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Abstract. In this note we discuss the combination of the classical CSS and CSF
approaches with special FEM techniques towards a fully implicit distance-free level
set method. Based on a new surface stress formulation, neither normals nor cur-
vature have to be explicitly calculated, and also the explicit redistancing can be
avoided so that a monolithic formulation of the corresponding multiphase problem
gets feasible. Prototypical numerical tests of benchmarking character for a rising
2D bubble are provided for validating the accuracy of this new approach.
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1 Introduction

Interface capturing methods, as for instance level set formulations, are widely used
in fluid dynamics due to their flexibility to handle two phase flow [4] and free sur-
faces [5]. In this paper we discuss ideas for a monolithic treatment of multiphase
flow problems: The surface tension is treated without calculating normals and cur-
vature and the explicit localization of the surface force or the surface stress on
the interface is not required. Moreover, we discuss a variant avoiding the explicit
redistancing procedure which is an essential part in most level set approaches.

From a methodological point of view, we combine the classical CSS [11] and CSF
[2] approaches with conservative level set techniques [13] to introduce an improved
variant of a fully implicit level set method. In the first step, inspired by the fictitious
boundary methodology [12], the CSF force term in the level set approach is calcu-
lated as a volume force using a cutoff function generated by the distance based level
set function so that, as a consequence, the localization of the force on the surface
using the Dirac delta function can be avoided. Then, the resulting vectorial force is
upgraded as a tensor field, similar to the CSS approach, in which neither normals
nor curvature evaluations are required. First numerical tests based on quantitative
benchmark results for a rising bubble [9] in 2D are provided which show the high
accuracy of this approach in the context of level set FEM.



2 A. Ouazzi, H. Damanik, and S. Turek

Furthermore, an implicit algorithm for preserving the signed distance property is
introduced, based on the ideas in [13]. There are several potential advantages of
this approach: First, it leads to a more implicit algorithm where no capillary time
step restriction remains and makes it possible to use a monolithic treatment of
multiphase flow problems. Second, corresponding multiphase flow formulations can
be simulated with a standard Navier-Stokes solver with homogeneous force terms,
that means omitting the surface tension force as right hand side term. Third, special
FEM spaces for the introduced surface stress can be used which might lead to
improved approximation properties.

The paper is organized as follows: The next section introduces the level set method-
ology for multiphase flow problems, where the continuous surface force is added to
the momentum equation with the help of the Dirac delta function. In the third sec-
tion, the Dirac delta function is removed using the gradient of a material function
for both approaches, the classical CSS [11] and CSF approach [2], then we analyze
the corresponding behaviour of the different level set variants w.r.t. accuracy, based
on the well established benchmark of a rising 2D bubble [9]. To derive a fully im-
plicit level set variant, evolution equations for the material function and a signed
distance level set function which do not require any reinitialization are introduced
in the fourth section. A summary with several future research directions is given in
the last section.

2 Level set method for multiphase problems

For multiphase flow problems, defined on a domain {2, the materials are separated
by an interface, I', which is assumed to be a lower-dimensional manifold. In what
follows all functions are defined on 2 x (0, ).

The equations of motion for each phase are presented as follows

ou .
() <§+u~Vu> —divr +Vp =0, 1)

divu =0

where u is the velocity, p the density, p the pressure, 7 = 75 = 2u(I")D(u) the
(standard) stress tensor. The only external force is the gravity, nevertheless the
momentum equation is presented with homogeneous force terms for the sake of the
clarity of the main objective of the paper.

At the interface, the usual jump conditions need to be imposed
Wwir=0 , —[r-n|r==ron (2)

where & is the curvature, o is the surface force constant, and n is the normal to
the interface.

In the framework of the level set method, as an example for interface capturing
approaches, the interface is embedded in a higher dimensional smooth function,
and the level set function satisfies the following equation

o

“r . =0. 3
8t+qup0 (3)
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For two immiscible fluids, the (continuous) level set function is chosen to change
the sign for the different fluid phases and the interface I" corresponds to the zero
level of the level set function, that means

F={xe2,¢=0}. (4)

The normals n to the interface and the curvature x are given by (assuming that
Vel #0)
ne Te
IVel’
The boundary condition (2) is imposed as surface force which leads to the well-
known Continuum Surface Force (CSF) approach. The CSF approach [2] consists
of adding the surface force term

k=-V -n. (5)

Fesp = Kon, (6)

to the right hand side of the momentum equation and takes the form
ou .
p(p) E‘*‘U'V'U' —divrT + Vp = fogp- (7

The surface force (6) can be rewritten as a volume force, fqgp ;, using the Delta
function, dr, localizing the interface

fCSF,l = Kondr. (8)
For the numerical simulations the Delta function, ér, can be regularized as follows
1 is
=p (M) if dist . (z) < e
€ €

0 if dist . (x) > €

r(z) = (9)

where dist . is the distance function to the interface I". The width of the regulariza-
tion is denoted by e which is usually related to the mesh size [8]. In our numerical
simulations the function p is chosen as a polynomial [8]

35

= 3—2(1—3z2+324—26). (10)

p(2)

The distance to the interface is essential for the approximation of the Delta func-
tion. So, the straightforward choice for the level set function is the signed distance
function in combination with a reinitialization procedure [16].

3 Curvature-free level set approach

For finite element methods, the surface evaluation of the force may suffer from mesh
convergence [18]. Based on the numerical experience w.r.t. the evaluation of surface
integrals of drag and lift coefficients particularly in flow simulations [1, 7, 10] in the
context of fictitious boundary methods [12], it turns out that the evaluation of the
surface integrals by integrals over the whole volume may enhance the accuracy.
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The idea consists of introducing the cutoff function :

(1 @) >0
w(m)_{o if o(x) < 0 (11)

Then, beside being a material characterization, the function (11) has the following
important property regarding (8)

ndr = ndg—o; = V(). (12)
Consequently, an alternative version of the surface tension is given as
Sfespo = 0KV, (13)

For the numerical simulations, the material cutoff function ¢ can be regularized
with the help of the signed distance function as for instance [13]

-1
V(@) = : _ 405 (14)
1+ exp (slgn(ap(z)e)dlstp(z)>
where
) +1 ifz>0

Remark 1. Similar to the regularized Delta function in (9), the regularized cutoff
function (14) requires the distance to the interface.

While these representations of the surface tension in (8), respectively in (13), are
classical, our motivation to derive a curvature free formulation leads us to go further
with the investigation of the curvature. In what follows we assume more regularity
for ¢ and express foqp , in terms of 1, by using (5) so that we obtain

Sfosp, =—0V- ( Vv ) Vi

vyl
AL www)v
( A (16)
= YaN
(|vw| WV — vwvw\)
Moreover, we have
AYVY =V - (V6 © V) — SV Vol (a7
Then we obtain
1 V- (VYo Vy) 1V|Vy?
A - _
v SYVY 2 2 VY]
vmvw) (V¢ ® V)V [V
=V - VIV
Vi @ Vi VoV
=V- |- ——® —— | V|V
< ] ) ( |vw|®\vw\> Vol
(Ve vy
*V< ] ) Vs [Vl
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where
Vei=(1—-n®n)V. (19)
Since
we recover the CSS expression as in [15]
Vi@V
fCSF,z =0 {V (%) *V\VW} (21)

It is important to notice that the gradient term oV [Vi)| can be absorbed in the
pressure. So, we finally introduce f.gyy 5 as follows

Vi @ Vi
Sosps = —0V - (W) ; (22)
and
vpCSF,E} = VPCSF11/2 - UV |V1/J| . (23)

Remark 2. The splitting of the CSS stress into two parts in (21) allows a direct
consistency distribution of the force via the choice of the corresponding finite el-
ement spaces similar to three field formulations of the Stokes problem, while the
classical volumetric surface force representation via CSF or CSS needs special care
to avoid spurious velocities [6, 14].

Remark 3. The formulation in divergence form in (22) is advantageous in the FEM
framework since due to partial integration, weaker regularity requirements have to
be imposed and, additionally, only information about the gradient of the indicator
function are required.

3.1 Numerical validation

For the numerical validation, we consider the rising bubble benchmark [9], see also
(www.featflow.de/en/benchmarks.html) for the details of the benchmark configu-
ration. A (gas) bubble is placed at the lower part of an 1 X 2 rectangular geometry
with a radius of » = 0.25. Given a different density and viscosity between the two
immiscible fluids, the bubble rises due to buoyancy force when solving the Navier-
Stokes equations. The evolution of the bubbles has been tracked for 3 time units
during which the defined benchmark quantities should be measured. We restrict
our validation to the test case of a rising bubble with Reynolds number Re = 35,
E6tvos number Eo = 10, and both density and viscosity ratios equal to 10. Table 1
lists the fluid and physical parameters which specify the test cases.

We investigate quantitatively (see Fig.1) the new curvature-free level set FEM ap-
proach using the benchmark quantities, namely circularity, rising speed and center
point of the bubble. Also, we provide the shape of the bubble at time ¢ = 3.
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Table 1. Physical parameters and dimensionless numbers defining the test case

1 p2 P 2 g o Re  Eo  pi/pa B/ pe

1000 100 10 1 0.98 24.5 35 10 10 10

We used biquadratic (Q2) finite elements for the approximation of the level set
function on an equidistant mesh with mesh size h = 1/64: First, we consider the
classical method, f.gp ,, with the evaluation of normals and curvature using the
volume integration with the help of the ér function. Second, the volume force
method, feqp ,, With the evaluation of curvature only using the volume integration.
Third, the curvature-free approach, foqp 5, without the evaluation of normals or
curvature using the volume integration. The reference results (ref.) are taken from
[9]. Fig.2 shows the mesh convergence of the rising bubble benchmark quantities.
Furthermore, the characteristic material function is derived directly from the signed
distance level set function using (14) and the level set is reinitialized using the “brute
force” approach [4].

Clearly, the numerical simulations confirm the very similar approximation proper-
ties of the three level set methods and the mesh convergence for the curvature-free
level set method, which is the main focus of this paper. However, to have the full
advantage of using the curvature-free level set FEM approach we will introduce a
new multiphase stress and incorporate a reinitialization-free level set function as
well. In the next section we discuss two possible ways for a fully implicit approach
for multiphase flow problems.

4 Towards a fully implicit monolithic approach for
multiphase flow problems

Let us introduce the new multiphase, resp., surface stress 7,, from (22), which is
well defined for v € H'(£2), as

Vi ® Vw)
Tm=—0—c—-]. 24

S 2
So, in the first step the full stress is modified as follows

T=Ts+ Tm, (25)

and the momentum equation reads after eliminating the CSF force term

p(%—;"+u-Vu)—divr+vp:0 (26)

which together with (3, 14) forms the complete system.

The distance to the interface is required for the regularized Delta function (9) in
the first CSF approach as well as for the regularized cutoff function (14) in the
second CSF approach. So, the natural choice for the level set equation is the signed
distance function.
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Circularity Rising speed
1 T T T T 025 T T T T T
Fcsf1, h=1/64
csf2, h=1/64
csf3, h=1/64
0.98 | (ref.) h=1/320 i
0.2
0.96 |
0.15
0.94 |
0.1
0.92 |
0.05
09 - Fcsf1, h=1/64 ——
Fcsf2, h=1/64 —
Fcsf3, h=1/64 —
(ref.) h=1/320
088 1 1 1 1 1 0 1 1 1 1
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Time Time
Center point Bubble shape
11 T T T T T 2 T T T T
Fcsf1, h=1/64 —— Fcsf1, h=1/64, t=3
Fcsf2, h=1/64 — Fcsf2, h=1/64,t=3
Fcsf3, h=1/64 Fcsf3, h=1/64,t=3 ——
1} (ref.) h=1/320 - t=3 (ref.) h=1/320
1.5 F E
09 B
0.8 | 1 1F E
0.7 E
0.5 E
0.6 E
05 1 1 1 1 1 O 1 1 1 1
0O 05 1 15 2 25 3 0 02 04 06 0.8 1
Time Cartesian coordinate

Fig. 1. Numerical validation of the curvature-free level set method: The
rising bubble benchmark quantities with the three methods of calculating the CSF
force in level set FEM approaches using the @2 finite element for the approximation
of the level set function on equidistant mesh with mesh size h = 1/64. The classical
method with the evaluation of normals and curvature using the volume integration
with the help of §r function (Fegss1), the volume force method with the evaluation
of curvature only using the volume integration (Fess2), and the curvature-free ap-
proach without the evaluation of neither normals nor curvature using the volume
integration (Fegps). The reference results (ref.) are taken from [9].
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Fig. 2. Mesh convergence of the curvature-free level set method: The rising
bubble benchmark quantities for the curvature-free level set method (Fes3) with
respect to mesh refinement. The circularity, rising speed, central point, and the
bubble shape for three mesh sizes h set to 1/16, 1/32, and 1/32. The reference
results (ref.) are taken from [9].
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In order to derive a monolithic approach for multiphase flow simulations, two ap-
proaches will be presented. First, a reinitialization-free signed distance level set
method while the cutoff function is derived via a postprocessing step. Second, a
reinitialization-free cutoff function approach will be introduced.

4.1 Reinitialization-free signed distance level set method

The signed distance function needs to satisfy the constraint
V| =1, (27)
which can be expressed equivalently as
n-Ve=1. (28)
For the implicit approach, the constraint (28) is imposed in a variational sense

through a least squares formulation. Then, ¢ is the solution of the following varia-
tional problem

/Q(%eru-v@)qde%d/n(nV@) (n- Vo) dl’:'ynd/ﬂn'vgﬁdx (29)

where v,4 is a penalty parameter. The equivalent strong form is given as follows

P
a—f+u-w—%dv-((n-w—1)n):o. (30)

The level set equation (3) is extended to a single PDE equation with additional
normal diffusion term. Then, the complete system reads:

p(v) (%? +u~Vu> —divr+Vp=0
V-u=0
Vi @ Vi
7 = 2u(0)D(w) + o (LT ) - o

o (Fgve-1) var)
L tu-Vo -7V ([ == Vo—1) ==]=0
ot L Vel VYT ) Vel

~1
Y= T ep(p/o)

+0.5

4.2 Reinitialization-free cutoff level set method

The material cutoff function ¢ can be derived directly from the signed distance
function in (14) via postprocessing. However, a direct PDE approach for ¢ can be
adopted, too. The following equation for ¢ has been introduced in [13] as

o

S TV Omet (1= 9)n) = V- (na(Vep - m)m) = 0 (32)
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with 7, and 7,4 denoting the relaxation parameters for the nonlinear convection
term in the normal direction and the normal diffusion. The nonlinear convection in
the direction of the normal tends to build the Heaviside step function independent
of the convective parameter, and the normal diffusion controls the sharpness of the
interface.

Finally, the full set of equations for the fully implicit curvature-free level set ap-
proach for multiphase flow problems is given as follows:

p(w)(%—ku-Vu)—divr—i—Vp:O

V-u=0

N o (VYBVYN _
T A)Blu) ( i) =0 (33)

o

5t +u.vw+v.(%6¢(1—w) Vw)

[V
9 (a0 ) T
IVl ) VYl

The system of equations (33) is a four field system with the unknowns (w,7,%,p)".
So, the choice of finite element spaces is subject to compatibility conditions (i.e.
LBB constraints). The regularity requirement for the material function is reduced.
Moreover, the momentum equation is given with homogeneous force terms, so that
as a consequence standard Navier-Stokes solver can be used for the simulation of
multiphase flow problems (particularly, if solvers based on operator splitting, resp.,
pressure correction approaches are used). Furthermore the system of equations (33)
can be seen as an hybrid phase field and level set approach for multiphase flow

problems: The system does not require the free energy function, as in phase field
methodology, neither the curvature evaluations, as in level set methodology.

4.3 Monolithic solver for multiphase flow problems

The system (33) allows already a fully implicit approach. In order to develop a
monolithic solver for multiphase flow problems, we consider the Newton method as
outer iteration. Let @ = (u,7,%)T, so that Rg = (Ru, Rr, Ry)™ and R, are the
nonlinear residuals

ORa(u",p") ORa(u",p")] !
,an-&-l ,[Ln ( — p ) ( p ) Ra(,&n7pn)
_ ou dp 34
- “U omy(anp)  OR,(@",p") Y
n+1 n 4 ) 4 ) ~n n
p p 5% o Ry(u",p")

where w is a relaxation parameter and the Jacobian reads in an abstract form:

ORa(u",p") ORa(a”,p")
on dp
ORp(u"™,p")  ORy(w",p")
o dp

A BT
= (35)
B 0
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The linear system to be solved has a 2 x 2 block saddle point structure. Thus, we may
apply the concept of local Multilevel Pressure Schur Complement [17] approaches
which solves exactly on fixed patches and performs an outer GauB-Seidel iteration.
This approach can be interpreted as generalization of block-Jacobi/GauB-Seidel
methods for saddle point problems which contains modifications of classical schemes
like the Vanka smoother [3]. It is important to notice that the trade-off between
the strong coupling and the fixed and smaller size matrix is the assembly process in
a block-Jacobi/GauB3-Seidel approach. Therefore, reducing the linear system (35)
while preserving the coupling is under investigation. So, a standard monolithic
Newton-multigrid Navier-Stokes solver (see, for instance, [3]) can be used for the
fully implicit treatment of multiphase flow problems.

5 Summary

We presented a new formulation for multiphase flow problems where neither normals
nor curvature are explicitly calculated. The new method is (potentially) fully im-
plicit, so that no capillary time restriction remains. Furthermore, standard Navier-
Stokes solvers can be used which do not have to take into account inkomogeneous
force terms due to prescribed surface tension, and explicit reinitialization steps are
avoided in the context of level set approaches. To validate the introduced method-
ology, numerical investigations for a rising bubble benchmark [9] were performed
which confirmed the equivalent approximation properties compared to standard
level set approaches. Moreover, further benefits towards a monolithic solution ap-
proach have been discussed which is subject of our current work including special
FEM approximations for the corresponding surface stress.
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