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Abstract. We derive a reliable a posteriori error estimator for a state-constrained elliptic optimal

control problem taking into account both regularisation and discretisation. The estimator is ap-
plicable to finite element discretisations of the problem with both discretised and non-discretised

control. The performance of our estimator is illustrated by several numerical examples for which

we also introduce an adaption strategy for the regularisation parameter.

1. Introduction

In many applications in science and engineering optimisation processes lead to optimal control
problems where the sought after state is a solution to a partial differential equation (PDE) governed
by a control. Often, there are additional constraints on the control and/or state. These kind of
problems are frequently highly complex, that is why a numerical approximation of the true solution
requires high computational effort. Thus, it is of great interest to construct efficient solution
algorithms reducing this effort and still guaranteeing a precise approximation. One particular
method is the adaptive finite element method based on the adaptive loop:

SOLVE → ESTIMATE → MARK → REFINE.

Let us briefly explain the different modules: The module ’SOLVE’ consists of the solution of a finite
element version of the original, continuous optimal control problem. This solution can then be used
to compute local indicators and a global estimator for the true error in the module ’ESTIMATE’.
Based on the local indicators, the module ’MARK’ collects a subset of elements chosen for refine-
ment whose execution is then the subject of the module ’REFINE’ at the end of which we are in
possession of a suitably refined grid so that the loop can potentially start anew.
In this paper, our sole focus lies on the module ’ESTIMATE’, i.e. we will present a reliable a pos-
teriori error estimator based on the discrete solution and given problem data, that is a numerically
evalubale upper bound for the error between the true solution and the current discrete approxima-
tion up to constants depending solely on data.
Research into adaptive finite element methods for elliptic PDEs has already been going on for a
fairly long time, starting with the paper [2]. Nowadays, we have every justification to claim that
there exists an established and refined theory for different kind of discretisations, error estimators
and general inf-sup stable problems, the interested reader is referred to the monographs [1, 3, 4, 45]
and the included references.
In contrast, the investigation of adaptive finite element methods in the context of optimal control
problems has only started fairly recently, to the best of the authors’ knowlege [33] is very much the
first. At present, there have been several results on unconstrained problems and control-constrained
ones. We would like to mention e.g. [6, 32, 21, 19, 46, 26].
However, in this paper, we are concerned with state-constrained optimal control problems which
are especially hard to treat both from an analytical and numerical viewpoint.
Analytically, the crucial difficulty lies in the irregularity of the Lagrange multiplier for the state
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constraint (compare [12] for the general result and e.g. [14, 35, 34] for several examples), indeed
it is in general only a measure, possibly non-unique and directly results in a low regularity for the
adjoint state which is in general not an H1(Ω)-function. Numerically, this low regularity and non-
uniqueness is a key reason why fast Newton-type algorithms are not available for the solution of
the optimisation problem. Invariably, the optimal control problems need to be regularised. Several
different techniques are available, the Moreau-Yosida approach, e.g. [18, 9], interior point methods
(compare [24, 39]) or the virtual control approach employed by us (see e.g. [29, 28]). Yet all of
them have in common that one encounters an additional error, the regularisation error. Hence,
an a posteriori error estimator should be based on the discrete solution to a regularised problem,
because this problem is ultimately the one which is numerically solved and thus necessarily the
one from which we have to extract information to estimate the difference between the true solution
and the current discrete, regularised one. Therefore our aim was to derive a numerically evaluable
upper bound for the error between the true solution and the discrete, regularised one - that is a
reliable a posteriori error estimator - and thus dispense with analysing any unregularised discrete
problem, because these problems are almost never actually solved.
There have been several results on a posteriori error estimators for state-constrained problems,
most operate in the dual weighted residual (DWR) framework (compare e.g [17],[7] or [47] and [20],
the latter in a mixed control-state constrained setting). Naturally, no reliable a posteriori error
estimator is provided. The onus of these works is different.
In a non-DWR framework, there have been - to the best of the authors’ knowledge - precious few
results: In [25] a residual error estimator based bound was derived, however, the bound in this pa-
per is not reliable because terms associated with the discrete and continuous Lagrange multipliers
for the state constraint are neglected. In contrast, in [38] an upper bound for the error between the
true solution and an unregularised discrete one was proven, yet, aside from the fact that the error
due to regularisation is not taken into account the key drawback perhaps is that L∞(Ω)-estimators
for the linear errors are needed which are known to be either efficient or reliable but not both. This
is a severe obstacle when analysing convergence of the resulting estimator. Indeed, to the best of
the authors’ knowledge there is no general convergence result in the L∞(Ω)-norm in the vein of [36]
and [41] available for adaptive finite element discretisations of PDEs.
In this paper we now supplement these existing results by deriving a reliable a posteriori error
estimator for the error between the true solution and a regularised discrete one taking into account
both regularisation and discretisation error. In addition, the error estimator is based solely on
L2(Ω) and H1(Ω)-norm and scalar product terms which are best-suited to a convergence analysis
in an adaptive finite element setting in the vein of [36] and [41].

The paper is organised as follows: First, we introduce the continuous and discrete problems anal-
ysed, then in Section 3, we state our main theorems: In Theorem 3.4 we derive a reliable a posteriori
bound for the error between the true solution and the regularised discrete one for the variational
discretisation approach due to [22], Theorem 3.5 does the same for the fully-discrete one, where
the controls are discretised by piecewise constant functions. In Sections 4 and 5 these results are
proven. In Section 6 we check the performance of our estimator numerically. In this section, we
also introduce a possible way to adapt the regularisation parameter which works very well for the
examples considered. We finish the paper by summarising our results and offering a view on future
research possibilities.

2. Problem Setting: Continuous and Discrete Problem

2.1. The Continuous Problem. We examine the following elliptic model state-constrained opti-
mal control problem on a polygonal respectively polyhedral domain Ω ⊂ R

d, d = 2, 3, with boundary
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∂Ω:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u∈L2(Ω),y∈H1

0 (Ω)
J(y, u) =

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

−Δy = u in Ω

y = 0 on ∂Ω

and

a ≤u ≤ b a.e in Ω, a, b ∈ R ∪ {−∞,∞}
yc ≤ y a.e. in Ω, yc|∂Ω < 0

Here, yd ∈ L2(Ω) and yc ∈ H1(Ω) ∩ C(Ω̄) with ∇yc ∈ H(div,Ω).
For the Poisson equation in (P ) we introduce a linear and continuous solution operator S : L2(Ω) →
H1

0 (Ω) mapping each right hand side u ∈ L2(Ω) to the unique solution y = Su of

(∇y,∇w)L2(Ω) = (u,w)L2(Ω) ∀w ∈ H1
0 (Ω).

In addition, we observe that ∇y ∈ H(div,Ω). For our analyses of Section 2-5 we do not need any
higher regularity. In particular, Ω may possess very large maximal interior angles.
The adjoint operator to S with respect to the L2(Ω)-scalar product, denoted by S∗, which we will
frequently need throughout this paper, also maps L2(Ω) to H1

0 (Ω) linear and continuously. For
each q ∈ L2(Ω) it is given by the unique solution p = S∗q ∈ H1

0 (Ω), ∇p ∈ H(div,Ω), of

(∇p,∇w)L2(Ω) = (q, w)L2(Ω).

We note that S∗ is self-adjoint.
With the solution operator S one can reduce the objective J in (P ) by eliminating the state y in
the following way:

f(u) := J(Su, u) =
1

2
‖Su− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) .(2.1)

We assume that the feasible set Uad defined by

U
ad := {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω, yc ≤ Su a.e. in Ω}

is non-empty. Then it is well-known that (P ) has a unique solution ū with associated state ȳ = Sū,
because (P ) is a strictly convex problem.
It is equally well-known that problems of type (P ) suffer from a lack of regularity for the Lagrange
multiplier for the state constraint, in general it is only in C(Ω̄)∗ and there are cases where it is not
unique. Closely related to this lack of regularity is the fact that no fast Newton-type optimisation
algorithms are available for the numerical solution of problems of type (P ). To remedy this ob-
stacle, these problems are regularised and the resulting regularised problems are then discretised
and numerically solved. Thus, the regularised and discretised problem has to be the foundation of
every error estimator and as a consequence, we are not concerned with any unregularised discrete
version of the original optimal control problem (P ).
Thus, naturally, a crucial tool for our analysis will be a sequence of continuous regularised prob-
lems. We employ the virtual control regularisation approach, e.g. [29], which in our formulation
is equivalent to a Moreau-Yosida type regularisation (see e.g. [18]), and introduce the following
problem:
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(P ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u∈L2(Ω),y∈H1

0 (Ω),v∈L2(Ω)
Jε(y, u, v) =

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) +

1

ε
‖v‖2L2(Ω)

s.t.

−Δy = u in Ω

y = 0 on ∂Ω

and

a ≤u ≤ b a.e in Ω, a, b ∈ R ∪ {−∞,∞}
yc ≤ y + εv a.e. in Ω, yc|∂Ω < 0

The feasible set to this problem is given by

U
ε,ad := {(u, v) ∈ L2(Ω)× L2(Ω) : a ≤ u ≤ b a.e. in Ω, Su+ εv ≥ yc a.e in Ω}

and the reduced goal functional to Jε by:

fε(u, v) := Jε(y, u, v) =
1

2
‖Su− yd‖2L2(Ω) +

ν

2
‖u‖2 + 1

ε
‖v‖2L2(Ω) .(2.2)

Since (P ε) is a strictly convex problem, it is well-known that this problem possesses a unique
solution couple (ūε, v̄ε) with associated state ȳε = Sūε for every fixed ε > 0 fulfilling the following
necessary and sufficient first order optimality condition with p̄εr = S∗(ȳε − yd):

(p̄εr + νūε, u− ūε)L2(Ω) +
1

ε
(v̄ε, v − v̄ε)L2(Ω) ≥ 0 ∀(u, v) ∈ U

ad,ε.(2.3)

Defining

U := {u ∈ L2(Ω) : a ≤ u ≤ b} ,(2.4)

we realise that for every fixed ε > 0 the constraint mapping for the state constraint Mε(u, v) :=
yc − Su − εv is surjective as a mapping Mε : U × L2(Ω) → L2(Ω). This ensures the existence of
a Lagrange multiplier θ̄ε ∈ L2(Ω), θ̄

ε ≥ 0 a.e. in Ω, such that the following KKT system with
p̄ε = S∗(ȳε − yd − θ̄ε) is fulfilled (compare [31]):

(p̄ε + νūε, u− ūε)L2(Ω) ≥ 0 ∀u ∈ U(2.5a)

1

ε2
v̄ε = θ̄ε(2.5b)

θ̄ε ≥ 0, (θ̄ε, ȳε − yc + εv̄ε)L2(Ω) = 0(2.5c)

Note that (2.5a) is equivalent to the pointwise projection formula:

ūε(x) = max(min(−1

ν
p̄ε(x), b)a) =: Π(p̄ε)(x), f.a.a. x ∈ Ω.(2.6)

with

Π(f)(x) := max(min(−1

ν
f(x), b), a), f.a.a. x ∈ Ω, f ∈ L2(Ω)(2.7)

Let us close this section with some remarks about the properties of an optimal value function
associated to (P ) and (P ε). With the reduced goal functionals for the unregularised problem,(2.1),
and the regularised one,(2.2), we set

(2.8)
a(ε) := fε(ūε, v̄ε), 0 < ε ≤ 1,

a(0) := f(ū).
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This defines a continuous function a : [0, 1] → 0 which is also differentiable on (0, 1) with the
derivative a′ ∈ L1(0, 1) given by:

a′(ε) = − 3

2ε2
‖v̄ε‖2L2(Ω)(2.9)

We will use both continuity and differentiability of a as a tool in our future analyses. The detailed
proofs can be found in [43], Section 3.
We can now turn to the discrete counterpart:

2.2. Discrete Regularised Problem. First, we introduce a conforming (compare [15], Section
3.2) triangulation of Ω to which we assign a natural number k. This single triangulation is denoted
by Tk.

With this triangulation Tk and its triangular (d = 2) respectively tetrahedral (d = 3) elements
T ∈ Tk we can define the finite element spaces we need using for X = L2(Ω) or X = H1

0 (Ω) and
the space of polynomials up to degree l ∈ N ∪ {0} on an element T ∈ Tk, Pl(T ), the notation

FES(Tk,Pl, X) = {W ∈ X : W |T ∈ Pl(T ) ∀T ∈ Tk} .

The spaces we use are the space of piecewise linear H1
0 (Ω)-conforming finite elements for the dis-

cretisation of the state

Yk = FES(Tk,P1, H
1
0 (Ω)),

the space of continuous or discontinuous piecewise linear finite elements for the discretisation of the
virtual control

Vk = FES(Tk,P1, H
1
0 (Ω)) or Vk = FES(Tk,P1, L2(Ω))

and finally, for the control, either the variational discretisation approach of [22]

Uk = L2(Ω)

or a full discretisation approach with piecewise constant controls:

Uk = FES(Tk,P0, L2(Ω)).

Reflecting the continuous solution operator S, the discrete one Sk, Sk : L2(Ω) → Yk maps each
right hand side u ∈ L2(Ω) linear and continuously to the solution Y = Sku of the equation:

(∇Y,∇W )L2(Ω) = (u,W )L2(Ω) ∀W ∈ Yk.

The adjoint operator with respect to the L2(Ω)-scalar product S∗
k , S

∗
k : L2(Ω) → Yk, maps each

right hand side q ∈ L2(Ω) linear and continuously to the solution P = S∗
kq of the equation:

(∇P,∇W )L2(Ω) = (q,W )L2(Ω) ∀W ∈ Yk.

Finally, for the discretisation of the state constraint we use - for simplicity, other choices are possible,
too - the Lagrange interpolant of yc denoted by Ikyc.
After these preliminaries, we can finally lay out our discretisation:
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Mirroring (P ε), we introduce the following discrete regularised problem:

(P ε
k )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
U∈Uk,Y ∈Yk,V ∈Vk

Jε(Y, U, V ) =
1

2
‖Y − yd‖2L2(Ω) +

ν

2
‖U‖2L2(Ω) +

1

ε
‖V ‖2L2(Ω)

s.t.

SkU = Y in Ω

and

a ≤U ≤ b a.e in Ω, a, b ∈ R ∪ {−∞,∞}
Ikyc ≤ Y + εV a.e. in Ω,

For this problem we also define an admissible set

U
ε,ad
k := {(U, V ) ∈ Uk × Vk : a ≤ U ≤ b a.e. in Ω, Ikyc ≤ SkU + εV a.e. in Ω} .

We observe that this set is always nonempty as long as there exist functions U ∈ Uk with a ≤ U ≤ b
(which is the case for our ansatz spaces) regardless of the question whether there exists a function
U ∈ Uk with a ≤ U ≤ b a.e. in Ω and which fulfills the unregularised state constraint Ikyc ≤ SkU .
In particular, for every ε > 0 there exists a unique solution to (P ε

k ) which we denote by (Ūε
k , V̄

ε
k )

with associated state Ȳ ε
k = SkŪ

ε
k .

Because for every fixed ε > 0 the discrete constraint mapping for the state constraint Mε
k(U, V ) :=

Ikyc − SkU − εV is surjective as a mapping Mε
k : U ∩ Uk × Vk → Vk (for the definition of U

compare (2.4)) we know for the same reason as on the continuous level that there exists a Lagrange
multiplier Θ̄ε

k ∈ Vk such that the unique solution (Ūε
k , V̄

ε
k ) fulfills the following KKT system with

P̄ ε
k := S∗

k(Ȳ
ε
k − yd − Θ̄ε

k) reflecting the continuous one (2.5):

(P̄ ε
k + νŪε

k , U − Ūε
k)L2(Ω) ≥ 0 ∀U ∈ U ∩ Uk(2.10a)

1

ε2
V̄ ε
k = Θ̄ε

k(2.10b)

(Θ̄ε
k,W )L2(Ω) ≥ 0, ∀W ∈ Vk, W ≥ 0 a.e. in Ω, (Θ̄ε

k, Ȳ
ε
k − Ikyc + εV̄ ε

k )L2(Ω) = 0(2.10c)

In the case of the variational discretisation approach Uk = L2(Ω), (2.10a) is - as in the continuous
case - equivalent to the pointwise projection formula

Ūε
k(x) = Π(P̄ ε

k )(x) f.a.a. x ∈ Ω(2.11)

with Π(·) as in (2.7).
After these preliminaries we can now proceed to state the main results of this paper:

3. Statement of the Main Results

To state our main result, we make the following standard Slater-type assumption:

Assumption 3.1 (Slater-Assumption). There exists us ∈ L2(Ω) and τ > 0 such that

yc + τ ≤ Sus a.e. in Ω.

With this assumption we can formulate our main results, first the error estimator for the vari-
ational discretisation approach, Uk = L2(Ω), then for the full discretisation technique, Uk =
FES(Tk,P0, L2(Ω)). First, though, let us quickly lay some notational groundwork:
For e, f ∈ R

+ we write e � f , if there exists a constant C solely depending on the data of the
problem, i.e. Ω, ν, a, b, yd, yc, S and the existence of a feasible point u ∈ U

ad such that e ≤ Cf . For
a particular type of data, though, we want to trace the dependency of the constants more closely.
That is why we introduce the following notational convention:
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Let p′ ≥ 1 be given such that the embedding H1(Ω) ↪→ Lp′(Ω) holds. Besides let τ > 0 be the τ
from Assumption 3.1. With s(τ) and c(p′) we mark generic constants with the property that

s(τ) →∞, as τ → 0

c(p′) →∞, as p′ → ∞,

i.e. with the help of c(p′) and s(τ ′) estimates such as

e � τ−3f, e � p′f, e, f ∈ R
+

can be shortened to

e � s(τ)f, e � c(p′)f.

In addition, we need a special projection:

Definition 3.2 (definition of P 0+
k ). For an arbitrary function z ∈ L2(Ω) we define the projection

P 0+
k : L2(Ω) → FES(Tk,P0, L2(Ω)) by

(3.1) P 0+
k z = argmin

W∈FES(Tk,P0,L2(Ω)),W≥0 a.e.

1

2
‖W − z‖2L2(Ω) ,

Remark 3.3. It is also possible to use the following type of projection on the space of piecewise
linear discontinuous finite elements denoted by P 1+

k and defined by

P 1+
k z = argmin

W∈FES(Tk,P1,L2(Ω)),W≥0 a.e.

1

2
‖W − z‖2L2(Ω) .

With these definitions we can formulate our main results: We start with the estimator for the
variational discretisation technique Uk = L2(Ω):

Theorem 3.4 (estimator for variational discretisation). Let N ∈ N be fixed but arbitrary and
4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3 be fixed. Besides, let Assumption 3.1 be fulfilled,

let ū be the solution to (P ), (ūεN , v̄ε
N

) be the solution couple to (P ε) with regularisation parameter
ε = εN and (Ūε

k , V̄
ε
k ) be the solution couple to (P ε

k ) with Uk = L2(Ω). Then there exists γ > 0 and
constants c(p′) and s(τ) such that:∥∥Ūε

k − ū
∥∥2
L2(Ω)

+
4

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN + E2

r (Ū
ε
k , V̄

ε
k ) + Es(Ūε

k , V̄
ε
k )(3.2)

with

(3.3)
E2
r (Ū

ε
k , V̄

ε
k ) =

1

ν

∥∥(S − Sk)Ū
ε
k

∥∥2
L2(Ω)

+
2

ν2
∥∥(S − Sk)

∗(Ȳ ε
k − yd − Θ̄ε

k)
∥∥2
L2(Ω)

− 4

νε

∥∥V̄ ε
k

∥∥2
L2(Ω)

+
4

ν
(Θ̄ε

k, Ikyc − yc)L2(Ω)

and

(3.4)

Es(Ūε
k , V̄

ε
k ) =

4

ν

∥∥Ȳ ε
k − yd

∥∥
L2(Ω)

∥∥(S − Sk)Ū
ε
k

∥∥
L2(Ω)

+
4

ν

∥∥Ūε
k

∥∥ ∥∥(S − Sk)
∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
4

ν
c(p′)s(τ)

∥∥P 0+
k Θ̄ε

k

∥∥
L2(Ω)

εN( 3
2+γ) +

4

ν

∥∥Θ̄ε
k − P 0+

k Θ̄ε
k

∥∥
L2(Ω)

+
4

ν
min

{
s(τ)

∥∥(Ūε
k +Δyc)

−∥∥
L2(Ω)

, c(p′)s(τ)ε−3N/p′
(
|(S − Sk)Ū

ε
k |H1(Ω)

+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)

−|H1(Ω)

)}
,
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For the full discretisation Uk = FES(Tk,P0, L2(Ω)) the estimator takes the following shape:

Theorem 3.5 (estimator for the full discretisation). Let N ∈ N and ε > 0 be fixed but arbitrary
and 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3 be fixed. Besides, let Assumption 3.1 be

fulfilled, let ū be the solution to (P ), (ūεN , v̄ε
N

) be the solution couple to (P ε) with regularisation
parameter ε = εN and (Ūε

k , V̄
ε
k ) be the solution couple to (P ε

k ) with Uk = FES(Tk,P0, L2(Ω)). Then
there exists γ > 0 and constants c(p′) and s(τ) such that:∥∥Ūε

k − ū
∥∥2
L2(Ω)

+
8

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN + E2

r (Ū
ε
k , V̄

ε
k ) + Es(Ūε

k , V̄
ε
k )(3.5)

with

(3.6)

E2
r (Ū

ε
k , V̄

ε
k ) =

4

ν
(
∥∥(S − Sk)Ū

ε
k

∥∥2
L2(Ω)

+
2ν + 4

ν

∥∥Ūε
k −Π(P̄ ε

k )
∥∥2
L2(Ω)

+
4

ν2
∥∥(S − Sk)

∗(Ȳ ε
k − yd − Θ̄ε

k)
∥∥2
L2(Ω)

+
8

ν
(Ūε

k −Π(P̄ ε
k ), P̄

ε
k )L2(Ω) −

8

ν

∥∥V̄ ε
k

∥∥2
+

8

ν
(Θ̄ε

k, Ikyc − yc)L2(Ω),

and

(3.7)

Es(Ūε
k , V̄

ε
k ) =

8

ν

∥∥Ȳ ε
k − yd

∥∥
L2(Ω)

(
∥∥(S − Sk)Ū

ε
k

∥∥
L2(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥
L2(Ω)

)

+
8

ν

∥∥Π(P̄ ε
k )
∥∥
L2(Ω)

∥∥(S − Sk)
∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
8

ν
c(p′)s(τ)

∥∥P 0+
k (Θ̄ε

k)
∥∥
L2(Ω)

εN( 3
2+γ) +

8

ν

∥∥Θ̄ε
k − P 0+

k Θ̄ε
k

∥∥
L2(Ω)

+
8

ν
min

{
s(τ)

∥∥(Π(P̄ ε
k ) + Δyc)

−∥∥
L2(Ω)

, c(p′)s(τ)ε−3N/p′(|(S − Sk)Ū
ε
k |H1(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥
L2(Ω)

+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)

−|H1(Ω)

)}
where Π(·) as defined in (2.7).

Remark 3.6. In [13], Theorem 3.1, a H−1(Ω)-regularity result for the Lagrange multiplier for the
state constraint of the unregularised problem was proven under stronger regularity assumptions. If

there is also a uniform bound on the sequence of regularised multipliers θ̄ε
N

, i.e. ‖θ̄εN ‖H−1(Ω) �
s(τ), then the negative power ε−3N/p′

in (3.4) and (3.7) respectively does not enter.

Over the next two sections we will prove both Theorem 3.4 and Theorem 3.5. The proofs themselves
can be found in Section 5.1 and Section 5.2 respectively. Let us dwell a little bit further on the
steps which need to be taken:
The broad approach is to use the function Π(P̄ ε

k ) (compare (2.7)) and split the error in the following
way: ∥∥ū−Π(P̄ ε

k )
∥∥2
L2(Ω)

�
∥∥∥ū− ūεN

∥∥∥2
L2(Ω)

+
∥∥∥ūεN −Π(P̄ ε

k )
∥∥∥2
L2(Ω)

.(3.8)

The idea now is to treat the terms on the right separately. For the first we will derive an a priori
estimate in terms of εN in Section 4, specifically Theorem 4.5 and Corollary 4.7, i.e.∥∥∥ū− ūεN

∥∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN .(3.9)



RELIABLE A POSTERIORI ERROR ESTIMATION FOR STATE-CONSTRAINED OPTIMAL CONTROL 9

For the second term in (3.8) we will derive an a posteriori bound in Section 5 (compare Lemma 5.1,
Lemma 5.2 and Lemma 5.3) of the type∥∥∥ūεN −Π(P̄ ε

k )
∥∥∥2
L2(Ω)

� E2
r (Π(P̄ ε

k ), V̄
ε
k ) + Es(Π(P̄ ε

k ), V̄
ε
k ).(3.10)

To deduce the results of Theorem 3.4 we then just have to recall the relation Ūε
k = Π(P̄ ε

k ) and
combine it with the bounds (3.10),(3.9) and (3.8).
To derive the bounds of Theorem 3.5, we additionally have to take into account the error incurred
by the full discretisation technique, i.e.

∥∥Ūε
k −Π(P̄ ε

k )
∥∥
L2(Ω)

.

4. Estimating ‖ū− ūεN ‖L2(Ω)

To prove the bound (3.9) we will derive the estimate

‖ū− ūε‖2L2(Ω) +
1

νε
‖v̄ε‖2L2(Ω) �

1

ν
c(p′)s(τ)εγ(4.1)

independent of ε and then insert ε = εN . We take the following steps:

(1) Prove a penalty structure for v̄ε, i.e. v̄ε = 1
ε (yc − ȳε)+ a.e. in Ω, Lemma 4.1

(2) Prove a bound for
∥∥θ̄ε∥∥

Lp(Ω)
, 1 ≤ p ≤ 2, Lemma 4.3

(3) Derive an estimate for |(yc − ȳε)+|H1(Ω), Lemma 4.4

(4) Using all the previous results, we demonstrate (4.1) and as corollary obtain (3.9), Theorem
4.5 and Corollary 4.7.

We start with the first step, the result can be found in [28], Lemma 2.

Lemma 4.1 (penalty structure of virtual control). For every fixed ε > 0 we have v̄ε = 1
ε (yc− ȳε)+

a.e. in Ω.

Now let us proceed to the second step, the bound for
∥∥θ̄ε∥∥

Lp(Ω)
. Before though, we need the

following auxiliary result:

Lemma 4.2. For ūε, v̄ε, ȳε and ū we have independent of ε:

‖ūε‖L2(Ω) , ‖ȳε‖L2(Ω) , ‖ū‖L2(Ω) , ‖ȳ‖L2(Ω) � 1, ‖v̄ε‖L2(Ω) � ε
1
2 .

Proof. Since we assumed that the feasible set for the unregularised problem (P ), Uad, is non-empty,
we know that there is a function u ∈ U

ad such that:

fε(ūε, v̄ε) ≤ f(ū) ≤ f(u).

Due to the structure of the objective this immediately gives

‖ūε‖L2(Ω) , ‖ū‖L2(Ω) � 1, ‖v̄ε‖L2(Ω) � ε
1
2 .

The bound on ȳε (independent of ε) and ȳ follow by continuity of S. �

We can now turn to proving a ’qualified’ bound for
∥∥θ̄ε∥∥

Lp(Ω)
:

Lemma 4.3. Let 1 ≤ p ≤ 2 be given and let p′ be its conjugate exponent, i.e. 1
p + 1

p′ = 1. Then∥∥θ̄ε∥∥
Lp(Ω)

� s(τ)ε−3/p′
, 1 ≤ p ≤ 2,

1

p
+

1

p′
= 1.(4.2)

In particular, for p = 1 we have: ∥∥θ̄ε∥∥
L1(Ω)

� s(τ).(4.3)
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Proof. The proof of the bound (4.3) can be found in [23], Lemma 2.3.
In addition, thanks to Lemma 4.2 we know that

‖v̄ε‖L2(Ω) � ε1/2(4.4)

Besides, we observe that due to (2.5b)

1

ε2
v̄ε = θ̄ε ⇔ 1

ε2
‖v̄ε‖L2(Ω) =

∥∥θ̄ε∥∥
L2(Ω)

and thus thanks to (4.4) ∥∥θ̄ε∥∥
L2(Ω)

� ε−3/2.(4.5)

Using interpolation of Lp(Ω)-spaces (compare Chapter 5, [8]) we finally obtain for σ = 1− 2
p′ with

the help of (4.3) and (4.5)∥∥θ̄ε∥∥
Lp(Ω)

�
∥∥θ̄ε∥∥1−σ

L2(Ω)

∥∥θ̄ε∥∥σ
L1(Ω)

� s(τ)ε−3/p′
, 1 ≤ p ≤ 2

�

We now can tackle the third step of the proof, the bound for |(yc − ȳε)+|H1(Ω):

Lemma 4.4. Let 2 ≤ p′ ≤ ∞ in case d = 2 and 2 ≤ p′ ≤ 6 in case d = 3. Furthermore, let p
denote its dual exponent, i.e. 1

p′ +
1
p = 1. For the violation of the state constraint (yc − ȳε)+ we

have the following estimate: ∣∣(yc − ȳε)+
∣∣
H1(Ω)

� c(p′)s(τ)ε1−1/p′
.(4.6)

Proof. Evidently, (yc − ȳε)+ ∈ H1
0 (Ω), since ȳε = 0 on ∂Ω and yc|∂Ω < 0 by assumption. Thus,

with ȳε = Sūε we can deduce:

|(yc − ȳε)+|2H1(Ω) = |(∇(yc − ȳε),∇(yc − ȳε)+)L2(Ω)|
= |(ūε +Δyc, (yc − ȳε)+)L2(Ω)|

Now we can take advantage of the penalty structure of v̄ε, i.e (yc − ȳε)+ = εv̄ε (compare Lemma
4.1) insert it in the equation above and get:

(4.7)
|(yc − ȳε)+|2H1(Ω) = |(ūε +Δyc, εv̄

ε)L2(Ω)|
≤ ‖ūε +Δyc‖L2(Ω) ‖εv̄ε‖L2(Ω) .

Presently, let us estimate ‖v̄ε‖L2(Ω):

Recalling the complimentary slackness condition (2.5c), the embedding H1(Ω) ↪→ Lp′(Ω), 1 ≤ p′ <
∞ in case d = 2 and 1 ≤ p′ ≤ 6 in case d = 3, we obtain

1

ε
‖v̄ε‖2L2(Ω) = (θ̄ε, yc − ȳε)L2(Ω) ≤

∥∥θ̄ε∥∥
Lp(Ω)

∥∥(yc − ȳε)+
∥∥
Lp′ (Ω)

� c(p′)
∥∥θ̄ε∥∥

Lp(Ω)

∥∥(yc − ȳε)+
∥∥
H1(Ω)

.

Using the Poincaré-Friedrich-inequality ((yc − ȳε)+ ∈ H1
0 (Ω)) and the results of Lemma 4.3 on the

right, gain:

1

ε
‖v̄ε‖2L2(Ω) � c(p′)s(τ)ε−3/p′ |(yc − ȳε)+|H1(Ω).

A short rearrangement of this bound yields

‖v̄ε‖L2(Ω) � c(p′)s(τ)ε
1
2− 3

2p′ |(yc − ȳε)+|
1
2

H1(Ω).
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Let us now insert this bound in (4.7) bearing in mind that ‖ūε +Δyc‖L2(Ω) is uniformly bounded

(= independent of ε) in L2(Ω) (compare Lemma 4.2):

|(yc − ȳε)+|2H1(Ω) � ε ‖v̄ε‖L2(Ω) � c(p′)s(τ)ε
3
2− 3

2p′ |(yc − ȳε)+|
1
2

H1(Ω)

Dividing by |(yc− ȳε)+|1/2H1(Ω) (if this term were 0, the postulated bound (4.6) trivially holds) yields:

|(yc − ȳε)+|
3
2

H1(Ω) � c(p′)s(τ)ε
3
2− 3

2p′ .

(4.6) then readily follows. �
We will now deal with the fourth and last step, the a priori bound for ‖ū− ūε‖L2(Ω) in terms of

the regularisation parameter ε:

Theorem 4.5. Let ū be the solution to (P ) and (ūε, v̄ε) be the solution to (P ε) for ε > 0. Besides,
let 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3. Then the following estimates are valid:

‖ū− ūε‖2L2(Ω) +
1

νε
‖v̄ε‖2L2(Ω) �

{
1
ν c(p

′)s(τ)ε1−
4
p′ d = 2

1
ν s(τ)ε

1
3 d = 3 (p′ = 6)

(4.8)

Thus, γ in (3.9) is defined by

γ =

{
1− 4

p′ d = 2
1
3 d = 3

(4.9)

Proof. The proof uses Taylor expansion of the reduced goal functional fε at (ūε, v̄ε). Since fε is
quadratic, we gain

(4.10)
f(ū)− fε(ūε, v̄ε) = fε(ū, 0)− fε(ūε, v̄ε)

= D1fε(ūε, v̄ε) ·
[
ū− ūε, −v̄ε

]
+D2fε(ūε, v̄ε) ·

[
ū− ūε, −v̄ε

]2
.

Straightforward differentiating, (ū, 0) ∈ U
ε,ad and (2.3) yield:

f(ū)− fε(ūε, v̄ε) ≥ ν ‖ū− ūε‖2L2(Ω) +
1

ε
‖v̄ε‖2L2(Ω)

Using the differentiability of the optimal value function a (defined in (2.8)) on (0, 1), (2.9), and
continuity at 0, we deduce

(4.11)

ν ‖ū− ūε‖2L2(Ω) +
1

ε
‖v̄ε‖2L2(Ω) ≤ f(ū)− fε(ūε, v̄ε) = a(0)− a(ε)

=

ε∫
0

−a′(t) dt =

ε∫
0

1

t2
∥∥v̄t∥∥2

L2(Ω)
dt.

Harnessing θ̄t ≥ 0 for all t > 0, Hölder’s inequality and the complimentary slackness condition
(2.5c) with ε = t, we arrive at:

1

t2
∥∥v̄t∥∥2

L2(Ω)
=

1

t
(θ̄t, yc − ȳt)L2(Ω) ≤

1

t

∥∥θ̄t∥∥
Lp(Ω)

∥∥(yc − ȳt)+
∥∥
Lp′ (Ω)

,
1

p
+

1

p′
= 1

The embedding H1
0 (Ω) ↪→ Lp′(Ω), 1 ≤ p′ < ∞ if d = 2 and 1 ≤ p′ ≤ 6 if d = 3, and the results of

Lemma 4.3 and Lemma 4.4 for ε = t enable us to continue our estimates in the ensuing vein:

1

t2
∥∥v̄t∥∥2

L2(Ω)
≤ 1

t

∥∥θ̄t∥∥
Lp(Ω)

∥∥(yc − ȳt)+
∥∥
Lp′ (Ω)

� c(p′)s(τ)
1

t
(t1−4/p′

) = c(p′)s(τ)t−4/p′
.
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Presently, we can pick up the thread we left off in (4.11) and continue our estimates taking advantage
of the estimates above (remember that we assumed p′ > 4 if d = 2 and p′ = 6 if d = 3).

ν ‖ū− ūε‖2L2(Ω) +
1

ε
‖v̄ε‖2L2(Ω) ≤

ε∫
0

1

t2
∥∥v̄t∥∥2

L2(Ω)
� c(p′)s(τ)

ε∫
0

t−4/p′
dt

= c(p′)s(τ)
1

1− 4/p′
ε1−4/p′ � c(p′)s(τ)ε1−4/p′

, p′ > 4

In case d = 2, this gives the first estimate in (4.8). If d = 3 we just have to insert p′ = 6 into the
estimates above. Here, note that the dependence on the embedding constant c(p′) can be neglected
since we fix it to c(p′) = c(6). Ultimately, we deduce in case d = 3

ν ‖ū− ūε‖2L2(Ω) � s(τ)ε1/3

This gives the second estimate in (4.8). �

Remark 4.6. Following the technique employed in [28], Theorem 4, and defining 0 < α < 1 such
that S ∈ L(L2(Ω), C

0,α(Ω̄)) one attains the estimate:

‖ū− ūε‖2L2(Ω) � ‖S‖L(L2(Ω),C0,α(Ω̄)) ε
3
2

α
α+1 .

In principle, one could also use this result, at the ’price’ of the constant ‖S‖L(L2(Ω),C0,α(Ω̄)) entering.

For more regular solutions α > 1
2 the estimate above is better, but for small α it is worse. We chose

our approach, because on the one hand we can do without additional regularity assumptions on Ω
which may give rise to comparable estimates in less regular settings and on the other hand we gained
’qualified’ bounds on the

∥∥θ̄ε∥∥
Lp(Ω)

as additional valuable results.

Now, inserting ε = εN in the bound (4.8) gives the following corollary which completes this section:

Corollary 4.7. In the setting of Theorem 4.5 we have the following estimate:∥∥∥ū− ūεN
∥∥∥2
L2(Ω)

+
1

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

�
{

1
ν c(p

′)s(τ)εN(1− 4
p′ ) d = 2

1
ν s(τ)ε

N
3 d = 3 (p′ = 6)

and γ as in (4.9).

5. Estimating ‖ūεN −Π(P̄ ε
k )‖2L2(Ω)

Let us now recall our split (3.8):∥∥ū−Π(P̄ ε
k )
∥∥2
L2(Ω)

�
∥∥∥ū− ūεN

∥∥∥2
L2(Ω)

+
∥∥∥ūεN −Π(P̄ ε

k )
∥∥∥2
L2(Ω)

.

To estimate ‖ūεN −Π(P̄ ε
k )‖2L2(Ω), we pursue the following course:

(1) Estimate for arbitrary P ∈ H1
0 (Ω) the difference ‖ūεN −Π(P )‖2L2(Ω). Lemma 5.1.

(2) Estimate the resulting terms involving the Lagrange multipliers Θ̄ε
k, θ̄

εN , Lemmas 5.2 and
5.3.

(3) Combining both, derive an estimate for the variational discretisation approach Ūε
k = Π(P̄ ε

k )
(compare (2.11)), this gives our first main result Theorem 3.4.

(4) Deduce an estimate for the full discretisation by splitting the difference in the following
way ∥∥∥Ūε

k − ūεN
∥∥∥2
L2(Ω)

≤ 2
∥∥Π(P̄ ε

k )− Ūε
k

∥∥2
L2(Ω)

+ 2
∥∥∥Π(P̄ ε

k )− ūεN
∥∥∥2
L2(Ω)

.
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The first term can be evaluated exactly (compare [26], Remark 4.3) the second one can be
dealt with as in the variational discretisation setting. This gives our second main result
Theorem 3.5.

Let us start with the first step:

Lemma 5.1. Let (P, Y ) ∈ H1
0 (Ω)×H1

0 (Ω) be arbitrary. Furthermore, we define ŷ := SΠ(P ), p̂ :=
S∗(Y − yd − Θ̄ε

k) and U := Π(P ). Then, with a fixed N ≥ 1, we have

(5.1)

∥∥∥Π(P )− ūεN
∥∥∥2
L2(Ω)

≤ 1

2ν
‖ŷ − Y ‖2L2(Ω) +

1

ν2
‖p̂− P‖2L2(Ω)

+
2

ν
(θ̄ε

N

, ȳε
N − ŷ)L2(Ω) +

2

ν
(Θ̄ε

k, ŷ − ȳε
N

)L2(Ω),

Proof. Π(P ) is the best-approximation of P in the closed and convex set
U = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}. Hence:
(5.2) (P + νΠ(P ),Π(P )− u)L2(Ω) ≤ 0 ∀u ∈ U .

Inserting u = ūεN ∈ U we gain:

(P + νΠ(P ),Π(P )− ūεN )L2(Ω) ≤ 0,

Similarly, employing (2.5a) into which we insert u = Π(P ) ∈ U , we obtain

−(p̄ε
N

+ νūεN ,Π(P )− ūεN )L2(Ω) ≤ 0

From these observations we can infer that:

(5.3)
ν
∥∥∥Π(P )− ūεN

∥∥∥2
L2(Ω)

= (P + νΠ(P ),Π(P )− ūεN )L2(Ω) − (p̄ε
N

+ νūεN ,Π(P )− ūεN )L2(Ω)

+ (p̄ε
N − P,Π(P )− ūεN )L2(Ω) ≤ (p̄ε

N − P,Π(P )− ūεN )L2(Ω)

Inserting p̂, we can split the last term in the following fashion:

(5.4) (p̄ε
N − P,Π(P )− ūεN )L2(Ω) = (p̄ε

N − p̂,Π(P )− ūεN )L2(Ω) + (p̂− P,Π(P )− ūεN )L2(Ω)

For the second term on the right hand side we use Cauchy-Schwarz and then Young’s inequality to
obtain:

(5.5) (p̂− P,Π(P )− ūεN )L2(Ω) ≤
1

2ν
‖p̂− P‖2L2(Ω) +

ν

2

∥∥∥Π(P )− ūεN
∥∥∥2
L2(Ω)

.

For the first term on the right hand side in (5.4) we use p̄ε
N

, p̂ ∈ H1
0 (Ω) for every fixed ε > 0, as

well as ŷ = SΠ(P ) and p̂ = S∗(Y − yd − Θ̄ε
k) to deduce:

(5.6)
(p̄ε

N − p̂,Π(P )− ūεN )L2(Ω) = (∇(ŷ − ȳε
N

),∇(p̄ε
N − p̂))L2(Ω)

= (ȳε
N − Y, ŷ − ȳε

N

)L2(Ω) + (Θ̄ε
k − θ̄ε

N

, ŷ − ȳε
N

)L2(Ω)

The second term already forms a part of (5.1), thus, at this stage, we content ourselves with
estimating the first using Cauchy-Schwarz’s and then Young’s inequality:
(5.7)

(ȳε
N − Y, ŷ − ȳε

N

)L2(Ω) = (ȳε
N − ŷ, ŷ − ȳε

N

)L2(Ω) + (ŷ − Y, ŷ − ȳε
N

)L2(Ω)

= −
∥∥∥ŷ − ȳε

N
∥∥∥2
L2(Ω)

+ ‖ŷ − Y ‖L2(Ω)

∥∥∥ŷ − ȳε
N
∥∥∥
L2(Ω)

≤ 1

4
‖ŷ − Y ‖2L2(Ω)
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Combining all our previous estimates, i.e (5.4),(5.5),(5.6) and (5.7) and inserting them in (5.3) we
discern

ν
∥∥∥Π(P )− ūεN

∥∥∥2
L2(Ω)

≤ 1

2ν
‖p̂− P‖2L2(Ω) +

ν

2

∥∥∥Π(P )− ūεN
∥∥∥2
L2(Ω)

+
1

4
‖ŷ − Y ‖2L2(Ω)

+ (Θ̄ε
k − θ̄ε

N

, ŷ − ȳε
N

)L2(Ω)

Subtracting the term ν
2

∥∥∥Π(P )− ūεN
∥∥∥2
L2(Ω)

in the inequality above and multiplying the resulting

inequality by 2
ν , we obtain the desired result 5.1. �

Next we tackle Step 2, namely estimating the remaining multiplier terms

(Θ̄ε
k, ŷ − ȳε

N

)L2(Ω), (θ̄
εN , ȳε

N − ŷ)L2(Ω)(5.8)

starting with the first:

Lemma 5.2 (estimate for (Θ̄ε
k, ŷ − ȳε

N

)L2(Ω)). Let (U,P, Y ) ∈ L2(Ω) ×H1
0 (Ω) × Yk be arbitrary.

Furthermore, let ŷ = SΠ(P ) and p̂ = S∗(Y − yd − Θ̄ε
k) be given. Finally, let Rk denote the

Ritz-projection on Yk defined by

(∇(Rkq − q),∇W )L2(Ω) = 0 ∀W ∈ Yk, q ∈ H1
0 (Ω).(5.9)

Then

(5.10)

(Θ̄ε
k, ŷ − ȳε

N

)L2(Ω) ≤ (Π(P ), P − p̂)L2(Ω) − (Y − yd, Rk(SU)− ŷ)L2(Ω)

+ (U −Π(P ), P )L2(Ω) + (Θ̄ε
k, Rk(SU)− Y )L2(Ω) + (Θ̄ε

k, Y − Ikyc)L2(Ω)

+ (Θ̄ε
k, Ikyc − yc)L2(Ω) + (Θ̄ε

k, yc − ȳε
N

)L2(Ω).

Let 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3. Besides, let γ be as in (4.9). Then, for the
last term in (5.10), we have the estimate

(Θ̄ε
k, yc − ȳε)L2(Ω) �

∥∥Θ̄ε
k − P 0+

k Θ̄ε
k

∥∥
L2(Ω)

+
∥∥P 0+

k Θ̄ε
k

∥∥
L2(Ω)

εN( 3
2+γ),(5.11)

where P 0+
k is defined as in Definition 3.2.

Proof. Let us first split the left hand side in (5.10) in the following way

(Θ̄ε
k, ŷ − ȳε

N

)L2(Ω) = (Θ̄ε
k, ŷ − yc)L2(Ω) + (Θ̄ε

k, yc − ȳε
N

)L2(Ω).(5.12)

The proof is now divided into two parts: First, we will prove (5.11) for the second term on the right
in the equation above which already appears in (5.10) as the last term. Secondly, we will derive
the rest of the bound in (5.10) by investigating the first term on the right in (5.12):

1st part of the proof:
We now turn our focus towards the second term on the right hand side in (5.12). To prove its
additional property (5.11), we first split it in the following way with the help of the projection P 0+

k

defined in Definition 3.2:

(Θ̄ε
k, yc − ȳε

N

)L2(Ω) = (Θ̄ε
k − P 0+

k Θ̄ε
k, yc − ȳε

N

)L2(Ω) + (P 0+
k Θ̄ε

k, yc − ȳε
N

)L2(Ω).(5.13)

Let us first tackle the second term on the right in the equation above. Since (P 0+
k Θ̄ε

k)(x) ≥ 0 f.a.a.
x ∈ Ω by construction, we obtain using the penalty structure, Lemma 4.1:

(5.14) (P 0+
k Θ̄ε

k, yc − ȳε
N

)L2(Ω) ≤ (P 0+
k Θ̄ε

k, (yc − ȳε
N

)+)L2(Ω) ≤ εN
∥∥P 0+

k Θ̄ε
k

∥∥
L2(Ω)

∥∥∥v̄εN∥∥∥
L2(Ω)
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Corollary 4.7 entails ∥∥∥v̄εN∥∥∥
L2(Ω)

� εN( 1
2+γ)

with γ as in (4.9). Inserting this estimate in (5.14), we obtain:

(P 0+
k Θ̄ε

k, yc − ȳε
N

)L2(Ω) �
∥∥P 0+

k Θ̄ε
k

∥∥
L2(Ω)

εN( 3
2+γ)

Going back to (5.13) and employing Cauchy-Schwarz’s inequality, we have thus gained the bound

(5.15) (Θ̄ε
k, yc − ȳε

N

)L2(Ω) �
∥∥Θ̄ε

k − P 0+
k Θ̄ε

k

∥∥
L2(Ω)

‖yc − ȳε
N ‖L2(Ω) +

∥∥P 0+
k Θ̄ε

k

∥∥
L2(Ω)

εN( 3
2+γ)

Because
∥∥∥yc − ȳε

N
∥∥∥
L2(Ω)

is bounded independent of ε (compare Lemma 4.2) we finally derive (5.11).

This completes the first part of the proof, let us now tackle the second.

2nd part of the proof:
Let us have a look at the following term, its significance will become evident later on:

(∇(Rk(p̂)− p̂),∇(Y − ŷ))L2(Ω).(5.16)

Using Galerkin-orthogonality, the Ritz-projection Rk, (5.9), ŷ = SΠ(P ) and p̂ = S∗(Y − yd − Θ̄ε
k)

we can conclude - after some calculations - that:

(5.17)

(∇(Rk(p̂)− p̂),∇(Y − ŷ))L2(Ω) = (∇(Rk(p̂)− p̂),∇(Y −Rk(SU)))L2(Ω)

+ (∇(Rk(p̂)− p̂),∇(Rk(SU)− ŷ))L2(Ω)

= (Rk(p̂), U)L2(Ω) − (Rk(p̂),Π(P ))L2(Ω)

− (Y − yd − Θ̄ε
k, Rk(SU)− ŷ)L2(Ω)

Now, let us look at (5.16) from another point of view. Harnessing once again the Ritz projection
Rk, (5.9), and ŷ = SΠ(P ) we immediately arrive at

(∇(Rk(p̂)− p̂),∇(Y − ŷ))L2(Ω) = −(∇(Rk(p̂)− p̂),∇ŷ)L2(Ω) = −(Π(P ), Rk(p̂)L2(Ω) − p̂)L2(Ω).

Rearranging (5.17), we derive

(Θ̄ε
k, ŷ −Rk(SU))L2(Ω) = (Π(P ), Rk(p̂)− p̂)L2(Ω) − (Y − yd, Rk(SU)− ŷ)L2(Ω) + (U −Π(P ), Rk(p̂))L2(Ω)

and thus, combining this with our previous deductions, we obtain

(Θ̄ε
k, ŷ − yc)L2(Ω) = (Θ̄ε

k, ŷ −Rk(SU))L2(Ω) + (Θ̄ε
k, Rk(SU)− Y )L2(Ω) + (Θ̄ε

k, Y − Ikyc)L2(Ω)

+ (Θ̄ε
k, Ikyc − yc)L2(Ω)

= (Π(P ), Rk(p̂)− p̂)L2(Ω) − (Y − yd, Rk(SU)− ŷ)L2(Ω) + (U −Π(P ), Rk(p̂))L2(Ω)

+ (Θ̄ε
k, Rk(SU)− Y )L2(Ω) + (Θ̄ε

k, Y − Ikyc)L2(Ω) + (Θ̄ε
k, Ikyc − yc)L2(Ω).

This can now be inserted in (5.12) to gain the estimate (5.10) completing the proof. �

The next lemma deals with the second term in (5.8):

Lemma 5.3 (estimate for (θ̄ε
N

, ȳε
N−ŷ)L2(Ω)). Let (Y, P ) ∈ H1

0 (Ω)×H1
0 (Ω) be arbitrary, ŷ = SΠ(P )

and 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3. Then the following estimate is valid

(5.18)

(θ̄ε
N

, ȳε − ŷ)L2(Ω) � min

{
s(τ)

∥∥(Π(P ) + Δyc)
−∥∥

L2(Ω)
, c(p′)s(τ)ε−3N/p′(|ŷ − Y |H1(Ω)

+ |(Y − Ikyc)
−|H1(Ω) + ‖yc − Ikyc‖H1(Ω)

)}
− 1

εN

∥∥∥v̄εN∥∥∥2 .
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Proof. We use the harmonic extension Hι for ι = yc|∂Ω ∈ H1/2(Ω) to split the critical termn in the
following way:

(θ̄ε
N

, ȳε − ŷ)L2(Ω) = (θ̄ε
N

, ȳε − (yc −Hι))L2(Ω) + (θ̄ε
N

, yc −Hι− ŷ)L2(Ω).(5.19)

We note that due to the maximum principle for elliptic operators and yc|∂Ω < 0 we have Hι ≤ 0
a.e. in Ω. Now, investigating the first term in the equation above, we take advantage of the
complimentary slackness condition (2.5c) and Hι ≤ 0 a.e. to deduce:

(θ̄ε
N

, ȳε
N − (yc −Hι))L2(Ω) = − 1

εN

∥∥∥v̄εN∥∥∥2
L2(Ω)

+ (θ̄ε
N

, Hι)L2(Ω)︸ ︷︷ ︸
≤0

≤ 0.

We still need to estimate the second term on the right in (5.19), though.

Using the ’singular part’ p̄ε
N

s of the adjoint state defined by p̄ε
N

s := −S∗θ̄ε
N

, ∇ŷ,∇yc,∇Hι ∈
H(div,Ω), yc −Hι ∈ H1

0 (Ω) and Green’s formula, we can conclude:

(θ̄ε
N

, yc −Hι− ŷ)L2(Ω) = (−∇p̄ε
N

s ,∇(yc −Hι− ŷ))L2(Ω) = (p̄ε
N

s ,Δyc −ΔHι−Δŷ)L2(Ω).

Now, observe that ΔHι = 0 and −Δŷ = Π(P ) a.e in Ω. This allows us to conclude:

(θ̄ε
N

, yc −Hι− ŷ)L2(Ω) = (p̄ε
N

s ,Δyc −ΔHι−Δŷ)L2(Ω) = (p̄ε
N

,Δyc +Π(P ))L2(Ω).

Thanks to −θ̄ε
N ≤ 0 a.e. in Ω (compare (2.5c)) and the maximum principle applied to p̄ε

N

s =

−S∗θ̄ε
N

s we know that p̄ε
N

= −S∗θ̄ε
N ≤ 0 a.e. Together with continuity of S∗ as a mapping

S∗ : L1(Ω) → W 1
s (Ω) ↪→ L2(Ω), s < d

d−1 (compare [42], Theorem 9.1) and boundedness of θ̄ε
N

in

L1(Ω), cf Lemma 4.3, we have:∥∥∥p̄εNs ∥∥∥
L2(Ω)

=
∥∥∥S∗θ̄ε

N
∥∥∥
L2(Ω)

�
∥∥∥θ̄εN∥∥∥

L1(Ω)
� s(τ),

With the observation above we can deduce that

(5.20) (p̄ε
N

s ,Δyc +Π(P ))L2(Ω) � s(τ)
∥∥(Δyc +Π(P ))−

∥∥
L2(Ω)

All in all, we have proven the bound:

(θ̄ε
N

, ȳε − ŷ)L2(Ω) ≤
∥∥∥p̄εNs ∥∥∥

L2(Ω)

∥∥(Δyc +Π(P ))−
∥∥
L2(Ω)

− 1

εN

∥∥∥v̄εN∥∥∥2
L2(Ω)

=: min1.(5.21)

Neglecting the shift − 1
εN

∥∥∥v̄εN∥∥∥2
L2(Ω)

, we realise that the inequality above gives the first argument

in the min operation in (5.18).
To derive the other bound given by the second argument in the min operation in (5.18), we return
to the start, (5.19), and split the critical term in the following different way:

(θ̄ε
N

, ȳε − ŷ)L2(Ω) = (θ̄ε
N

, ȳε − yc)L2(Ω) + (θ̄ε
N

, yc − ŷ)L2(Ω)(5.22)

For the first term, we once again take advantage of the complimentary slackness condition (2.5c)

(θ̄ε
N

, ȳε − yc)L2(Ω) = − 1

εN

∥∥∥v̄εN∥∥∥2
L2(Ω)

.

For the other term on the right in (5.22) we discern that

(θ̄ε
N

, yc − ŷ)L2(Ω) = (θ̄ε
N

, yc − Ikyc)L2(Ω) + (θ̄ε
N

, Ikyc − Y )L2(Ω) + (θ̄ε
N

, Y − ŷ)L2(Ω)
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Utilising the bound for θ̄ε
N

derived in Lemma 4.3, θ̄ε
N ≥ 0 (compare (2.5c)) and the embedding

H1
0 (Ω) ↪→ Lp(Ω) as well as Poincaré -Friedrich’s inequality, we obtain for 1 ≤ p ≤ 2 and 1

p +
1
p′ = 1:

(θ̄ε
N

, yc − Ikyc)L2(Ω) ≤
∥∥∥θ̄εN∥∥∥

Lp(Ω)
‖yc − Ikyc‖Lp′ (Ω) � c(p′)s(τ)ε−3N/p′ ‖yc − Ikyc‖H1(Ω)

(θ̄ε
N

, Ikyc − Y )L2(Ω) ≤
∥∥∥θ̄εN∥∥∥

Lp(Ω)

∥∥(Y − Ikyc)
−∥∥

Lp′ (Ω)
� c(p′)s(τ)ε−3N/p′ |(Y − Ikyc)

−|H1(Ω)

(θ̄ε
N

, Y − ŷ)L2(Ω) ≤
∥∥∥θ̄εN∥∥∥

Lp(Ω)
‖Y − ŷ‖Lp′ (Ω) � c(p′)s(τ)ε−3N/p′ |Y − ŷ|H1(Ω),

Reviewing the previous estimates, we have proven the following bound given by the second argument
of the min argument in (5.18):

(θ̄ε
N

, ȳε − ŷ)L2(Ω) � c(p′)s(τ)ε−3N/p′( ‖yc − Ikyc‖H1(Ω) + |(Y − Ikyc)
−|H1(Ω) + |Y − ŷ|H1(Ω)

)
− 1

εN

∥∥∥v̄εN∥∥∥2
L2(Ω)

=: min2

Combining this with (5.21), we obtain

(θ̄ε
N

, ȳε − ŷ)L2(Ω) � min(min1,min2)

which is the desired result. �

With these auxiliary results we are now in a position to prove a reliable estimator for the variational
discretisation approach, i.e. Theorem 3.4. This is the third step of our ’roadmap’, presented at the
beginning of this section:

5.1. Proof of Theorem 3.4. :

Proof of Theorem 3.4. First of all, we split the error
∥∥ū− Ūε

k

∥∥2
L2(Ω)

with the help of the triangle

and weighted Young’s inequality in the following way

∥∥ū− Ūε
k

∥∥2
L2(Ω)

≤ 2
∥∥∥ū− ūεN

∥∥∥2
L2(Ω)

+ 2
∥∥∥ūεN − Ūε

k

∥∥∥2
L2(Ω)

.(5.23)

For the first term on the right in the inequality above we can use Theorem 4.5 and Corollary 4.7
to deduce ∥∥∥ū− ūεN

∥∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN .

with γ defined in (4.9).
For the second term on the right in (5.23) we employ Lemma 5.1 with U = Ūε

k = Π(P̄ ε
k ), P = P̄ ε

k

and Y = Ȳ ε
k to gain

(5.24)
2
∥∥∥ūεN − Ūε

k

∥∥∥2
L2(Ω)

≤ 1

ν

∥∥SŪε
k − Ȳ ε

k

∥∥2
L2(Ω)

+
2

ν2
∥∥S∗(Ȳ ε

k − yd − Θ̄ε
k)− P̄ ε

k

∥∥2
L2(Ω)

+
4

ν
(Θ̄ε

k, SŪ
ε
k − ȳε

N

)L2(Ω) +
4

ν
(θ̄ε

N

, ȳε
N − SŪε

k)L2(Ω).
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Investigating the second to last term on the right, we harness Lemma 5.2 and Rk(SŪ
ε
k) = Ȳ ε

k to
conclude with the additional help of (5.11):

(5.25)

(Θ̄ε
k, SŪ

ε
k − ȳε

N

)L2(Ω) ≤ (Ūε
k , P̄

ε
k − S∗(Ȳ ε

k − yd − θ̄εk))L2(Ω) − (Ȳ ε
k − yd, Ȳ

ε
k − ŷ)L2(Ω)

+ (Θ̄ε
k, Ȳ

ε
k − Ikyc)L2(Ω) + (Θ̄ε

k, Ikyc − yc)L2(Ω) + (Θ̄ε
k, yc − ȳε

N

)L2(Ω)

�
∥∥Ūε

k

∥∥
L2(Ω)

∥∥P̄ ε
k − S∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
∥∥Ȳ ε

k − yd
∥∥
L2(Ω)

∥∥Ȳ ε
k − ŷ

∥∥
L2(Ω)

+ (Θ̄ε
k, Ȳ

ε
k − Ikyc)L2(Ω)

+
∥∥Θ̄ε

k − P 0+
k (Θ̄ε

k)
∥∥
L2(Ω)

+ c(p′)s(τ)
∥∥P 0+

k (Θ̄ε
k)
∥∥
L2(Ω)

εN( 3
2+γ)

Combining (5.24) and (5.25) and the complimentary slackness condition for the discrete problem
(2.10c), we obtain

(5.26)

∥∥∥Ūε
k − ūεN

∥∥∥2
L2(Ω)

� E2
r (Ū

ε
k , V̄

ε
k ) +

4

ν

∥∥Ūε
k

∥∥
L2(Ω)

∥∥P̄ ε
k − S∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
4

ν

∥∥Ȳ ε
k − yd

∥∥
L2(Ω)

∥∥Ȳ ε
k − ŷ

∥∥
L2(Ω)

+
4

ν

∥∥Θ̄ε
k − P 0+

k (Θ̄ε
k)
∥∥
L2(Ω)

+
4

ν
c(p′)s(τ)

∥∥P 0+
k (Θ̄ε

k)
∥∥
L2(Ω)

εN( 3
2+γ) +

4

ν
(θ̄ε

N

, ȳε
N − SŪε

k)L2(Ω)

The last term remains to be estimated.
Recalling Lemma 5.3 with Y = Ȳ ε

k , P = P̄ ε
k and Ūε

k = Π(P̄ ε
k ), we deduce

4

ν
(θ̄ε

N

, ȳε
N − SŪε

k)L2(Ω) �
4

ν
min

{
s(τ)

∥∥(Ūε
k +Δyc)

−∥∥
L2(Ω)

,

+ c(p′)s(τ)ε−3N/p′
(
|SŪε

k − Ȳ ε
k |H1(Ω) + |(Ȳ ε

k − Ikyc)
−|H1(Ω)

+ ‖yc − Ikyc‖H1(Ω)

)}
− 4

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

The term 4
νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

can be shifted to the left in (5.24) to complete the left hand side in (3.2).

Presently, inserting the estimate above in (5.26) and recalling the definition of Es(Ūε
k , V̄

ε
k ), (3.4),

we deduce the the right hand side in (3.2), i.e.:∥∥Ūε
k − ū

∥∥2
L2(Ω)

+
4

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN + E2

r (Ū
ε
k , V̄

ε
k ) + Es(Ūε

k , V̄
ε
k )

�

Let us now prove the analogous result for the full discretisation technique, i.e. Theorem 3.5. Here,
Uk = FES(Tk,P0, L2(Ω)).

5.2. Proof of Theorem 3.5. :

Proof of Theorem 3.5. As in the proof of Theorem 3.4 we harness the results of Lemmas 5.1, 5.2
and 5.3 to prove the bound (3.5).
A similar split as in (5.23) and Corollary 4.7 yield

(5.27)
∥∥Ūε

k − ū
∥∥2
L2(Ω)

� 2
∥∥Ūε

k −Π(P̄ ε
k )
∥∥2
L2(Ω)

+ 4
∥∥∥Π(P̄ ε

k )− ūεN
∥∥∥2
L2(Ω)

+
4

ν
c(p′)s(τ)εγN .



RELIABLE A POSTERIORI ERROR ESTIMATION FOR STATE-CONSTRAINED OPTIMAL CONTROL 19

The first term
∥∥Ūε

k −Π(P̄ ε
k )
∥∥2
L2(Ω)

can be evaluated exactly (compare again [26], Remark 4.3).

Thus, the aim now is to control the term
∥∥∥Π(P̄ ε

k )− ūεN
∥∥∥2
L2(Ω)

.

Inserting (Ȳ ε
k , P̄

ε
k ) for (Y, P ) in Lemma 5.1, we obtain

(5.28)

∥∥∥Π(P̄ ε
k )− ūεN

∥∥∥2
L2(Ω)

≤ 1

2ν

∥∥SΠ(P̄ ε
k )− Ȳ ε

k

∥∥2
L2(Ω)

+
1

ν2
∥∥S∗(Ȳ ε

k − yd − Θ̄ε
k)− P̄ ε

k

∥∥2
L2(Ω)

+
2

ν
(θ̄ε

N

, ȳε
N − SΠ(P̄ ε

k ))L2(Ω) +
2

ν
(Θ̄ε

k, SΠ(P̄
ε
k )− ȳε

N

)L2(Ω)

We will derive the regular part E2
r (Ū

ε
k , V̄

ε
k ), (3.6), first: To begin with, we discern with Ȳ ε

k = SkŪ
ε
k

and continuity of S that

(5.29)
∥∥SΠ(P̄ ε

k )− Ȳ ε
k

∥∥2
L2(Ω)

� 2
∥∥Ūε

k −Π(P̄ ε
k )
∥∥2
L2(Ω)

+ 2
∥∥(S − Sk)Ū

ε
k

∥∥2
L2(Ω)

Let us now tackle the scalar product terms in (5.28) beginning with (Θ̄ε
k, SΠ(P̄

ε
k )− ȳε

N

)L2(Ω):

To gain an estimate for (Θ̄ε
k, SΠ(P̄

ε
k )− ȳε

N

)L2(Ω), we employ Lemma 5.2 with U = Ūε
k , P = P̄ ε

k and

Y = Ȳ ε
k , Cauchy-Schwarz inequality and (5.11); also recollect that Rk(SŪ

ε
k) = Ȳ ε

k :
(5.30)

(Θ̄ε
k, SΠ(P̄

ε
k )− ȳε

N

)L2(Ω) �
∥∥Π(P̄ ε

k )
∥∥
L2(Ω)

∥∥(S − Sk)
∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
∥∥Ȳ ε

k − yd
∥∥
L2(Ω)

(
∥∥(S − Sk)Ū

ε
k

∥∥
L2(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥
L2(Ω)

)

+
∥∥Θ̄ε

k − P 0+
k (Θ̄ε

k)
∥∥
L2(Ω)

+ c(p′)s(τ)
∥∥P 0+

k (Θ̄ε
k)
∥∥
L2(Ω)

εN( 3
2+γ)

+ (Ūε
k −Π(P̄ ε

k ), P̄
ε
k )L2(Ω) + (Θ̄ε

k, Ikyc − yc)L2(Ω) + (Θ̄ε
k, Ȳ

ε
k − Ikyc)L2(Ω)

This bound can now be inserted in (5.28): We first set

(5.31)

X :=
∥∥Π(P̄ ε

k )
∥∥
L2(Ω)

∥∥(S − Sk)
∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥
L2(Ω)

+
∥∥Ȳ ε

k − yd
∥∥
L2(Ω)

(
∥∥(S − Sk)Ū

ε
k

∥∥
L2(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥
L2(Ω)

)

+
∥∥Θ̄ε

k − P 0+
k (Θ̄ε

k)
∥∥
L2(Ω)

+ c(p′)s(τ)
∥∥P 0+

k (Θ̄ε
k)
∥∥
L2(Ω)

εN( 3
2+γ)

and observe that X already contains many of the terms given in (3.7).
With this definition of X we plug (5.30) in (5.28) and afterwards (5.28) in (5.27). We obtain:

∥∥Ūε
k − ū

∥∥2
L2(Ω)

� 8

ν
c(p′)s(τ)εγN + (2 +

4

ν
)
∥∥Π(P̄ ε

k )− Ūε
k

∥∥2
L2(Ω)

+
4

ν

∥∥(S − Sk)Ū
ε
k

∥∥2
L2(Ω)

+
4

ν2
∥∥S∗(Ȳ ε

k − yd − Θ̄ε
k)− P̄ ε

k

∥∥2
L2(Ω)

+
8

ν
(Θ̄ε

k, Ikyc − yc)L2(Ω) +
8

ν
(Θ̄ε

k, Ȳ
ε
k − Ikyc)L2(Ω) +

8

ν
(Ūε

k −Π(P̄ ε
k ), P̄

ε
k )L2(Ω)

+
8

ν
X +

8

ν
(θ̄ε

N

, ȳε
N − SΠ(P̄ ε

k ))L2(Ω)

In short, bearing in mind the complimentary slackness condition on the discrete level (2.10c):

∥∥Ūε
k − ū

∥∥2
L2(Ω)

� 1

ν
c(p′)s(τ)εγN + E2

r (Ū
ε
k , V̄

ε
k ) +

8

ν
X +

8

ν
(θ̄ε

N

, ȳε
N − SΠ(P̄ ε

k ))L2(Ω)(5.32)
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The last term remains to be estimated:
We employ Lemma 5.3 with Y = Ȳ ε

k and P = P̄ ε
k to obtain:

(5.33)

(θ̄ε
N

, ȳε
N − SΠ(P̄ ε

k ))L2(Ω) � min

{
s(τ)

∥∥(Π(P̄ ε
k ) + Δyc)

−∥∥
L2(Ω)

,

+ c(p′)s(τ)ε−3N/p′( ∣∣SΠ(P̄ ε
k )− SkŪ

ε
k

∣∣
H1(Ω)

+ |(Ȳ ε
k − Ikyc)

−|H1(Ω) + ‖yc − Ikyc‖H1(Ω)

)}
− 8

νεN

∥∥∥v̄εN∥∥∥2 .
Except for

∣∣SΠ(P̄ ε
k )− SkŪ

ε
k

∣∣
H1(Ω)

all terms already appear in (3.7). Let us therefore further esti-

mate this term. Using continuity of S and setting |S| = ‖S‖L(L2(Ω),H1(Ω)), we derive

(5.34)

(θ̄ε
N

, ȳε
N − SΠ(P̄ ε

k ))L2(Ω) � min

{
s(τ)

∥∥(Π(P̄ ε
k ) + Δyc)

−∥∥
L2(Ω)

,

c(p′)s(τ)ε−3N/p′( ∣∣(S − Sk)Ū
ε
k

∣∣
H1(Ω)

+
∥∥Π(P̄ ε

k )− Ūε
k

∥∥
+ |(Ȳ ε

k − Ikyc)
−|H1(Ω) + ‖yc − Ikyc‖H1(Ω)

)}
− 8

νεN

∥∥∥v̄εN∥∥∥2 =: Y

We observe that by definition (compare (5.31)):

X + Y = Es(Ūε
k , V̄

ε
k )−

8

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

.

Bearing this relation in mind, we can now insert the bound derived in (5.34) in (5.32) to deduce:

∥∥Ūε
k − ū

∥∥2
L2(Ω)

� c(p′)s(τ)εγN + E2
r (Ū

ε
k , V̄

ε
k ) + Es(Ūε

k , V̄
ε
k )−

8

νεN

∥∥∥v̄εN∥∥∥2
L2(Ω)

.

Shifting the term − 8
νεN

∥∥∥v̄εN∥∥∥2 to the left, we obtain the desired inequality (3.5). This completes

the proof. �

6. Numerical Experiments

Let us first present our discretisation ansatz for the examples considered in Sections 6.3.1 and 6.3.2:

6.1. Discrete Setting & The Adaptive Algorithm. For our discrete spaces we make the fol-
lowing ansatz:

Uk = FES(Tk,P0, L2(Ω))

Yk = Vk = FES(Tk,P1, H
1
0 (Ω))

To present the adaptive algorithm, we will follow the structure provided to us by the adaptive loop

SOLVE → ESTIMATE → MARK → REFINE

6.1.1. SOLVE. The optimisation problems for fixed ε and fixed k, Problem (P ε
k ), were solved with

the help of a primal-dual-active-set-strategy (see e.g. [10] and [30]).
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6.1.2. ESTIMATE. For the linear errors in our estimators E2
r (Ū

ε
k , V̄

ε
k ) and Es(Ūε

k , V̄
ε
k ) we used

standard residual type error estimators in the respective L2(Ω)- and H1
0 (Ω)-norms (compare e.g [1]

and [37], Chapter 6). We would like to stress that other reliable a posteriori error estimators for
the linear errors (S − Sk) such as hierarchical ones, e.g. [44], or other, [5], are applicable too.
With these residual error estimators we obtain the following upper bounds - provided S maps
continuously to H2(Ω) ∩H1

0 (Ω) -

(6.1)

∥∥(S − Sk)(Ū
ε
k + f)

∥∥2
L2(Ω)

�
∑
T∈Tk

h4
T

∥∥Ūε
k + f

∥∥2
L2(T )

+ h3
T

∥∥�Sk(Ū
ε
k + f)�

∥∥2
L2(∂T )∣∣(S − Sk)(Ū

ε
k + f)

∣∣2
H1(Ω)

�
∑
T∈Tk

h2
T

∥∥Ūε
k + f

∥∥2
L2(T )

+ hT

∥∥�Sk(Ū
ε
k + f)�

∥∥2
L2(∂T )∥∥(S − Sk)(Ȳ

ε
k − yd − θ̄εk)

∥∥2
L2(Ω)

�
∑
T∈Tk

h4
T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥2
L2(T )

+ h3
T

∥∥�Sk(Ȳ
ε
k − yd − θ̄εk)�

∥∥2
L2(∂T )

,

where �·� denotes the normal jump across two elements T+, T− ∈ Tk sharing a common side ∂T . In
addition, the each summand on the right in (6.1) serves as a local indicator on every T for future
marking purposes.
The estimator Es(Ūε

k , V̄
ε
k ) does not lend itself to immediate localisation, because it does not contain

scalar products or squared L2(Ω), H
1
0 (Ω)-norms. Hence, we have to square it once again to obtain:

E2
s (Ū

ε
k , V̄

ε
k ) �

∥∥Ȳ ε
k − yd

∥∥2
L2(Ω)

(
∥∥(S − Sk)(Ū

ε
k + f)

∥∥2
L2(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥2
L2(Ω)

)

+
∥∥Π(P̄ ε

k )
∥∥2
L2(Ω)

∥∥(S − Sk)
∗(Ȳ ε

k − yd − Θ̄ε
k)
∥∥2
L2(Ω)

+ c(p′)s(τ)
∥∥P 0+

k (Θ̄ε
k)
∥∥2
L2(Ω)

εN( 6
2+2γ) +

∥∥Θ̄ε
k − P 0+

k Θ̄ε
k

∥∥2
L2(Ω)

+min

{
s(τ)

∥∥(Π(P̄ ε
k ) + Δyc)

−∥∥2
L2(Ω)

, c(p′)s(τ)ε−3N/p′(|(S − Sk)(Ū
ε
k + f)|2H1(Ω)

+
∥∥Ūε

k −Π(P̄ ε
k )
∥∥2
L2(Ω)

+ ‖yc − Ikyc‖2H1(Ω) + |(Ȳ ε
k − Ikyc)

−|2H1(Ω)

)}
Now, we have the desired structure with squared L2(Ω)- and H1

0 (Ω)-norms which can easily be
localised on each T ∈ Tk using (6.1) for the linear errors S − Sk or plain numerical integration on
each T ∈ Tk. Naturally, the different exponents in E2

r (Ū
ε
k , V̄

ε
k ) and Es(Ūε

k , V̄
ε
k ) need to be reflected

in the marking algorithm. We will expound on this in the next section, let us now first make it clear
that at the end of the ’ESTIMATE’ module of the adaptive loop we are in possession of computable
estimates

(6.2)

E2
r (Ū

ε
k , V̄

ε
k ) �

∑
T∈Tk

E2
r (T )

E2
s (Ū

ε
k , V̄

ε
k ) �

∑
T∈Tk

E2
s (T )

with local indicators E2
r (T ) and E2

s (T ) respectively.

6.1.3. MARK and REFINE. With the local indicators E2
r (T ) and E2

s (T ), recall (6.2), we now
define the following marking algorithm which basically is a modified maximum strategy: Choose
paramteres ηr, ηs ∈ (0, 1) and

MARK T ∈ Tk iff Er(T ) ≥ ηr max
T∈Tk

∨Es(T ) ≥ ηs max
T∈Tk

Es(T ).(6.3)
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For the marked elements, we then perform a recursive refinement algorithm (compare [27]).
In some cases, the regularisation error may have a significant influence on the total error. To remedy
this disadvantage, we performed an ε-adaptation in some examples.

6.2. ε-Adaptation. It was motivated by the fact that under certain conditions - the crucial one
being the existence of a sequence of discrete Slater points Us

k with SkU
s
k − Ikyc ≥ κ, κ > 0 - one

can show that

∥∥Ūk − Ūε
k

∥∥2
L2(Ω)

� ε1−3/p′ |V̄ ε
k |H1(Ω), p

′ ≥ 2,

where Ūk denotes the (unknown) unique discrete solution to the discrete unregularised problem.

We now take
∥∥Ūk − Ūε

k

∥∥2 as an indicator for the error solely incurred by regularisation and adapt
ε according to the following scheme: Given a tolerance TOL > 0 and parameters ca, 0 < β < 1 as
well as the current value of the regularisation parameter εcurr and a minimal one εmin, we set the
new regularisation parameter εnew by:

(6.4)
if ε1−3/p′ |V̄ ε

k |H1(Ω) > c2aTOL2 do εnew = max(βεcurr, εmin)

else εnew = εcurr

6.3. Numerical Results. The numerical experiments were done with the help of the finite element
toolbox ALBERTA, see [40].
For our numerical experiments we constructed an analytical solution to check the performance of
our adaptive algorithm. To construct such a solution to a problem of type (P ), we include an
additional source term f in the PDE for the state ȳ. This slight modification does not change the
analyses of the previous sections. Thus, the solution ū, ȳ, p̄, θ̄ to the following optimality system
solves problem (P ) with the additional source term f included in the equation for the state ȳ:

(6.5)

−Δȳ = ū+ f in Ω

ȳ = 0 on ∂Ω

−Δp̄ = ȳ − yd − θ̄ in Ω

p̄ = 0 on ∂Ω

ū(x) = min(max(−1

ν
p̄(x), a), b) f.a.a. x ∈ Ω

〈θ̄, ȳ − yc〉 = 0

We deliberately leave some ambiguity as to the duality product in the last line: In Section 6.3.1 we
have 〈θ̄, ȳ − yc〉 = 〈θ̄, ȳ − yc〉C(Ω̄)∗,C(Ω̄) while in Section 6.3.2 we have 〈θ̄, ȳ − yc〉 = (θ̄, ȳ − yc)L2(Ω).

6.3.1. A Dirac Multiplier Example. This example represents to a certain extent a ’worst case’
setting for state-constrained problems in two space dimensions. However, such a ’worst-case’ is
certainly not unusual in practice and thus not only of theoretical interest. The true solution to
(P ) is constructed in such a way that the Lagrange multiplier for the state constraint is a Dirac
measure, i.e. solely an element in C(Ω̄)∗.



RELIABLE A POSTERIORI ERROR ESTIMATION FOR STATE-CONSTRAINED OPTIMAL CONTROL 23

The ensuing problem setting is given: With Ω = B1(0) ⊂ R
2, a = −1012 and b = 1012 we define:

ȳ(x) = sin(π|x|2)
p̄(x) = −35 ln |x|

ū(x) = min(max(−1

ν
p̄(x), a), b)

yc(x) = sin(π|x|2)− |x|2

θ̄ = 35δ(0)

With ȳ = yd and f adjusted in such a way that the state equation in (6.5) is fulfilled one can show
that ū, ȳ, p̄, θ̄ solve the optimality system (6.5).
In these low-regularity settings it has been frequently observed that the error due to regularisation
has a significant influence on the overall error, that is why we performed an ε-adaptation according
to our strategy (6.4). We obtain the following results for N = 12, p′ = 3, parameters ηr = 0.5 and
ηs = 0.8 for our refinement strategy (6.3), as well as β = 0.93 and ca = 6.5 for our ε-adaptation,
(6.4):

Figure 1. smooth example: performance of adaptive and uniform refinement

Let us elucidate on this chart a little further. As all the other ensuing plots it has a logarithmic scale
on all axes. The error curves plot the error ‖Ūε

k − ū‖L2(Ω) against the number of control degrees
of freedom (DOFs), the estimator curves do the same for our estimators. The optimal order curve
represents the theoretically best possible approximation which can be achieved by a piecewise
constant approximation: If dim(Uk) is the number of control DOFs it is given by (dim(Uk))

−1/2
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(see e.g. Theorem 2.3, [16] and [11]).
To make a valid comparison we also adapted ε in the uniform refinement case by setting it manually
to match the ε for the adaptive case at the same amount of DOFs. We see that eventually the
estimator captures the error in the adaptive and uniform case quite well, this is of course the desired
effect in this ’worst-case’-setting. In addition adaptive refinement significantly outperforms uniform
refinement. Our ε-adaptation leads to a continuous decrease in the regularisation parameter which
is to be expected in this setting.
We realise that adaptive refinement results in the desired effect, namely refinement at the centre of
the Dirac source at 0, as the following images show:

Figure 2. adaptive refinement: high resolution at the Dirac source

6.3.2. A Smooth Example. With this example we intend to test our estimator and our ε-adaptation
in a case

• which is very much not a ’worst case’ setting, because here, we will have a multiplier for
the state constraint which is a regular L∞(Ω)-function

• where the regularisation error does not have a significant influence on the total error

The following data is given: Ω = [0, 1]2, a = −5, b = 5; with x = (x1, x2) and yd and f properly
adjusted the following functions solve (6.5):

ȳ(x) = sin(πx1) sin(πx2)

p̄(x) = 10 sin(πx1) sin(πx2)

ū(x) = min(max(−1

ν
p̄(x), a), b)

yc(x) =

{
ȳ(x) if x ∈ [ 14 ,

3
4 ]

2

ȳ(x)− (x1 − 1
4 )

2(x1 − 3
4 )

2(x2 − 1
4 )

2(x2 − 3
4 )

2 else

θ̄(x) =

{
10 if x ∈ [ 14 ,

3
4 ]

2

0 else

We observe that the control is adjusted to be constant on a subdomain of Ω, besides, the state
constraint is chosen in such a way that the bi-active set, i.e. the set where both control and
state constraint are active, does not have measure zero. This can be numerically disadvantageous.
Nevertheless, we see that our adaptive algorithm performs quite well as the following figure shows.
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Once again, we employed a logarithmic scale for both axes, the following parameters were chosen:
For the estimator N = 5, p′ = 12, for the refinement strategy ηr = 0.5, ηs = 0.8 and ε was fixed to
ε = 0.01:

Figure 3. smooth example: performance of adaptive and uniform refinement

The curves reflect those of Figure 6.3.1.
We realise that after a slight initial ’wobble’ the adaptive refinement strategy outperforms the
uniform one in the end needing around 10, 000 fewer DOFs for the same precision. Unfortunately,
the estimator curves betray a slight overestimation of the actual error, the given data is too benign
for a reliable estimator which necessarily has to take into account the ’worst-case’ setting of our
first example.
We can also discern that the mesh is fairly coarse in those areas where the control is constant as
the following images show. Naturally, this is the desired adaptive mesh refinement:

Figure 4. adaptive refinement: coarse meshes where ū is constant
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In this example, the error due to regularisation does not have any significant influence on the total
error as the following table for uniformly refined meshes shows:

Error ‖ū− Ūε
k‖ for ε = 0.04

DOFs Error
8192 0.069501
16384 0.050021
32322 0.035669

Error ‖ū− Ūε
k‖ for ε = 0.01

DOFs Error
8192 0.069519
16384 0.0485
32768 0.034497

Error ‖ū− Ūε
k‖ for ε = 0.003

DOFs Error
8192 0.069937
16384 0.048821
32768 0.034621

Figure 5. results for different regularisation parameters

Naturally, we are now interested in the question whether our ε-adaptation strategy with parameters
β = 0.93 and ca = 6.5, (6.4), observes this lack of influence of the regularisation error. As the
following figure shows, it does:

Figure 6. smooth example: steering of ε coupled with adaptive refinement

We discern that after several iterates the regularisation parameter ε stays constant. Thus, our
algorithm (6.4) recognises the fact that for this problem the error incurred by regularisation does
not have a significant influence on the overall error and hence keeps the parameter ε unchanged.
Besides, we can once again see that the adaptive algorithm achieves the optimal rate expected for a
piecewise constant discretisation, while our estimator slightly overestimates the error, as previously
experienced in this smooth setting.

7. Conclusion & Outlook

In this paper we have derived a reliable a posteriori error estimator for a state-constrained elliptic
optimal control problem. Extensions to more general elliptic problems are easily possible, for
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the sake of brevity we focussed on the model problem (P ). Numerically, we have seen that the
estimator captures the true error quite well in the ’worst-case’ Dirac setting of Section 6.3.1. This
’worst-case’ setting, however, is definitely not infrequent in practical applications. Yet, there is an
over-estimation in the smooth problem of Section (6.3.2). This disparity is testament to the fact
that in problems of type (P ) an estimator that is both reliable and efficient seems to be out of reach
at the moment.
In addition, we developed a strategy for the adaptation of the regularisation parameter in the
numerical solution of state-constrained optimal control problems, (6.4), which works well and which,
in addition, can be swiftly transferred to other regularisation methods such as the Moreau-Yosida
approach, because in essence V̄ ε

k ≈ − 1
ε (Ȳ

ε
k − Ikyc)

−.
In the imminent future, our a posteriori error estimator will be supplemented by a basic convergence
result in the vein of [41] and a convergence result for the estimator itself in greater generality than
already described in [43], Section 4.3. Taken together, both will then constitute a convergent
adaptive finite element scheme for state-constrained optimal control problems extending already
existing results for adaptive finite element discretisations for ’pure’ PDEs and control-constrained
problems.
Besides, extending these results to gradient-constrained problems or instationary ones should be
another focus of research.
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