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Abstract

This paper presents a set of design principles and new algorithmic tools for
enforcing maximum principles and/or positivity preservation in continuous
finite element approximations to convection-dominated transport problems.
Using a linear first-order advection equation as a model problem, we ad-
dress the design of first-order artificial diffusion operators and their higher-
order counterparts at the element matrix level. The proposed methodology
leads to a nonlinear high-resolution scheme capable of resolving moving fronts
and internal/boundary layers as sharp localized nonoscillatory features. The
amount of numerical dissipation depends on the difference between the solu-
tion value at a given node and a local maximum or minimum. The shock-
capturing numerical diffusion coefficient is designed to vanish as the nodal
values approach a mass-weighted or linearity-preserving average. The uni-
versal applicability and simplicity of the element-based limiting procedure
makes it an attractive alternative to edge-based algebraic flux correction.
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Additionally a Lipschitz continuous version of the limiter is presented that
guarantees unique solvability of the nonlinear system associated with the
steady state limit of the time-dependent problem. A grid convergence study
is performed for two-dimensional test problems.

Keywords: convective transport, finite elements, discrete maximum
principles, artificial diffusion, limiters, algebraic flux correction

1. Introduction

The Galerkin finite element discretization of convection-dominated transport
equations is known to produce numerical approximations that may violate
the discrete maximum principle and/or the criterion of positivity preservation
on meshes that are too coarse to resolve certain fine-scale features (mov-
ing fronts, interior and boundary layers). The most common approach to
avoiding nonphysical undershoots and overshoots in finite element methods
is based on the use of nonlinear shock-capturing terms within the framework
of variationally consistent Petrov-Galerkin methods (see, e.g., [10, 28, 29] for
a review and comparative study of existing schemes). Additionally entropy
viscosity approaches that attempt to control oscillations by introducing artifi-
cial dissipation that is based on an auxiliary entropy production residual have
been proposed [22]. The main drawback of many existing approaches is the
presence of problem-dependent free parameters along with the lack of prov-
able nonlinear stability properties such as positivity and monotonicity preser-
vation on general meshes. While small spurious oscillations can be tolerated
in some applications, many models are very sensitive to nonphysical values
of the transported variable. For this reason, the use of physics-compatible
finite element approximations may be appropriate or even indispensable.

Nonlinear shock-capturing operators backed by the theory of discrete max-
imum principles (DMP) were recently developed and analyzed in [1, 2, 6,
7, 18]. In the case of [1] and [7], the proof of the DMP property imposes
restrictions of sufficient mesh regularity. Moreover, mass lumping is required
in applications to transient problems [1]. The explicit second-order method
proposed in [18] satisfies a discrete maximum principle for arbitrary meshes
and employs the consistent mass matrix. The way in which [18] enforces
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DMP constraints is closely related to the concept of algebraic flux correc-
tion [32]. This approach provides a general framework for the design of
artificial diffusion operators that render a finite element discretization local
extremum diminishing (LED) or positivity-preserving. In nonlinear high-
resolution schemes based on algebraic flux correction, the antidiffusive part
of a high-order discretization is constrained using a conservative limiter.

The most prominent representative of algebraic flux correction schemes is
the flux-corrected transport (FCT) algorithm introduced by Boris and Book
[5] and Zalesak [47] in the context of explicit finite difference schemes. Un-
like many other limiting techniques, FCT can be extended to finite element
approximations using conservative decompositions of the antidiffusive term
into internodal fluxes associated with edges of the sparsity graph [44, 11,
40, 35, 30] or element contributions associated with individual mesh cells
[38, 39, 35]. The simplicity and efficiency of predictor-corrector FCT schemes
make them very attractive in situations when the problem is time-dependent
and the time steps are small [29]. Additionally, edge-based generalizations
of total variation diminishing (TVD) schemes [20, 21] can be designed using
reconstruction of 1D stencils [41, 42, 37] or algebraic flux correction schemes
proposed in [31, 32]. In contrast to FCT, multidimensional extensions of iter-
ative TVD limiters are directly applicable to stationary transport equations
and produce steady-state solutions independent of the time step.

In this paper, new element-based limiting techniques for artificial diffusion
operators constructed on the element matrix level are proposed. The main
advantages of the presented methodology are computational simplicity, LED
property on arbitrary meshes, low levels of numerical dissipation, and appli-
cability to time-dependent problems without mass lumping.

After reviewing the design philosophy behind algebraic flux correction schemes,
we consider local bilinear forms associated with low-order monotonicity-
preserving artificial diffusion. Instead of constraining the sums of antidiffu-
sive element contributions as in element-based FCT schemes, we define nodal
correction factors so that the modified scheme is LED, and reduces to the
underlying Galerkin discretization whenever the nodal value is close enough
to a suitably defined average value to indicate the local function is nearly
linear. To improve phase accuracy, an optional correction of the consistent
mass matrix is performed using a local version of the element-based FCT al-
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gorithm. A Lipschitz-continuous upwind limiter is developed for steady state
computations. The numerical behavior of the proposed schemes is illustrated
by a grid convergence study for two-dimensional transport problems.

2. Continuous problem

As a linear model problem, consider the time-dependent linear first-order
advection equation

∂u

∂t
+∇ · (vu) = 0 in Ω, (1)

where u : Ω×R+ �→ R is the conserved quantity, v : Ω×R+ �→ R
d is a given

velocity field, and Ω is a bounded domain in R
d, d ∈ {1, 2, 3}.

The initial condition for the linear convection model is given by

u(x, 0) = u0(x), x ∈ Ω. (2)

At the inlet Γin := {x ∈ Γ |v · n < 0}, where n is the unit outward normal
to the boundary Γ := ∂Ω, a Dirichlet boundary condition is prescribed

u = uin on Γin. (3)

Let Σ := {(x, t) |x ∈ Γin ∨ t = 0} denote the set of points and time instants
such that u(x, t) is known from the data prescribed in (2) or (3).

The solution to problem (1)–(3) is known to be positivity-preserving, i.e.,

u(x, t) ≥ 0 ∀(x, t) ∈ Σ ⇒ u(x, t) ≥ 0 ∀(x, t) ∈ Ω̄× R+, (4)

which can be easily shown using the method of characteristics.

Moreover, the following maximum principle holds in the case ∇ · v = 0:

min
Σ

u ≤ u(x, t) ≤ max
Σ

u. (5)

If ∇ · v �= 0, then the solution to (1)–(2) will satisfy (4) but may violate (5).
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3. Constrained approximations

Discretizing (1) in space, one obtains a sparse system of ordinary differential
equations for the nodal values ui(t) ≈ u(xi, t). For a number of discretizations
the equation associated with an interior node xi ∈ Ω can be written as

mi
dui

dt
=

∑
j∈N (i)

lijuj + fi(u), (6)

where N (i) := {i} ∪ {j | lij �= 0} defines the local stencil of the numerical
scheme and mi is a positive entry of a diagonal mass matrix.

A well-designed discrete numerical approximation should preserve the impor-
tant properties of the exact continuous solution. In algebraic flux correction
schemes [32], the coefficients lij and fi(u) are defined to produce a solution
that satisfies a (semi-)discrete maximum principle and/or the requirement of
positivity preservation. Design criteria for these methods are often based on
the following set of sufficient conditions.

3.1. Positivity preservation

Considering a system of ODEs in R
m resulting from spatial discretization for

t ≥ 0
dv

dt
= F (v, t) (7)

this system is termed positivity-preserving (or more accurately - nonnegativ-
ity preserving) if

v(0) ≥ 0 ⇒ v(t) ≥ 0 for all t > 0, (8)

where the inequalities are understood to hold for each component. The
following result from [25] establishes necessary and sufficient conditions for
positivity preservation (see Theorem 7.1 in [25] for details).

Suppose that F(v,t) is Lipschitz continuous with respect to v. Then the ODE
system (7) is positivity-preserving iff for any vector v ∈ R

m and for all
i = 1, ...,m, and t ≥ 0,

v ≥ 0, vi = 0 ⇒ Fi(v, t) ≥ 0. (9)
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It is straightforward to verify that these conditions hold for the semi-discretized
form (6) of the linear first-order advection equation (1) with the following
assumptions

fi = 0 ∀i,
lij ≥ 0 ∀j ∈ N (i)\{i},
mi > 0 ∀i

and by rewriting the semi-discretized system (6) as

dui

dt
=

lii
mi

ui +
∑

j∈N (i)\{i}

lij
mi

uj. (10)

From this result it follows that for u ≥ 0 and ui = 0 we have Fi(u, t) ≥ 0 and
that F (u, t) is Lipschitz continuous with a Lipschitz constant C = ‖M−1L‖
where M = diag{mi}, and L is the discrete linear transport operator.

3.2. Local extremum diminishing schemes

In the case fi = 0 and
∑

j∈N (i) lij = 0, equation (6) reduces to

mi
dui

dt
=

∑
j∈N (i)\{i}

lij(uj − ui). (11)

Under the assumption that mi > 0 and lij ≥ 0, we have

ui ≥ uj ∀j ∈ N (i)\{i} ⇒ dui

dt
≤ 0, (12)

ui ≤ uj ∀j ∈ N (i)\{i} ⇒ dui

dt
≥ 0. (13)

It follows that a local maximum cannot increase, and a local minimum can-
not decrease. A space discretization satisfying this semi-discrete maximum
principle is called local extremum diminishing (LED) [26, 27, 32]. It can be
easily verified that LED implies positivity preservation, but the converse is
not true.
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3.3. LED criterion for antidiffusive correction terms

By the Godunov theorem [14], linear positivity-preserving and LED schemes
can be at most first-order accurate. In higher-order schemes for transport
equations, a nonvanishing term fi(u) incorporates an antidiffusive correction
to a nonoscillatory coarse-scale approximation (see Section 3.4). This cor-
rection is LED if there exist some positive bounded coefficients cmin

i and cmax
i

such that
cmin
i (umin

i − ui) ≤ fi(u) ≤ cmax
i (umax

i − ui), (14)

where

umin
i = min

j∈N (i)
uj, (15)

umax
i = max

j∈N (i)
uj (16)

are the local minimum and maximum over the stencil of node i.

It is easy to verify that properties (12),(13) hold if fi(u) satisfying (14) is
added to the right-hand side of (11). Clearly if ui is a local maximum, the
right inequality in (14) implies fi(u) ≤ 0. In the case of a local minimum,
the left inequality implies fi(u) ≥ 0. In general, a semi-discrete scheme of
the form (6) will be positivity-preserving if mi > 0, lij ≥ 0 for j ∈ N (i)\{i},
and fi(u) satisfies the LED criterion (14) for some cmin

i > 0 and cmax
i > 0.

3.4. Constrained high-resolution schemes

In general a high-order scheme violating the LED constraints can be repaired
by limiting the oscillatory part in a conservative manner. For example in
edge-based algebraic flux correction schemes [44, 40, 37, 32, 18], the antid-
iffusive term is decomposed into skew-symmetric internodal fluxes fij such
that fji = −fij and

fi(u) =
∑

j∈N (i)\{i}
fij. (17)

The limited LED counterpart of fi(u) is defined by

f̄i(u) =
∑

j∈N (i)\{i}
αijfij, (18)
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where αij ∈ [0, 1] are correction factors such that αji = αij and

cmin
i (umin

i − ui) ≤ f̄i(u) ≤ cmax
i (umax

i − ui) (19)

for some bounded coefficients cmin
i > 0 and cmax

i > 0. To assure that the
high-order approximation is recovered when the unconstrained antidiffusive
correction is LED the correction procedure should be designed to guarantee
that αij ≈ 1 whenever fi(u) satisfies (14).

In the context of traditional element-based data-structures a more flexible
approach to constraining the antidiffusive part of a semi-discrete high-order
method can be devised. This algorithm is based on a decomposition of the
global vector f = {fi} into subvectors f e associated with sets of neigh-
boring nodes (e.g., vertices of the same mesh element). In Section 4.1, we
will use this generalization to construct element-based limiting techniques
for enforcing LED constraints in the context of continuous finite element
discretizations.

3.5. Time step restrictions

For the fully discrete scheme to inherit the LED property of a given space
discretization, the time-stepping method must be consistent with the dis-
crete maximum principle, at least under certain time step restrictions. For
example, consider (11) discretized in time using the two-level θ-scheme

mi
un+1
i − un

i

Δt
= θ

∑
j∈N (i)\{i}

lij(u
n+1
j −un+1

i )+(1−θ)
∑

j∈N (i)\{i}
lij(u

n
j −un

i ), (20)

where un
i ≈ u(xi, t

n) denotes an approximate solution value at the time level
tn = nΔt and θ ∈ [0, 1] is the implicitness parameter.

The solution of the fully discrete problem (20) satisfies a discrete maximum
principle if un+1

i is bounded by the maximum and minimum of the other
nodal values that appear in (20). For a LED space discretization, this will
be the case if the time step Δt satisfies the CFL-like condition [35, 32]

1

Δt
≥ (1− θ)

∑
j∈N (i)\{i}

lij ∀i = 1, . . . , N. (21)
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The fully implicit backward Euler method (θ = 1) preserves the LED prop-
erty for arbitrary time steps. The Crank-Nicolson (θ = 1

2
) and forward Euler

(θ = 0) time discretizations are LED for time steps satisfying (21). In ex-
plicit strong stability preserving (SSP) Runge-Kutta methods [15, 16, 17], the
end-of-step solution un+1 represents a convex combination of forward Euler
predictors and is LED under the corresponding time step restrictions. Im-
plicit SSP Runge-Kutta methods are presented in the book by Gottlieb et
al. [15].

4. Finite element methods

In this paper, we will use the LED criterion to analyze and constrain the
antidiffusive part of a continuous (piecewise-linear or bilinear) finite element
approximation. Multiplying (1) by a test function w, integrating by parts,
and invoking the Dirichlet boundary condition (3), we obtain∫

Ω

[
w
∂u

∂t
−∇w · (vu)

]
dx+

∫
Γout

wu(v · n)ds = −
∫
Γin

wuin(v · n)ds, (22)

where Γout := {x ∈ Γ |v · n > 0} is the outflow boundary. The so-defined
variational formulation with weakly imposed boundary conditions is globally
conservative since it reduces to the integral form of (1) in the case w ≡ 1.

Let {ϕ1, . . . , ϕj, . . . , , ϕN} be a set of global basis functions associated with
vertices of the (possibly unstructured) mesh. The numerical solution is de-
fined by

uh(x, t) =
N∑
j=1

uj(t)ϕj(x). (23)

Substituting this approximation into the variational form (22) and using
w = ϕi as a test function, one obtains the Galerkin space discretization

∑
j∈N (i)

mij
duj

dt
=

∑
j∈N (i)

kijuj + gi, (24)

where

mij =

∫
Ω

ϕiϕj dx,
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kij =

∫
Ω

(v · ∇ϕi)ϕj dx−
∫
Γout

ϕiϕjv · nds,

gi = −
∫
Γin

ϕiuinv · nds.

The global matrix form of the semi-discrete finite element scheme is given by

MC
du

dt
= Ku+ g, (25)

where u is the vector of nodal values, MC is the consistent mass matrix, K
is the discrete convection operator and g is a vector of fluxes across Γin.

To cast equation (24) into the form (6), we introduce the lumped mass matrix

ML = diag{mi}, mi =
∑

j∈N (i)

mij

and consider an artificial diffusion operator D = {dij} such that

dii = −
∑
j �=i

dij, dij = dji, dij ≥ max{0,−kij} ∀j �= i.

Here and below we use “j �= i” as a shorthand notation for “j ∈ N (i)\{i}”.
Rearranging (25), we obtain the following equivalent representation

ML
du

dt
= Lu+ f(u), (26)

where L = K +D is a stabilized discrete transport operator and

f(u) = (ML −MC)
du

dt
−Du+ g (27)

is the antidiffusive term which may fail to satisfy the LED criterion (14).

4.1. Element-by-element assembly

In a typical implementation of the finite element method, the global matrices
that appear in equations (25)–(27) are assembled from element matrices and
the global vector f(u) is assembled from element vectors of the form

f e = (M e
L −M e

C)
due

dt
−Deue + ge. (28)
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Since the element matrices De and M e
C − M e

L have zero column sums, the
components of the corresponding matrix-vector products sum to zero. Hence,
the multiplication of these matrix-vector products by an arbitrary correction
factor αe has the property of being a conservative correction to the numerical
solution.

Replacing (28) by the corrected vector of element contributions

f̄ e = min{αM
e , αK

e }(M e
L −M e

C)
due

dt
− αK

e D
eue + ge, (29)

we will choose the correction factors αe ∈ [0, 1] so as to enforce the LED
constraint (19) for the sums of element contributions to interior nodes.

4.2. Low-order dissipation

Setting all correction factors equal to zero, one obtains the modified system

ML
du

dt
= Lu+ g, (30)

where g is the vector of weakly imposed inflow boundary conditions.

The global lumped mass matrix ML is assembled from lumped element mass
matrices M e

L = diag{me
I} and the discrete operator L is assembled from

element matrices of the form Le = Ke + De, where De is a local artificial
diffusion operator such that the sufficient condition of positivity preservation
(leIJ ≥ 0 for J �= I) is satisfied for all pairs of local degrees of freedom (indexed
by I, J).

4.2.1. Upwinding by artificial diffusion associated with pairs of nodes

By analogy with global algebraic flux correction schemes [32], we perform
“discrete upwinding” using the artificial diffusion operator defined by

deIJ =

{
max{−ke

IJ , 0,−ke
JI} if J �= I,

− ∑
J �=I

deIJ if J = I. (31)

This definition of deIJ guarantees discrete conservation and nonnegativity of
the off-diagonal coefficients leIJ := ke

IJ + deIJ for all J �= I.
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4.2.2. Upwinding by artificial diffusion associated with a bilinear form

Alternatively, the element matrix De may be constructed, e.g., using the
monotone local bilinear form proposed by Guermond and Nazarov [18]

be(ϕI , ϕJ) =

{ − 1
ne−1

|Ke| if J �= I,

|Ke| if J = I,
(32)

where ne is the number of local degrees of freedom and |Ke| is the d-volume
of element Ke. The entries of the artificial diffusion operator De become

deIJ = −νebe(ϕI , ϕJ), νe = max
J �=I

max{0,−ke
IJ}

|Ke| . (33)

4.2.3. Upwinding by artificial diffusion associated with mass lumping

The difference between the consistent and lumped mass matricesMC andML

is also often used to enforce positivity constraints in low-order finite element
schemes [44, 11, 38, 6]. At the element matrix level, this approach leads to

deIJ = νe(m
e
IJ − δIJm

e
I), νe = max

J �=I

max{0,−ke
IJ}

me
IJ

. (34)

We remark that definitions (33) and (34) are more diffusive than (31) but
admit interpretations (anisotropic diffusivity, inexact quadrature) which may
be useful for theoretical analysis and error estimation.

4.3. High-order dissipation

The fully explicit (θ = 0) Galerkin discretization of a time-dependent trans-
port equation is unconditionally unstable and must be stabilized by incorpo-
rating high-order dissipation into the vector of antidiffusive element contri-
butions f e. Additionally while implicit Galerkin schemes are unconditionally
stable for θ ≥ 1

2
, they tend to produce global oscillations which degrade the

rate of convergence to smooth solutions. Even if a violation of the discrete
maximum principle is ruled out by the limiter for f e, significant phase er-
rors may result in spurious distortions of smooth profiles. Hence, the use of
high-order background dissipation may be appropriate in this context.
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To improve the phase accuracy of the constrained Galerkin approximation, an
additional contribution of high-order dissipation can be added to f̄ e defined
by (29). We have

(Deue)I =
∑
J �=I

deIJ(u
e
J − ue

I).

A smoother approximation to the solution difference ue
J − ue

I can be con-
structed using the reconstructed nodal gradient [31, 32]

(∇u)i ≈ 1

mi

∑
j �=i

cij(uj − ui), cij =

∫
Ω

ϕi∇ϕj dx.

This kind of gradient recovery corresponds to a lumped-mass L2 projection.
It satisfies the discrete maximum principle and is exact for linear functions
[31, 32].

Approximating ue
J − ue

I by the arithmetic mean of linear reconstructions

δue
IJ =

(∇u)I + (∇u)J
2

· (xJ − xI),

we replace (29) by

f̄ e = min{αM
e , αK

e }(M e
C −M e

L)
due

dt
+ αK

e (f
e
stab −Deue) + ge, (35)

where f e
stab,I is an element vector with components

f e
stab,I = ω

∑
J �=I

deIJ (u
e
J − ue

I − δue
IJ) .

The amount of background dissipation is controlled using the blending factor
ω ∈ [0, 1]. In the case ω = 0, the standard Galerkin scheme is recovered by
setting αM

e = αK
e = 1 in the definition (35) of f̄ e. Setting ω = 1 corresponds

to replacing ue
J − ue

I by the smooth approximation δue
IJ .

If the numerical solution uh is locally linear, then the nodal gradients are
exact, whence δuIJ = ue

J − ue
I for any value of the parameter ω. Hence, the

stabilization term f e
stab,I vanishes for linear functions. On a uniform mesh of

1D linear finite elements, it introduces fourth-order artificial dissipation [37].
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5. Limiting strategy

In this section, we present algorithms for calculating the correction factors
αM
e and αK

e for the antidiffusive components of the element vector f̄ e. The
proposed limiting strategy sets αK

e equal to zero if a local extremum is at-
tained at any vertex of the element. A continuous piecewise-linear function
is used to provide a transition to αK

e = 1 in regions where the discrete nodal
solution approaches a local linear function. The formula for αM

e is designed
to prevent the contribution of the consistent mass matrix from creating new
local extrema in the discretized time derivatives.

5.1. Constrained transport operator

To constrain the high-order antidiffusive correction we seek a nodal correction
factor Φi ∈ [0, 1] such that the LED constraint (19) holds for the sum of
limited antidiffusive element contributions

f̄i =
∑
e∈E(i)

f e
i ,

where E(i) is the set of elements containing node i. To enforce the LED
conditions for all nodes of a given element Ke, we define the element-based
correction factor αK

e as the minimum of the nodal correction factors:

αK
e = min

i∈V(e)
Φi, (36)

where V(e) is the set of vertices of element Ke. In contrast to element-based
FCT limiters [35, 38, 39], αK

e does not depend on the signs of f e
i and the

same nodal correction factor Φi is used in all elements containing node i.

The value of Φi is determined using a limiter function Φ : [umin
i , umax

i ] �→ [0, 1].
Our approach to construction of Φ is based on the following design principles:

• Φi = Φ(ui) depends continuously on the data;

• Φi = 0 at a local extremum (ui = umin
i or ui = umax

i );

• Φi = 1 if ui = ūi for some ūi ∈ (umin
i , umax

i ).
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The first property is needed to secure the well-posedness of the nonlinear
discrete problem and convergence of fixed-point iterations [3]. The second
property guarantees that the sum of antidiffusive element contributions to
node i is local extremum diminishing. The third property is used to define
a suitable limiter function that should allow the unconstrained antidiffusive
flux to be employed in regions where the discrete nodal solution approaches
an admissible average value ūi.

5.1.1. Definition of useful average values ūi

For example, consider the mass-weighted average ūM
i defined by the formula

ūM
i =

1

mi

∑
j

mijuj. (37)

If ui = ūM
i then ui =

∑
j �=i mijuj

∑
j �=i mij

is a convex combination of the solution

values at neighbor nodes. Note that umax
i = ui or umin

i = ui implies the
strong discrete maximum principle (uj = ui for all j �= i).

A linearity-preserving limiter can be designed using an average ūi such that
ui = ūi for a locally linear function. Such an average can be defined, e.g.,
using the coefficients of a discrete Laplacian operator S = {sij} to define

ūS
i = (1− γ)ui − γ

sii

∑
j �=i

sijuj. (38)

By definition of a discrete Laplacian operator, we have
∑

j sijuj = 0, i.e.,

ui = − 1
sii

∑
j �=i sijuj = ūS

i for linear functions. It follows that ūS
i is linearity-

preserving for any γ ∈ [0, 1]. In the numerical study below we use γ = 0.5.

If the coefficients of S satisfy sij ≥ 0 for j �= i, then the LED criterion holds
in the case ui = ūS

i . The Galerkin approximation of the Laplacian yields

sij =

∫
Ω

∇ϕi · ∇ϕj dx.

It is well known that sij ≥ 0 for j �= i under certain restrictions on the
angles or aspect ratios of mesh elements (triangulations of weakly acute type
[4, 8], rectangular meshes of nonnarrow type [9, 12]). If the given mesh
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violates these geometric conditions, nonnegative weights sij for j �= i can
be constructed using various generalizations of barycentric coordinates to
arbitrary polytopes [13, 23, 43, 46]. For example, the maximum entropy
coordinates [23] may be used to construct a LED-type linearity-preserving
average ūS

i .

After choosing the average ūi, a piecewise-linear continuous function Φ with
desired properties can be constructed using the bounds

ūmax
i =

umax
i + ūi

2
, ūmin

i =
umin
i + ūi

2
(39)

to define the range of safe values ui ∈ [ūmin
i , ūmax

i ] for which the limiter
function will return Φi = 1. In accordance with the LED criterion, we must
use Φi = 0 for ui = umax

i and ui = umin
i . Using linear interpolation on the

intervals (umin
i , ūmin

i ) and (ūmax
i , umax

i ), we end up with the formula

Φi =

⎧⎪⎨
⎪⎩

umax
i −ui

umax
i −ūmax

i
if ui > ūmax

i ,
umin
i −ui

umin
i −ūmin

i
if ui < ūmin

i ,

1 otherwise.

(40)

The graph of the so-defined nodal limiter function Φ is sketched in Fig. 1.

0

1

umin
i ūi umax

i

ūmin
i ūmax

i

Φi

ui

Figure 1: Nodal correction factor for the element-based limiter.
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5.2. Constrained mass matrix

In applications to unsteady transport equations, we use the correction factor
αM
e in (35) to balance the contribution of the consistent mass matrix with

that of the limited convective term and prevent it from producing corrections
that have an opposite effect. Let u̇ denote the vector of nodal time derivatives
that corresponds to the constrained approximation

u̇C = M−1
L (Lu+ f̄), (41)

where f̄ is assembled from limited antidiffusive element contributions

f̄i =
∑
e∈E(i)

f̄ e
i , f̄ e

i = f̄ e,M
i + f̄ e,K

i , (42)

f̄ e,M = min{αM
e , αK

e }f e,M , f e,M = (M e
C −M e

L)
due

dt
,

f̄ e,K = αK
e f

e,K + ge, f e,K = f e
stab −Deue.

Setting αM
e equal to zero, one obtains the lumped-mass approximation

u̇L = M−1
L (Lu+ f̄K), f̄K

i =
∑
e∈E(i)

f̄ e,K
i (43)

such that
u̇C = u̇L +M−1

L f̄M , f̄M
i =

∑
e∈E(i)

f̄ e,M
i . (44)

Hence, the contribution of f̄M can be interpreted as a high-order correction
to u̇L. In order to constrain the changes of the time derivative due to this
correction, we choose αM

e so as to enforce the inequality constraints

u̇min
i ≤ u̇C ≤ u̇max

i ,

where u̇min
i and u̇max

i denote the local maxima and minima of u̇L, i.e.,

u̇min
i = min

j∈N (i)
u̇L
j , (45)

u̇max
i = max

j∈N (i)
u̇L
j . (46)
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Substituting u̇L for the time derivative in the constrained element vector

f̄ e,M ≈ min{αM
e , αK

e }(M e
C −M e

L)u̇
L,

we use a local version of the element-based FCT algorithm [35] to calculate

αM
e = min

i∈V(e)
Ψe

i , (47)

where Ψe
i are the nodal correction factors defined by

Ψe
i =

⎧⎪⎪⎨
⎪⎪⎩

min
{
1,

me
i (u̇

max
i −u̇L

i )

fe,M
i

}
if f e,M

i > 0,

1 if f e,M
i = 0,

min
{
1,

me
i (u̇

min
i −u̇L

i )

fe,M
i

}
if f e,M

i < 0,

(48)

where me
i is the ith diagonal entry of the lumped element mass matrix M e

L.

The above choice of αM
e implies that the limited element contributions satisfy

me
i (u̇

min
i − u̇L

i ) ≤ f̄ e,M
i ≤ me

i (u̇
max
i − u̇L

i ).

Summing over all elements containing node i, it is easy to verify that the
values of u̇C are bounded by the local extrema u̇max

i and u̇min
i .

5.3. Proof of the LED property

To verify the LED property, we need to show that estimates of the form (19)
hold for the proposed choice of the correction factors αM

e and αK
e .

Consider an interior node i such that the contribution of inflow boundary
conditions gi =

∑
e∈E(i) g

e
i is equal to zero. We have

f̄i =
∑
e∈E(i)

(min{αM
e , αK

e }f e,M
i + αK

e f
e,K
i ), 0 ≤ αK

e ≤ Φi,

where Φi is the nodal correction factor given by (40). It follows that

Φif
−
i ≤ f̄i ≤ Φif

+
i , (49)

where
f+
i =

∑
e∈E(i)

max{0, f e,M
i }+

∑
e∈E(i)

max{0, f e,K
i },
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f−
i =

∑
e∈E(i)

min{0, f e,M
i }+

∑
e∈E(i)

min{0, f e,K
i }.

Suppose that f̄i > 0. Then we must have ui < umax
i because ui = umax

i

implies Φi = 0 and, therefore, f̄i = 0 in contradiction to the assumption that
f̄i > 0. By definition (39), it follows that

umin
i < ūmin

i < ūi < ūmax
i < umax

i .

Using (49) and (40), we will show that estimates of the form (19) hold on
each interval on which the limiter function Φi is linear.

• In the case ui ∈ (ūmax
i , umax

i ), we have

Φi =
umax
i − ui

umax
i − ūmax

i

,

f̄i ≤ Φif
+
i =

f+
i

umax
i − ūmax

i

(umax
i − ui).

• The estimate for ui ∈ [ūmin
i , ūmax

i ] is given by

Φi = 1,

f̄i ≤ Φif
+
i = f+

i =
f+
i

umax
i − ui

(umax
i − ui) ≤ f+

i

umax
i − ūmax

i

(umax
i − ui).

• In the case ui ∈ (umin
i , ūmin

i ), we obtain

Φi =
umin
i − ui

umin
i − ūmin

i

f̄i ≤ Φif
+
i < f+

i =
f+
i

umax
i − ui

(umax
i − ui) <

f+
i

umax
i − ūmax

i

(umax
i − ui).

It follows that

f̄i = ci(u
max
i − ui), 0 < ci ≤ f+

i

umax
i − ūmax

i

=: cmax
i < ∞. (50)
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This proves the existence of the LED representation (50) in the case f̄i > 0.

In the case f̄i < 0, the same arguments lead to

f̄i = ci(u
min
i − ui), 0 < ci ≤ f−

i

umin
i − ūmin

i

=: cmin
i < ∞, (51)

which proves that the antidiffusive correction of the low-order scheme is LED.

5.4. Lipschitz continuity

A further desirable property is Lipschitz continuity of the limited antidif-
fusive term. In the context of constrained Galerkin schemes, the practical
importance of this property lies in the fact that it guarantees unique solv-
ability of the semi-discrete problem [25] and that of the nonlinear system
associated with the steady state limit of the time-dependent problem [3].

The use of the element-based limiter based on (36) and (40) in steady state
computations may cause convergence problems which can be attributed to
the lack of Lipschitz continuity. In this section, we present a Lipschitz-
continuous version supported by the theory developed in [2, 3].

The construction of Lipschitz-continuous limiters for algebraic flux correction
schemes [3] begins with a conservative decomposition of the antidiffusive term
into internodal fluxes. For example, an antidiffusive element contribution of
the form f e(u) = −Deue admits the following representation:

f e
i =

∑
j∈V(e)
j �=i

f e
ij, f e

ij = deij(ui − uj). (52)

Note that f e
ji = −f e

ij since the artificial diffusion coefficients satisfy deji = deij.

When it comes to limiting, the antidiffusive fluxes f e
ij and f e

ji are multiplied
by a correction factor αe

ij = αe
ji. Setting αe

ij := αe for all pairs of nodes
corresponds to the isotropic limiting strategy (f̄ e = αef

e) employed so far.

According to Lemma 3.5 from [3], the nonlinear function αe
ij(u)(ui − uj) is

Lipschitz-continuous for correction factors of the form

αe
ij(u) =

Aij(u)

|uj − ui|+Bij(u)
, (53)
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where Aij(u) and Bij(u) are nonnegative Lipschitz-continuous functions. For
example, this criterion is satisfied by the following limiter function [2]:

αe
ij(u) =

{ |∑j �=i(ui−uj)|
∑

j �=i |ui−uj | if umax
i �= umin

i ,

0 otherwise.
(54)

However, this definition leads to a rather diffusive approximation. Therefore,
we will generalize it using the ideas that have led us to formula (40).

Let ūi be a weighted average defined as in Section 5.1.1 in terms of some
positive weights wij > 0 s.t.

∑
j wij = 1 (e.g., wij =

mij

mi
for ūM

i ).

Introducing a parameter β ∈ [0, 1), we define the generalized limiter

ūmax
i = βumax

i + (1− β)ūi, ūmin
i = βumin

i + (1− β)ūi, (55)

Φi =

{
1− max{0,ui−ūmax

i }+max{0,ūmin
i −ui}

(1−β)
∑

j �=i wij |ui−uj | , if umax
i �= umin

i ,

0 otherwise.
(56)

The so-defined limiter function Φi satisfies the Lipschitz condition (53) and
the LED criterion. As before, we have Φi(u) = 1 for ui ∈ [ūmin

i , ūmax
i ] and

Φi(u) = 0 for ui = umin
i or ui = umax

i . Indeed, we have

ui − ūmax
i = β(ui − umax

i ) + (1− β)(ui − ūi),

ui − ūmin
i = β(ui − umin

i ) + (1− β)(ui − ūi),

where
ui − ūi =

∑
j �=i

wij(ui − uj).

In the case ui = umax
i we have ui − uj = |ui − uj| ∀j �= i, whence

Φi = 1− ui − ūmax
i

(1− β)
∑

j �=i wij|ui − uj| = 0.

For ui = umin
i , we have ui − uj = −|ui − uj| ∀j �= i and, therefore,

Φi = 1− ui − ūmin
i

(1− β)
∑

j �=i wij|ui − uj| = 0.
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It is worth mentioning that αe
ij := Φi reduces to (54) if we set β = 0 and

wij = 1 ∀j �= i.

In the numerical study below, we used β = 0.5 and wij =
mij

mi
for j �= i.

The proof of Lipschitz continuity may be invalidated when the minimum of
nodal correction factors is taken in (36) or higher-order dissipation is added
to the antidiffusive flux f e

ij. To enforce the Lipschitz condition, we switch off
the background dissipation by setting ω := 0 and limit the local internodal
fluxes f e

ij using an upwind-biased limiting strategy which traces its origins to
edge-based algebraic flux correction schemes [3, 32, 33, 34].

Let αe
ij = Φk = αe

ji, where Φk is the nodal correction factor defined by (56)
and k is the number of the upwind node defined by [32, 34]

k =

{
i if ke

ij ≤ ke
ji,

j otherwise.
(57)

The proof of the LED property remains valid for Φk given by (56). The
LED constraint for the downwind node is satisfied automatically because the
corresponding antidiffusive flux is compensated by the contribution of the
low-order operator. Hence, the choice of the correction factor αe

ij is based
solely on the LED criterion for the upwind node. We refer to [32, 34] for a
presentation of the design philosophy behind upwind-biased LED limiters.

The above approach combines the high accuracy of formula (40) with superior
robustness of Lipschitz-continuous upwind limiters analyzed in [2, 3]. This
justifies the increased complexity of the anisotropic limiting strategy.

5.5. Time discretization

In this paper, we discretize the constrained semi-discrete finite element scheme

ML
du

dt
= Lu+ f̄ (58)

in time using the two-level θ method

ML
un+1 − un

Δt
= θ(Lun+1 + f̄n+1) + (1− θ)(Lun + f̄n). (59)
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The inclusion of the limited antidiffusive term leads to the CFL-like condition

1

Δt
≥ (1− θ)

⎡
⎣ ∑

j∈N (i)\{i}
lij + ci

⎤
⎦ ∀i = 1, . . . , N, (60)

where ci is the bounded coefficient of the LED representation (50) or (51).

The convergence behavior of implicit schemes is also affected by the value of
the coefficient ci. Choosing ūmax

i too close to umax
i or ūmin

i too close to umin
i

may produce large values of ci and cause convergence problems or require
the use of inordinately small time steps. The proposed definition of ūmin

i and
ūmax
i offers a reasonable compromise between accuracy and robustness.

We remark that the semi-discrete nature of the proposed approach makes
it possible to use a wide range of time discretizations including explicit and
implicit strong stability preserving (SSP) Runge-Kutta schemes [15].

Due to the dependence of αM
e and αK

e on the unknown solution, the algebraic
system (59) is nonlinear. It can be solved using the fixed-point iteration

u(m+1) = u(m) +

[
1

Δt
ML − θL

]−1

r(m), m = 0, 1, 2, . . . (61)

r(m) = θ(Lu(m) + f̄ (m)) + (1− θ)(Lun + f̄n)−ML
u(m) − un

Δt
. (62)

The rates of convergence to steady state solutions can be greatly improved
using Anderson acceleration for fixed-point iterations [31, 45].

6. Numerical examples

In this section, we apply the proposed methodology to two-dimensional test
problems that have been used to study edge-based algebraic flux correction
schemes in [29, 30, 31, 32]. Given a reference solution u, we use the following
norms to assess the accuracy of a finite element approximation uh

E1(h) =
∑
i

mi|u(xi)− ui| ≈ ‖u− uh‖1, (63)
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E2(h) =

√∑
i

mi|u(xi)− ui|2 ≈ ‖u− uh‖2, (64)

where mi =
∫
Ω
ϕi dx is a diagonal coefficient of the lumped mass matrix ML.

To study the dependence of E1 and E2 on the mesh size h, the numerical
solutions computed on two different meshes are used to estimate the experi-
mental order of convergence (EOC) using the formula [36]

p = log2

(
E1(2h)

E1(h)

)
. (65)

In grid convergence studies for time-dependent problems, the ratio of the
time step and mesh size is held constant in the process of refinement.

6.1. Solid body rotation

The solid body rotation test [36, 47] is often used to evaluate numerical
advection schemes. The problem to be solved is the continuity equation

∂u

∂t
+∇ · (vu) = 0 in Ω = (0, 1)× (0, 1). (66)

The velocity v describes a counterclockwise rotation about the center

v(x, y) = (0.5− y, x− 0.5). (67)

After each full revolution, the exact solution u coincides with the given initial
data u0. Hence, the challenge of this test is to preserve the shape of u0.

Following LeVeque [36], we simulate solid body rotation of a profile that
consists of a slotted cylinder, a sharp cone, and a smooth hump (see Fig. 2a).
The geometry of each body is described by a given function G(x, y) defined
on a circle of radius r0 = 0.15 centered at some point (x0, y0). Let

r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2

be the normalized distance from (x0, y0). Then r(x, y) ≤ 1 inside the circle.
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The slotted cylinder is centered at the point (x0, y0) = (0.5, 0.75) and

G(x, y) =

{
1 if |x− x0| ≥ 0.025 or y ≥ 0.85,

0 otherwise.

The cone is centered at (x0, y0) = (0.5, 0.25) , and its shape is given by

G(x, y) = 1− r(x, y).

The hump is centered at (x0, y0) = (0.25, 0.5), and the shape function is

G(x, y) =
1 + cos(πr(x, y))

4
.

In the rest of the domain, the solution to (66) is initialized by zero, and
homogeneous Dirichlet boundary conditions are prescribed at the inlets.

The snapshots presented in Figs 2 and 3 show the numerical solutions at
the final time T = 2π which corresponds to one full rotation. All com-
putations are performed on a uniform mesh of 128 × 128 bilinear elements
using the Crank-Nicolson time-stepping with the time step Δt = 10−3. The
low-order solution (αK

e := 0) obtained using the default definition (31) of
the artificial diffusion operator is shown in Fig. 2b. The standard Galerkin
scheme (Fig. 2c) produces global nonphysical oscillations, whereas the use of
high-order background dissipation (Fig. 2d) localizes them to a small neigh-
borhood of steep gradients. The results produced by four different versions of
the constrained Galerkin scheme are presented in Fig. 3. The difference be-
tween the constrained solutions obtained using the mass-weighted (ūi = ūM

i )
and Laplacian-weighted (ūi = ūS

i ) averages in the formula for αK
e is marginal.

The use of background dissipation (ω = 0.1) alleviates spurious distortions
of the sharp cone, which are more pronounced in the case of the standard
Galerkin approximation (ω = 0.0). The convergence history and EOCs for
all methods under investigation are listed in Tables 1-9. All constrained so-
lutions are calculated using the artificial diffusion operator defined by (31)
since definitions (33) and (34) are more diffusive (see Tables 1-3).

6.2. Circular convection

In the second test problem [24], we consider the steady convection equation

∇ · (vu) = 0 in Ω = (−1, 1)× (0, 1), (68)
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(a) (b)

(c) (d)

Figure 2: Solid body rotation: (a) initial data / exact solution, (b) αK
e = 0, (c) αM

e =
αK
e = 1, ω = 0.0, (d) αM

e = αK
e = 1, ω = 0.1. Space discretization: Q1 elements

(h = 1/128), Time discretization: Crank-Nicolson, Δt = 10−3. Simulation time: T = 2π.

h E1 EOC E2 EOC

1/32 0.115e+00 0.230e+00

1/64 0.111e+00 0.05 0.209e+00 0.14

1/128 0.968e-01 0.20 0.186e+00 0.17

1/256 0.795e-01 0.28 0.164e+00 0.18

Table 1: Solid body rotation: low-order scheme based on (31).
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(a) (b)

(c) (d)

Figure 3: Solid body rotation: (a) ūi = ūM
i , ω = 0.0, (b) ūi = ūM

i , ω = 0.1, (c)
ūi = ūS

i , ω = 0.0, (d) ūi = ūS
i , ω = 0.1, Space discretization: Q1 elements (h = 1/128),

Time discretization: Crank-Nicolson, Δt = 10−3. Simulation time: T = 2π.

h E1 EOC E2 EOC

1/32 0.107e+00 0.252e+00

1/64 0.112e+00 -0.07 0.234e+00 0.11

1/128 0.107e+00 0.07 0.210e+00 0.16

1/256 0.955e-01 0.16 0.186e+00 0.18

Table 2: Solid body rotation: low-order scheme based on (33).
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h E1 EOC E2 EOC

1/32 0.108e+00 0.249e+00

1/64 0.112e+00 -0.05 0.230e+00 0.11

1/128 0.105e+00 0.09 0.205e+00 0.16

1/256 0.927e-01 0.18 0.181e+00 0.18

Table 3: Solid body rotation: low-order scheme based on (34).

h E1 EOC E2 EOC

1/32 0.103e+00 0.175e+00

1/64 0.693e-01 0.57 0.125e+00 0.49

1/128 0.472e-01 0.55 0.883e-01 0.50

1/256 0.355e-01 0.41 0.734e-01 0.27

Table 4: Solid body rotation: Galerkin scheme, ω = 0.0.

h E1 EOC E2 EOC

1/32 0.621e-01 0.141e+00

1/64 0.356e-01 0.80 0.101e+00 0.48

1/128 0.200e-01 0.83 0.711e-01 0.51

1/256 0.132e-01 0.60 0.573e-01 0.31

Table 5: Solid body rotation: Galerkin + background dissipation, ω = 0.1.

h E1 EOC E2 EOC

1/32 0.559e-01 0.136e+00

1/64 0.365e-01 0.61 0.114e+00 0.25

1/128 0.168e-01 1.12 0.708e-01 0.69

1/256 0.897e-02 0.91 0.522e-01 0.44

Table 6: Solid body rotation: constrained Galerkin, ūi = ūM
i , ω = 0.0.

where
v(x, y) = (y,−x).
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h E1 EOC E2 EOC

1/32 0.564e-01 0.137e+00

1/64 0.363e-01 0.64 0.115e+00 0.25

1/128 0.169e-01 1.10 0.720e-01 0.68

1/256 0.922e-02 0.87 0.536e-01 0.43

Table 7: Solid body rotation: constrained Galerkin, ūi = ūM
i , ω = 0.1.

h E1 EOC E2 EOC

1/32 0.567e-01 0.136e+00

1/64 0.371e-01 0.61 0.115e+00 0.24

1/128 0.170e-01 1.13 0.710e-01 0.70

1/256 0.902e-02 0.91 0.522e-01 0.44

Table 8: Solid body rotation: constrained Galerkin, ūi = ūS
i , ω = 0.0.

h E1 EOC E2 EOC

1/32 0.571e-01 0.137e+00

1/64 0.369e-01 0.63 0.116e+00 0.24

1/128 0.171e-01 1.11 0.723e-01 0.68

1/256 0.902e-02 0.92 0.522e-01 0.47

Table 9: Solid body rotation: constrained Galerkin, ūi = ūS
i , ω = 0.1.

The exact solution and inflow boundary conditions are given by

u(x, y) =

{
G(r), if 0.35 ≤ r =

√
x2 + y2 ≤ 0.65,

0, otherwise,

where G(r) is a given function that defines the shape of the solution profile.

To evaluate the ability of the proposed limiter to handle smooth data and
discontinuous solutions, we consider the shape functions

G1(r) = cos2
(
5π

2r + 1

3

)
, G2(r) ≡ 1.

As before, computations are performed on a uniform mesh of bilinear finite
elements which is successively refined to perform a grid convergence study. In
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this numerical study, the solution of the time-dependent transport equation
(1) is marched to the steady state using the backward Euler method.

The results produced by the constrained Galerkin scheme using ūi = ūM
i , ω =

0.1, h = 1/128 are displayed in Fig. 4. The errors and EOCs for the inflow
profiles G1 and G2 are listed in Tables 10-19. All constrained approximations
employ local edge-based artificial diffusion of the form (31). The convergence
rates for constrained Galerkin schemes based on low-order artificial diffusion
of the form (33) and (34) are similar (not presented here).

As mentioned in Section 5.4, the impossibility of proving the Lipschitz condi-
tion for the isotropic element-based limiter (36) may give rise to convergence
problems in steady state computations on fine meshes. These problems can
be cured using the upwind-biased anisotropic limiter (56) to constrain anti-
diffusive fluxes associated with pairs of nodes belonging to the same element.
In our example, the Lipschitz continuity of this version makes it possible to
obtain fully converged steady state solutions which are as accurate as those
produced by the isotropic limiter (compare Tables 18-19 and 20-21).

h E1 EOC E2 EOC

1/32 0.164e+00 0.216e+00

1/64 0.116e+00 0.50 0.164e+00 0.40

1/128 0.745e-01 0.64 0.113e+00 0.54

1/256 0.442e-01 0.75 0.713e-01 0.66

Table 10: Circular convection of G1, low-order scheme based on (31).

h E1 EOC E2 EOC

1/32 0.228e+00 0.280e+00

1/64 0.185e+00 0.30 0.237e+00 0.24

1/128 0.136e+00 0.44 0.187e+00 0.34

1/256 0.915e-01 0.57 0.135e+00 0.47

Table 11: Circular convection of G1, low-order scheme based on (33).
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(a)

(b)

Figure 4: Circular convection: (a) smooth and (b) discontinuous data. Space discretiza-
tion: Q1 elements (h = 1/128), constrained Galerkin scheme (ūi = ūM

i , ω = 0.1).

h E1 EOC E2 EOC

1/32 0.221e+00 0.272e+00

1/64 0.176e+00 0.33 0.228e+00 0.25

1/128 0.127e+00 0.47 0.178e+00 0.36

1/256 0.840e-01 0.60 0.126e+00 0.50

Table 12: Circular convection of G1, low-order scheme based on (34).
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h E1 EOC E2 EOC

1/32 0.270e+00 0.301e+00

1/64 0.196e+00 0.46 0.243e+00 0.31

1/128 0.139e+00 0.50 0.203e+00 0.26

1/256 0.985e-01 0.50 0.170e+00 0.26

Table 13: Circular convection of G2, low-order scheme based on (31).

h E1 EOC E2 EOC

1/32 0.387e+00 0.394e+00

1/64 0.309e+00 0.33 0.325e+00 0.28

1/128 0.228e+00 0.44 0.265e+00 0.29

1/256 0.162e+00 0.49 0.219e+00 0.28

Table 14: Circular convection of G2, low-order scheme based on (33).

h E1 EOC E2 EOC

1/32 0.374e+00 0.382e+00

1/64 0.292e+00 0.36 0.313e+00 0.29

1/128 0.214e+00 0.45 0.255e+00 0.30

1/256 0.152e+00 0.49 0.212e+00 0.27

Table 15: Circular convection of G2, low-order scheme based on (34).

h E1 EOC E2 EOC

1/32 0.850e-02 0.130e-01

1/64 0.151e-02 2.49 0.271e-02 2.26

1/128 0.271e-03 2.48 0.645e-03 2.07

1/256 0.522e-04 2.38 0.166e-03 1.96

Table 16: Circular convection of G1, Galerkin + dissipation (ω = 0.1).

7. Summary

In this paper, we explored an element-based approach to constraining the
consistent mass matrix and the discrete transport operator in Galerkin finite
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h E1 EOC E2 EOC

1/32 0.756e-01 0.145e+00

1/64 0.433e-01 0.80 0.105e+00 0.47

1/128 0.265e-01 0.71 0.863e-01 0.28

1/256 0.153e-01 0.79 0.630e-01 0.45

Table 17: Circular convection of G2, Galerkin + dissipation (ω = 0.1).

h E1 EOC E2 EOC

1/32 0.230e-01 0.443e-01

1/64 0.511e-02 2.17 0.125e-01 1.83

1/128 0.103e-02 2.31 0.327e-02 1.93

1/256 0.191e-03 2.43 0.815e-03 2.00

Table 18: Circular convection of G1, constrained Galerkin (ūi = ūM
i , ω = 0.1).

h E1 EOC E2 EOC

1/32 0.698e-01 0.148e+00

1/64 0.384e-01 0.86 0.107e+00 0.47

1/128 0.229e-01 0.75 0.861e-01 0.31

1/256 0.128e-01 0.84 0.623e-01 0.47

Table 19: Circular convection of G2, constrained Galerkin (ūi = ūM
i , ω = 0.1).

h E1 EOC E2 EOC

1/32 0.256e-01 0.452e-01

1/64 0.692e-02 1.89 0.138e-01 1.71

1/128 0.156e-02 2.15 0.371e-02 1.90

1/256 0.330e-03 2.24 0.954e-03 1.96

Table 20: Circular convection of G1, anisotropic limiter (ūi = ūM
i , ω = 0.0).

element schemes. The proposed methodology leads to simple local extremum
diminishing corrections of standard bilinear forms at the semi-discrete level,
which makes it universally applicable to stationary and time-dependent prob-
lems on arbitrary meshes. Moreover, we introduced a Lipschitz-continuous
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h E1 EOC E2 EOC

1/32 0.621e-01 0.136e+00

1/64 0.336e-01 0.89 0.938e-01 0.54

1/128 0.203e-01 0.73 0.779e-01 0.27

1/256 0.113e-01 0.85 0.539e-01 0.53

Table 21: Circular convection of G2, anisotropic limiter (ūi = ūM
i , ω = 0.0).

version of the nodal limiter function which improves the convergence behav-
ior of fixed point iterations and may be used in edge-based nonlinear diffusion
operators as a generalization of the limiter employed by Barrenechea et al. [3].
Finally the paper also describes approaches to enforce linearity preservation
which prevents erroneous use of nonlinear stabilization in smooth regions.
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[40] H. Luo, J.D. Baum, R. Löhner, J. Cabello, Adaptive edge-based finite
element schemes for the Euler and Navier-Stokes equations; AIAA-93-
0336, 1993.

[41] P.R.M. Lyra, K. Morgan, J. Peraire, J. Peiro, TVD algorithms for the
solution of the compressible Euler equations on unstructured meshes.
Int. J. Numer. Meth. Fluids 19 (1994) 827–847.

[42] J. Peraire, M. Vahdati, J. Peiro, K. Morgan, The construction and be-
haviour of some unstructured grid algorithms for compressible flows.
Numerical Methods for Fluid Dynamics IV, Oxford University Press,
1993, 221-239.

[43] R. DeRose, M. Meyer, Harmonic coordinates. Tech. rep. Pixair Anima-
tion Studios (2006).

[44] V. Selmin, Finite element solution of hyperbolic equations. II. Two-
dimensional case. INRIA Research Report 708, 1987.

[45] H.W. Walker, P. Ni, Anderson acceleration for fixed-point iterations.
SIAM J. Numer. Anal. 49 (2011) 1715–1735.
WPI Math. Sci. Dept. Report MS-9-21-45, September 2009. Submitted
to SIAM J. Numer. Anal.

[46] M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete Laplace
operators: No free lunch. In: A. Belyaev and M. Garland (Eds), Euro-
graphics Symposium on Geometry Processing (2007), pp. 33-37.

[47] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms
for fluids. J. Comput. Phys. 31 (1979) 335–362.

38


