p. See, for instance, [31, Section 5.3] for more details. The rigid
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foundation is parametrized by the function
g:TexI—RU{-0c0},

including a suitable linearization, cf. [31, Chapter 2|.

In the description of dynamic contact problems, we assume homogeneous Neumann bound-
ary conditions to ease the notation. A linear elastic material model is used to describe
the material behaviour. The displacement is given by the function u : Q x I — R? and
uy is the displacement on the boundary in the outward normal direction. In this context,
g(u) == & (Vu+ Vu') denotes the strain and o (u) = Ce(u) the stress. The fourth order
tensor C only depends on the modulus of elasticity £ > 0 and Poisson’s ratio v € [0, %)
By o, (u), we denoted the stress on the surface, where we distinguish between oy, (u), the
stress on the surface in normal direction, and oy, (u), the stress in tangential direction. Su-
perposed dots denote temporal derivatives. The initial displacement is given by us and the
initial velocity by vs. The volume forces are denoted by f.

If the solution w is sufficiently smooth, for instance, u € C? (2 x I), it fulfills the equations
of structural dynamics including the boundary and initial conditions

pi —div (o (u)) = in Qx1I, (1)
u = onI'p x I, (2)

on(u) = on 'y x I, (3)

u(0) =wus inQ, (4)

w(0) =ws  in (5)

as well as the contact conditions

up—9g <0 on I'e x I, (6)
op(u) <0 onTexI, (7)
onn (W) (up, —g) =0  onTe x I, (8)
Onn (W) (U, —g) =0  onTg x 1. 9)

Henceforth, we set p = 1 for notational simplicity. In comparison to the static contact case,
the persistency condition (9) has been added. Tt corresponds to the complementarity condition
(8), only the gap u, — g is replaced by the gap rate 1, — §. We see in Proposition 2 that the
persistency condition ensures the conservation of energy, if no outer forces occur. Therewith,
the impact is purely elastic. To clarify the meaning of the persistency condition, we examine
the following equivalent form (cf. [36]) of the contact conditions (6-9) on I'c x I:

B Onn (u) =0

un =g <0 = { 1, unconstrained, (10)
Onn (u) <0

U, —g=0 = U, — g <0 (11)

O, (U, — §) = 0.

The condition (10) says that the movement of the elastic body is free, if the gap is open. If
the gap is closed, then condition (11) denotes that the contact stresses are negative, which
is known from the static context. But now, the gap rate has to be less than zero, too. This
ensures that u, — ¢ < 0 holds. Furthermore, we recover the persistency condition (9).
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2.2 Weak formulation

After having discussed the strong formulation, we now define the weak one. To this end, we
briefly present the underlying function spaces. A detailed description of Sobolev spaces can
be found, e.g., in [1]. An overview of the spaces, which are mainly used in the context of
contact problems, is given in [31]. For the time dependent Sobolev spaces, see, e.g., |14, 19].

The basic function space is L? (Q) with the scalar product (w,¢) := (w, p)q = [owp dz

for w,p € L? () and the corresponding norm Hng = ||lw 3’9 := (w,w). The Sobolev space
H®(Q), k = 1,2,..., with the norm ||||z is defined as usual. We set H* := (H" (Q))d,
k=1,2,...,and £? := (L2 (Q))d. The trace operator is given by v : H! — (Hl/2 (8(2))d
with the trace space H'"? (99).

Using the trace operator, we define

Hh(Q) ={pe H (Q(p)=00onTp}, Hbh:=(H} Q)"

The dual space (H}, (Q))* is called H~1 (Q) and (H}))* = H~!. The dual pairing is denoted
by (-,-). The space H~"/?(I'¢) is the topological dual space of H'7? (I'c). The norm connected
to H=72(I'¢) is called [l=1/ v, The linear and bounded mapping 7. := H' (Q,Tp) —
H'2(I'¢) with 4o = Yre is surjective due to the assumptions on I'c, cf. [31, p. 88]. Here,
we distinguish between the trace in normal direction y, (u) := (. (u))n and the one in
tangential direction y; (u) := (Yry (u))t For functions in L? (T'¢), the inequality symbols >
and < are defined as “almost everywhere”. With this definition, we can state the spaces

H (To) = {v e nY: (rc)‘ v <0}

and

A (vc) = { e A7 (Te) | wo e B (Te) + () <0,

where .FNL:I/Q (T'¢) is the dual cone of er/{2 Te).

Using the Bochner integral theory, we can study Sobolev spaces involving time. We use
the spaces LP (I; X), 1 < p < oo, with a real Banach space X. Continuous functions in time
form the space C' (I; X). If X is a Hilbert space with scalar product (-,-), then the space-time
scalar product is denoted by ((u,v)) := [; (u(t),v(t)) dt. In general, an outer parenthesis
denotes the integration over I. We will use the spaces

vi={ver?(up) [ber? (i)} and Vi={xe L*(LL2) [t e I* (W) }.

Note that functions u, which are contained in U or V, are continuous in time after possibly
being redefined on a set of measure zero. More precisely, they belong to the space C (I; 7—[_1),
see [19, Theorem 2 in §5.9.2]. Furthermore, we set A := L? <I; I:I;l/2 (F(;)>.

The bilinear form of linear elasticity is given by a(+,-) := (¢ (-),e(+)). It is continuous and
due to Korn’s inequality also elliptic. Based on a, the space-time bilinear form A is given by

Alw, ) = ((v,9)) = (4, 9)) + (0, X)) + (a (u, X)) = ((f, X))
+ (u(0), x(0)) = (us, x(0)) + (v(0), ¥(0)) — (vs, ¥(0)) ,

for w = (u,v) € W and ¢ = (x,v¢) € W with W := U x V. The first two terms in A express
the weak equality between the velocity v and the first derivative of . The remaining terms
in the first line are the weak form of the equation of motion. The second line includes the
initial conditions in a weak sense. Furthermore, we assume f € L? (I; E2), us € H}), vs € L2,
and g € L? (I; H/* (T¢)) with g € L2 (I; H'* (T¢)).

Finally the weak form of the dynamic contact problem reads:
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Definition 1. The functions (w,\) = ((u,v),A) € W x A are a weak solution of the dynamic
contact problem, if and only if

Vo=0uY)eW:  A(w,p) + (A (X))
VueA: (1= A7 (u) —g)) <

0
0
holds.

Mixed formulations of the dynamic contact problem and their equivalence to a variational
inequality formulation are discussed, e.g., in [3, 40]. In particular, the equality of o, and
An, is considered. A further variational inequality formulation is discussed in |46], where the
equivalence of the strong and the weak formulation is considered. It should be remarked that
the existence and uniqueness of a solution u for the purely elastic dynamic Signorini problem
is to the best of the authors knowledge an open question. In [2] the existence of a weak
solution for the dynamic linear viscoelastic Signorini problem is shown.

One main property of dynamic contact problems is the conservation of the total energy

Fron () 1= Ban(t) + B (1) := 3 (0(0), (1)) + ga(u(t), u(®)).

Proposition 2. If the right hand side f is zero, the obstacle g does not depend on time, i. e.
g=0, (u,0) e W,

(u(0),4(0)) = (us,u(0)) + (v(0),9(0)) — (vs,9(0)) =0,

and the generalized persistency condition

(A (@) = (A (4) — ) = 0 (14)

for a. e. t € I holds, then the total energy is conserved.

ProOF. We test equation (12) with ¢ := (%, 0) and obtain

0 = Aw, )+ (A (2)) = ((v,9)) + (a (u,u))
91 a1
= ; ai(v,v) + aga(u,u) dt
Exin(T) = Exin(0) + Epot (T') — Epot (0)
= Etot (T) - Etot(o)-

By varying the endpoint in time 7', we obtain that the total energy is constant. O

Remark 3. The linear and the angular momentum are also conserved under suitable assump-
tions, see for instance [36].

While the first two assumptions of Proposition (2) arise from physical reasons, the third
and fourth one are smoothness assumptions on the weak solution (u,v). The generalized
persistency condition (14) is a weak version of (9). It corresponds to the pointwise persistency
condition due to the sign conditions in (10-11), cf. [32]. However, the generalized persistency
condition is not directly included in the weak formulation (12-13) but implicitly as shown in
the following proposition, compare [32, Theorem 1.4.2].

Proposition 4. If (w,\) € W x A is a weak solution of (12-13), v € C' (I;H},), and
geCH(I; H'? (T'c)), then the generalized persistency condition (14) holds.
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PROOF. By setting p =0 and g = 2\ in (13), we obtain
(A (@), (u(t)) = g(2))) = 0
Furthermore, since A € A and (y, (u(t +h)) —g(t+h)) € ik (T'¢), we also have

(N (t) , 7 (u(t + h)) — g(t + R))) < 0.

repectively

>0, forh<O,

<<)\(t), = (ult + 1) = () — (g(t + h) - 9<t>>1>> {< 0, forh>0.

Finally, we end up with

(O An (1) — §)) = lim <<)\(t), % [y (u(t + h) —u(t)) — (9(t + h) — g(t))}>> =0.

h—0

3 Discretization

In this section, we discuss the discretisation scheme and show some properties of it. The
chosen ansatz is a Petrov-Galerkin scheme, with continuous basis functions in space and time
for the displacement and the velocity. The Lagrange multiplier is discretized with piecewise
discontinuous functions in space and time. As usual in mixed methods, special attention has
to be paid to the balancing of the discretisation of the primal and the dual variable.

The temporal discretisation is based on a decomposition of the time interval I = [0, 7]
into My, € N subintervals I,,, = (tm—1, tm] with

0=t0<t1<...<th=T and IZ{O}UIlLJ...UIMk.

We work with an equidistant decomposition of the time interval, i.e. the constant time step
length is given by k = T/m,, and it holds t; = ik. The time instances ¢;, 0 < i < M}, correspond
to the time steps in a finite difference approach. We also call this decomposition the temporal
mesh Tg. By the time step m, we denote the step from t,,_1 to t,,.

The basic domain €2 is triangulated by a mesh T}, of quadraliteral or hexahedral elements.
The number of mesh elements in the mesh T}, is denoted by Mp,. The mesh does not change
over the calculation. The spatial finite element space is

Vi, = {cp e H! ‘VT €Th: o1 € Qp, (T;Rd) } )

Here, Q,, (T; Rd) is the set of d-polynomial basis functions of degree p; on a mesh cell 7.
The temporal test space is defined as

Wi = {wn € L* (I; H") |kt € Ppo—1 (Imi Vi), m =1,2,..., My, okn(0) € Vi, }.

Here, P, (w; X) is the linear space of polynomials on w C R with values in X, which have the
maximum degree p;. Functions from Wj;, are possibly discontinuous at ¢;, 7 = 0,1,..., M.
The temporal trial space is given by

Vi := {orn € C(L;H) [0rnir,, € Pp (I Vi), m=1,2,..., My } .
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Corresponding continuous space-time Galerkin methods for the wave equation are analyzed
for instance in [4, 20].

The discrete Lagrange multipliers are defined on the boundary mesh By representing the
contact boundary I'c and on the temporal mesh Tx. The indices H and K indicate that
coarser meshes may be chosen for the Lagrange multiplier in space and time. We assume here
that K = nk, n € Nand My mod n =0. Let Mg = Mk/n and J,,, = ((m — 1) K, mK]. The
spatial trial and test set for the Lagrange multiplier is

Ag = {peL?(To) VT €Br: pr € Py, (T,R),VE€G(T): pn(§) <0},

where G7 is a set of test points. For ¢; = 0, we take the midpoint as test point. For linear
polynomials, we work with the endpoints. This leads to a conforming scheme. For ¢; > 1, we
take the qg Gaufs-points on T as test points. This choice leads to a convergent scheme, cf.
[6]. We define the space-time trial and test set by

AKH = {,UKH S L2 (I; L2 (Pc)) ‘VJ S TK CHKH|T S Pqt (J; AH) } .
The discretisation reads:

Definition 5. The functions (wip, Axgr) = ((ugh, Vin) s Axe) € (Vin X Vin) X Agg are a
discrete solution of the dynamic contact problem, if and only if

Akn (Wkhy xn) + (A, Yo (Prn))) = 0 (15)
((#KH—/\KH,%(ukh)—gkh)pc) <0 (16)

holds, where equation (15) has to be valid for all pip = (Vrn, xkn) € Win X Wi, and inequality
(16) for all pxy € Agpg. The discrete space-time bilinear form is

App (Wih, Orn) = Z {((ven — tns Yin))g,, + ((Okn, Xa))1,, }

+ Z {(a (upn, xxn)) g, — ((f, th))[m}

0 0 0
+ (ukh — s, Xan) + (Vi — Vs, VRp) -
Furthermore, ggp is the projection of g in the trace space of Vi,

We have discretized the dymanic contact problem in the usual “finite element way”. Thus,
we expect as usual that the properties of the continuous solution carry over to the discrete
one. In the following proposition, we discuss the conservation of the total energy:

Proposition 6. If the right hand side f is zero, g vanishes, and the discrete persistency
condition

(et (i) = gundr.) =0 (17)
for all J € Tk holds, then the total energy is constant on all time instances in Tk .

Remark 7. The energy conservation can be disturbed by adaptive methods and one has to
pay attention to this fact, when applying adaptive methods. See, for instance, [42].
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PROOF. We are allowed to test equation (15) on a subinterval J = (t1,t2] € Tx with (Ogp, tkp)
and obtain

0 = ((vkh:0kn)), (ukh, Ukn)) y + ((AKH,%(ZZM))FC)J

+(a
1
2

1 1
= 3 (Uizcmvl%h) (”km“ih) + 54 (U%muih)

1 .
—ia (U]lﬁh, ukh) + (()\KHv TIn (ukh))f‘c>] :

Consequently, it holds

Et20t - Etlot = - (()‘KHa'Yn (Ukh)))J = 0.

For the discrete persistency condition, we obtain

Proposition 8. The discrete persistency condition holds in the limit case, i.e.

Jim, e (o (. o 04 1) = i () = g ¢+ K) + 90 (), ), =0

for J € Tk.

Remark 9. Here, we demand that the contact conditions are strictly fulfilled in the integral
mean value over space and time. If we pass on this demand and require the contact conditions
only in the limit case K — 0, we are able to ensure a discrete persistency condition. We refer
to [36] for this well known proceeding.

PROOF. By setting uxg =0 and puxg = 2Axpm in (16), we obtain

((AKH,% (ukn) — gkh)pc>J = 0.

The test function puxpg (t) = Axg (t + oK) + Agg (), a € Z, leads to

<(>\KH (t+ oK)+ Agm (t) = Axn (t+ oK) v (ugn (t+ oK) — ggn (E+ OéK))rc)J

= (()\KH (), (ugn (t+ aK)) — g (t + aK))Fc>J <0,

repectively
<<>\KH [’Yn (ukn (t + oK) — ukn (t) = gen (t + aK) + gen (t)]> )
Fc J
>0, fora<,
<0, fora>0,

which implies the assertion. O
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4 Solution of the discrete problem

In the last section, we have presented the space-time Galerkin discretization. It leads to a
discrete problem in space and time, which has to be solved numerically. To this end, we
choose the temporal test functions such that the single time steps w.r.t. the temporal mesh
Tx decouple. Furthermore, we seperate the equation defining the balance of momentum and
the definition of the velocity field v. Thus, we obtain the time stepping scheme:

Time Stepping Scheme 1. Find wygp = (ugn,vgn) € Vin X Vin and Mgy € Agp, where
w), € Vi, x Vj is given by

Vb € Vit (ufy —us,thp) = 0, (18)

Vxn € Vi : (vgh — Us,Xh) = 0. (19)

Form =1,2,..., Mk, wgp|s,, € Vinigm X Ving, and Mgy, € Axm|s, are the solution of
the system

((vkn — @kns Yrn)) y, = 0, (20)

((Dkhs xkn)) g, + (@ (Wkny Xkn) g, + (Am, yn (0rn)) ;. = ((Fixen)) (21)

IN
P
—~
[\
DO
~

((rcH — AcHs Yo (Ukn) — Gkn)) .,

which has to hold for all Ygp, xkn € Vins,, and all uxg € Agp)g,,-

The equations (18) and (19) correspond to L2-projections into the discrete spatial trial
space, which are easy to solve. If ug and v are smooth enough, we can also use the in-
terpolations of ug and vs. The solution of the system (20-22) is more involved. First of
all, we specifiy our temporal degrees of freedom. Since we use a continuous ansatz in time
and evaluate the temporal integrals by Gauf-Lobatto-quadrature-rules, they are chosen as
the p; Gaufs-Lobatto-points. For the discontinuous Lagrange multipliers, we work with the
Gaufk-Radau-quadrature-points as temporal degrees of freedom.

The coefficients of a spatial finite element function x;, € V}, are collected in a vector named
2. Based on this spatial data, we define the vector

# = (@)@ T T

which represents the coefficients of a function xp, € Vip on the time intervall I,,. The
coefficients of xy, € Vi, on the time interval .J,,, are stored in the vector

zm — ((a}(m—l)n-l—l)T ’ <j(m—1)n+2)T . (imn)T> !

Thus, we can identify the functions ugp, and vgp, with the vectors 4™ and v, m = 1,2, ..., Mk,
respectively. Furthermore, ((f, xxn));  corresponds to an assembled vector f™ and ((uxm, gkn)) s
to g"™. The vector representing A € A on Jy, is given by

Am = ((W)T, () (mmﬁ

With this notation, the equations (20) and (21) can be written in algebraic form as

M —-M 0 Zm_p
MKN;\m_fm’

T
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Fig. 1: Analytic stress distribution in € for different time instances

where the matrix M corresponds to ((Xkn, ¥kn)) s, » M to ((Xkhs Yrn)) g, » K to (a (Xkn, Yrn)),
and N to ((tkn, Y (Ykn))),, - By setting

e (3 ) e () () ()

we obtain the simplified form B
Aw™ + N = 7™, (23)

It should be remarked that the matrix A is not symmetric positive definite due to the chosen
Petrov-Galerkin-discretization. The inequality (22) can be written as

(=" (NTa™ —gm) <0 (24)

for all admissible coefficients . The system (23-24) has the same structure as static contact
problems. Consequently, the same solution techniques can be used. Here, we apply the
algorithms introduced in [7], which are based on the primal-dual active set strategy, see for
instance |25, 26].

5 Numerical results

In this section, we test the presented discretization by a benchmark problem. We consider a
2d version of an example given in [18|: The domain is Q := (—ho — L, —hg) x (0,2), hg = 0.1,
L = 10, and the time interval I = [0,0.8]. We set E = 900, v = 0, and p = 1. As
possible contact boundary, we choose I'c = {—ho} x [0,2]. Furthermore, we prescribe only
homogeneous Neuman boundary conditions, i.e. I'p = () and I'y = 9Q\I'c. We have an initial
displacement ug = 0 and an initial velocity vs = (vp, O)T, vg = 10. The gap function is given
by g = hg. From the specific velocity ¢y = \/Ei/p = 30, we obtain the time 7, = vo/c, = 1/3,
which a stress wave needs to travel through Q. Thus, the impact time is ¢; = ho/v, = 0.01 and
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M}, = 20480 and different number of time steps
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Fig. 2: Plot of the Lagrange multiplier Agp for H = 2h, K =2k, py = ps =1, ¢ = qs = 0,

time ¢

(b) Mx = 640

Mg =80 Mg =160 Mg =320 Mg =640

M, = 1280 stable unstable unstable unstable
My = 5120 stable stable unstable unstable
My, = 20480 stable stable stable unstable

Tab. 1: Stability test for ps =p; =1, ¢s =q¢ =0, H =2h, K =2k

the time for loosing contact is to = t1 + 27, = 203/300. The analytic displacement u := (u1,0)

is then given by

’Uot, tStl
Ul(-’El,:EQ,t) = h’0+v0min{7ho%oxlv7—wi|t7t1*7—w|}7 t1 <t <ty,
ho—vo(t—tg), to <t

the analytic velocity v := (v1,0) by
o, t<t
vy (21,29, 1) :=
—g, to <t
as well as the normal contact stress by

o (22,1) = A (w2, 1) = {0’

co

The analytical solution is illustrated in Figure 1.

0, t1 <t<tlo, —
—vgsign (t—tl —Tw), 11 <t<tg —

—Ew = 300,

hotol <7y — |t — b1 — T

7h0;;x1 > Ty — |t —t1 — Twl ’

t<ty,t>ts (25)
else '

We applied our approach with different parameters on the presented example. In Figure
2, the Lagrange multiplier A\xr is plotted over the time interval I. Since Agp is constant on
I'c in every time step, we can neglect the spatial dependence. In Figure 2(a), the Lagrange
multiplier coincides with the analytic contact stress given in (25) and show no oscillations at
all. However, if we use a smaller time step size, large oscillations are observed, see Figure
2(b). This is a typical behavior, which can be seen for different parameters. In particular,
we observe such instabilities for p; = ¢ and K = 2k as well as for p — 1 = ¢ and K = k.
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Mg =80 Mg =160 Mg =320 Mg =640
M, = 1280 stable unstable unstable unstable
My, = 5120 stable stable unstable unstable
My, = 20480 stable stable stable unstable

Tab. 2: Stability test for ps =2, pr=1,¢s =1, ¢ =0, H = 2h, K = 2k

Mg =80 Mg =160 Mg =320 Mg =640
M, = 1280 stable unstable unstable unstable
My = 5120 stable stable unstable unstable
My, = 20480 stable stable stable unstable

Tab. 3: Stability test for ps =3, pr =1, ¢s =2, ¢ =0, H =2h, K = 2k

Mg =80 Mg =160 Mg =320 Mg =640
M;, = 1280 stable unstable unstable unstable
My = 5120 stable stable unstable unstable
My, = 20480 stable stable stable unstable

Tab. 4: Stability test for ps =1, p; =2, ¢ =0, ¢ =0, H=2h, K =k

Mg =80 Mg =160 Mg =320 Mg =640
My, = 1280 stable unstable unstable unstable
My, = 5120 stable stable unstable unstable
My, = 20480 stable stable stable unstable

Tab. 5: Stability test for ps =1, pr =2,¢s =0, ¢ =1, H =2h, K = 2k

| My =80 My =160 My =320 Mg =640

Mj, = 1280 0.13% 1318% 2760% 6114%
My, = 5120 0.053% 0.076% 1205% 4205%
M;, = 20480 | 0.093% 0.019% 0.049% 1302%

Tab. 6: Energy deviation for ps =p; =1, ¢s = q =0, H = 2h, K = 2k
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We study the parameter dependence in more detail. To this end, the problem is numerically
solved with different parameters. In Table 1, the parameters p, = ps = 1, ¢ = ¢ = 0,
H = 2h, and K = 2k are considered. We observe stable behavior for all time step sizes K
with K > Ch or My < C+/Mj,. Table 2 and3 show that the stability does not depend on p,
and g¢g, i.e. the degree of the spatial basis functions is not relevant. In the Tables 4 and 5,
quadratic basis functions in time for the velocity and the displacement (p; = 2) are tested.
At first, we combine them with piecewise constant Lagrange multiplier on the same mesh, i.e.
q: = 0 and K = k. This approach leads to the same stability properties just like the approach
based on ¢ = 1 and K = 2k. Thus, both approaches to stabilize lead to stable schemes. In
Table 6, the energy deviation at the end of the calculation is outlined. We find a large energy
increase in the case of instability. Otherwise the energy deviation is smaller than 1%.

6 Conclusions and outlook

In this article, we present a space-time Galerkin method for dynamic Signorini problems. We
found in our numerical study that our approach is stable, if the temporal discretization fulfills
the assumptions, which are known from the space discretization. However, it turns out that
the time step length is bounded below to ensure stability. Here, the lower bound is given by
Ch. Furthermore, the proposed method is only energy conserving for time step size to zero,
since it exactly fulfills the contact constraints. Several aspects need further investigations.
First of all, it has to be examined, why the method becomes unstable for small time step sizes.
Here, an analysis of the stability properties is needed. Further investigations concentrate on
adaptive methods to use the full capabilities of the method with respect to convergence rates,
which is limited due to the nonsmoothness of the underlying problem for uniform meshes.
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