
Modified Newton solver for yield stress fluids

Saptarshi Mandal, Abderrahim Ouazzi, and Stefan Turek

Abstract. The aim of this contribution is to present a new Newton-type solver for
yield stress fluids, for instance for viscoplastic Bingham fluids. In contrast to stan-
dard globally defined (‘outer’) damping strategies, we apply weighting strategies for
the different parts inside of the resulting Jacobian matrices (after discretizing with
FEM), taking into account the special properties of the partial operators which
arise due to the differentiation of the corresponding nonlinear viscosity function.
Moreover, we shortly discuss the corresponding extension to fluids with a pressure-
dependent yield stress which are quite common for modelling granular material.
From a numerical point of view, the presented method can be seen as a generalized
Newton approach for non-smooth problems.
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1 Introduction

Continuum theory for slow viscoplastic fluids based on corresponding flow rules
typically relates the shear stress and the strain rate in a plastic frictional system
via Bingham-like constitutive laws

⎧⎨
⎩

τ = 2νD(u) + τs
D(u)

||D(u)|| if ||D(u)|| �= 0

||τ || ≤ τs if ||D(u)|| = 0

(1)

where D(u) = 1
2
(∇u+ (∇u)T ) denotes the strain rate tensor, and τs denotes the

yield stress. The shear stress has two contributions: a viscous part, and a strain rate
independent part. Furthermore, for the deformation of dense granular material, the
stress and strain rate tensors are always coaxial. So, for unequal stresses, Schaeffer
[5] postulated that the stresses contract in the directions of greater stress and
expand in directions of smaller stress. As a consequence, the deviatoric part of the
related Schaeffer model for flow of dry powder in the quasi-static regime [5] is

τ = sin(φ) p
D(u)

||D(u)|| (2)

where φ denotes the angle of internal friction: Hence, this model can be interpreted
as pressure-dependent yield stress fluid. Moreover, the interesting transition from
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solid-like to fluid-like behavior of granular material was investigated experimentally
and numerically in [3]. Here, the unified constitutive model for the static and in-
termediate regimes is given by the following constitutive law (with an appropriate
n > 0 and b ∈ R

+, see [3]):

τ = p

{
sin(φ) + b cos(φ)||D(u)||n

}
D(u)

||D(u)|| (3)

Similarly, Pouliquen et al. [2] proposed an extended constitutive model for dense
granular material, where the stress tensor is given as a function of the inertia number
I = D(u)d/

√
pρp (again with appropriate values of ρp and d, see [2])

τ = pμ(I)
D(u)

||D(u)|| (4)

where μ(·) is an empirical friction law:

μ(I) = μ1 +
μ2 − μ1

I0/I+ 1
(5)

All models show the relationship between granular and Bingham fluids. In order to
incorporate friction into viscoplasticity in mixing wet granular materials, El Khouja
et al. [1] introduced the dependency of the pressure in yield stress flow model, i.e.
the yield stress τs(·) is a function of the pressure, namely let τmin, τmax ∈ R

+, so
that τs(·) can be defined as:

τs(p) = min{max{p, τmin}, τmax} (6)

In what follows, we consider steady problems of (slow) Bingham flow with pressure
dependent yield stress that satisfies⎧⎪⎨

⎪⎩
−∇ · τ +∇p = 0 in Ω

∇ ·u = 0 in Ω

u = gD on ΓD

(7)

and proceed within the framework of generalized Stokes problems. So, we introduce

the second invariant of the strain rate tensor γ
II
= 1

2
(2D : 2D), resp., ||D|| = 1√

2
γ

1

2

II
,

and define a generalized viscosity η(·, ·) which depends on the pressure and the
shear rate:

η(γ
II
, p) = ν +

√
2

2

τs(p)

γ
1

2

II

(8)

To define the viscosity everywhere, we introduce the classical regularization:

η(γ
II
, p) = ν +

√
2

2

τs(p)

(γ
II
+ ε2)

1

2

(9)

As a consequence, Bingham flow with pressure dependent yield stress is the limit
case, ε = 0, of the regularized problem. However, it is well known that the accuracy
of the solution is strongly dependent on this parameter ε. Summarizing the previous
considerations, the considered system of equations in the primitive variables u and
p is given as follows:⎧⎪⎨

⎪⎩
−∇ · (2η(γ

II
, p)D(u)) +∇p = 0 in Ω

∇ ·u = 0 in Ω

u = gD on ΓD

(10)
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2 Non-standard saddle point problem formulation

After discretization, for instance with standard Q2P1 finite elements, let ũ = (u, p)
and Rũ denote the discrete residuals for the system (10). We use the Newton
method which means that the nonlinear iteration is updated with the correction
δũ, ũn+1 = ũn + δũ. Then, the Newton linearization provides the following ap-
proximation for the residuals:

R(ũn+1) =R(ũn + δũ)

�R(ũn) +

[
∂R(ũn)

∂ũ

]
δũ

(11)

Hence, one iteration of the Newton method can be written as follows:

⎡
⎢⎣u

n+1

pn+1

⎤
⎥⎦ =

⎡
⎢⎣u

n

pn

⎤
⎥⎦− ωn

⎡
⎢⎢⎣
∂Ru(u

n, pn)

∂u

∂Ru(u
n, pn)

∂p

∂Rp(u
n, pn)

∂u

∂Rp(u
n, pn)

∂p

⎤
⎥⎥⎦

−1 ⎡
⎢⎣Ru(u

n, pn)

Rp(u
n, pn)

⎤
⎥⎦
(12)

The damping parameter ωn ∈ (0, 1] is typically chosen such that:

[
Ru(u

n+1, pn+1)

Rp(u
n+1, pn+1)

]T [
u

n+1

pn+1

]
≤

[
Ru(u

n, pn)

Rp(u
n, pn)

]T [
u

n

pn

]
(13)

As we will demonstrate for the considered yield stress fluids, this damping parame-
ter is not enough to ensure robust convergence. In what follows, we derive explicitly
the Jacobian in order to segregate it into ”bad” and ”good” terms to get a robust
nonlinear solver. The block matrices of the Jacobian are given as follows:[

∂Ru(u
n, pn)

∂u

]
v =−∇ ·

(
2η(γn

II
, pn)D(v)

+ 8η′
1(γ

n

II
, pn) [D(un) : D(v)]D(un)

) (14)

where η′
1(γII

, p) =
∂η(γ

II
,p)

∂γ
II

, the last term in the equation (14), is due to the shear

dependent viscosity models. Furthermore, there holds[
∂Ru(u

n, pn)

∂p

]
q =

(
I− 2η′

2(γ
n

II
, pn)D(un)

)
∇q (15)

where η′
2(γII

, p) =
∂η(γ

II
,p)

∂p
, the second term in the equation (15), is relevant for

pressure-dependent viscosity models. Moreover, the incompressibility condition leads
to [

∂Rp(u
n, pn)

∂u

]
v = −∇·v (16)

and additionally we obtain: [
∂Rp(u

n, pn)

∂p

]
q = 0 (17)
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Let V := (H1
0(Ω))2 and Q := L2

0(Ω), the weak formulation reads:∫
Ω

[
∂Ru(u

n, pn)

∂u

]
u · vdx =

∫
Ω

2η(γn

II
, pn) [D(u) : D(v)] dx

+

∫
Ω

8η′
1(γ

n

II
, pn) [D(un)⊗D(u)] : [D(un)⊗D(v)] dx

(18)

Next, let us introduce the following linear forms defined on V −→ V
′

〈A1u,v〉 :=
∫
Ω

2η(γn

II
, pn) [D(u) : D(v)] dx

〈A2u,v〉 :=
∫
Ω

8η′
1(γ

n

II
, pn) [D(un)⊗D(u)] : [D(un)⊗D(v)] dx

〈Au,v〉 := 〈A1u,v〉+ 〈A2u,v〉

(19)

and the associated bilinear forms defined on V × V −→ R

a(u,v) = 〈Au,v〉, a1(u,v) = 〈A1u,v〉, a2(u,v) = 〈A2u,v〉 (20)

and the linear forms defined on V −→ Q
′:

〈Bu, p〉 := −
∫
Ω

∇·u p dx (21)

the new additional linear forms B̃ and C are given as follows

〈B̃u, p〉 =
∫
Ω

∇ ·
(
2η′

2(γ
n

II
, pn)D(un)u

)
p dx (22)

〈Cu, p〉 = −
∫
Ω

∇ ·
[(

I− 2η′
2(γ

n

II
, pn)D(un)

)
u

]
p dx (23)

with the associated bilinear forms b(·, ·), b̃(·, ·), and c(·, ·) defined on V × Q −→ R

read:

b(v, q) = 〈Bv, q〉 , b̃(v, q) = 〈B̃v, q〉, c(v, q) = b(v, q) + b̃(v, q) (24)

So, the corresponding Newton iteration (12) after discretization becomes:

[
u

n+1

pn+1

]
=

[
u

n

pn

]
− ωn

[
A C

T

B 0

]−1 [Ru(u
n, pn)

Rp(u
n, pn)

]
(25)

In the case of pressure-dependent yields stress, the Jacobian has a nonsymmetric
saddle point structure (if not, then C

T = B
T):

J =

[
A C

T

B 0

]
(26)

The Jacobian J can be decomposed, based on the block operators A, into

A = A1 + A2 (27)
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respectively, C into
C = B+ B̃. (28)

In what follows, we mainly concentrate, first of all, onto the model (1) for yield
stress only and take C = B (at the end, we provide a preliminary result for
pressure-dependent viscosity, too). Therefore, our studies focus on the discussed
decomposition of the operator A due to (27).

3 Robust nonlinear solver

To develop a robust nonlinear solver we introduce a new control parameter δn
in order to balance the operators A1 (corresponding to the typical fixed point
approach) and A2, both being part of the complete Jacobian A:

A = A1 + δnA2 (29)

In the present note, we concentrate on the choice of the optimal parameter δn
balancing the fixed point and the full Newton iteration. We take the classical flow
around cylinder benchmark [4], and perform corresponding simulations for Bingham
flow.

First, we take a very small yield stress parameter, τs = 10−4, and apply the fixed
point (δn = 0) and classical Newton (δn = 1) methods. Table 1 shows the resulting
numbers of nonlinear iterations. Both methods, Newton and fixed point, are easily
converging towards the solution, more or less independent of the mesh level. More-
over, the Newton method overcomes the fixed point method, as expected, due to the
moderate nonlinearity. To highlight the insufficiency of the globally damped New-
ton (13) to simulate Bingham flow problems, we further increase the yield stress.
Now, the Newton method can only converge with a strong damping parameter ωn

as the yield stress increases, for instance ωn = 0.1 for τs = 10−2, and no conver-
gence at all can be obtained for higher yield stress, τs ≥ 10−1. Instead, the fixed
point method can converge for all cases, however being very slow and not being
robust w.r.t. mesh level and/or yield stress.

Table 1. Globally damped Newton: The numbers of nonlinear iterations for
Bingham flow with fixed point method and globally damped Newton for increasing
yield stress

.

Level τs=10
−4 τs=10

−3 τs=10
−2 τs=10

−1 τs=1
Fixed Newton Fixed Newton Fixed Newton Fixed Fixed
point ωn=1.0 point ωn=0.2 point ωn=0.1 point point

2 21 3 67 99 212 210 490 1032
3 24 5 84 95 308 200 728 2135
4 20 5 98 90 408 190 1375 3444

Clearly, with increasing yield stress, it is hard if not impossible to solve the corre-
sponding flow problems with the globally damped Newton. Therefore, in the next
step, we take a static δn, i.e. δn = δ0 for n ≥ 1, which has been introduced in (29).
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The balancing parameter δn is taken as a constant increasing from 0 to 1. Table
2 presents the numbers of nonlinear iterations for Bingham flow with different val-
ues for the yield stress. From the results in Table 2, it is clear that increasing

Table 2. Statically balanced Newton: The numbers of nonlinear iterations for
Bingham flow with two different yield stress values τs = 10−2 and τs = 10−1, with
a statically balanced Jacobian, i.e. δn is kept constant

τs Level δn=0.1 δn=0.25 δn=0.5 δn=0.6

10−2 2 236 198 135 110
3 352 295 199 160
4 455 380 256 206

10−1 2 551 461 311 251
3 848 708 475 382
4 1455 1214 813 653

the contribution from the operator A2 improves the convergence behavior, but this
contribution needs to remain under control. To do so, we go for a dynamic change
of δn w.r.t. the residual changes. From the numerical experiment it can be noticed
that the dynamic changes of the residual give a precious information about the
singularity of the Jacobian. Indeed, the larger relative changes in the residual with
the operator A1 reflect the ‘singularity’ of the operator A2. In this case, the param-
eter δn should have a small relative change and remain small. Moreover, when the
relative changes in the residual are close to zero, this indicates that the operator
A2 has the nicest properties and δn can be increased accordingly and maintained
close to 1. We introduce the increment

Qn :=

∣∣∣∣R(γn
II
, pn)

∣∣∣∣∣∣∣∣R(γn−1
II

, pn−1)
∣∣∣∣ , (30)

and define the following continuous function for changes of δn w.r.t. the residual
Rn:

δn+1

δn
= 0.2 +

4

0.7 + exp(1.5Qn)
(31)

It should be pointed out that the choice (31) of δn is derived so far based on
simple and preliminary numerical experiments only. We check the robustness of the
dynamic changes of δn in (31) for various values of yield stress. Table 3 shows the
numbers of nonlinear iterations for Bingham flow for a wide range of yield stress
values and different starting weighting factors for the Jacobian, that means δ0.

Since the convergence typically gets harder with smaller values for the regularization
parameter ε, we check the robustness of the dynamic changes of δn in (31) for
decreasing ε and a wide range of yield stress values. Table 4 shows the numbers of
nonlinear iterations for Bingham flow using continuation strategies w.r.t. ε as well
as w.r.t. τs.
Moreover, it should be pointed out that the parameters ε and τs can be seen as
bounds for some physical quantities in models for granular material [2,3].

Finally, we want to perform some preliminary tests regarding the flexibility and
robustness of the dynamically balanced Newton method for pressure-dependent
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Table 3. Behavior of the weighted Newton w.r.t. starting parameter: The
numbers of nonlinear iterations for the dynamically balanced Newton for Bingham
flow for a wide range of yield stress values, varying from 10−3 to 5, for different
initial values δ0

δ0 τs
0.001 0.01 0.1 0.5 1.0 2.0 5.0

0.0 10 15 20 19 19 20 20
0.3 10 16 20 19 19 20 20
0.7 18 18 22 22 20 18 18
1.0 46 14 19 21 21 22 22

Table 4. Convergence w.r.t. continuation strategies: The numbers of nonlin-
ear iterations for the dynamically balanced Newton for Bingham flow for increasing
yield stress values, from 10−3 to 5, and decreasing ε, from 10−2 to 10−5

ε τs
0.001 0.01 0.1 0.5 1.0 2.0 5.0

Continuation Newton w.r.t. ε
10−2 10 15 20 19 19 20 20
10−3 11 11 12 17 16 15 15
10−4 15 13 18 16 15 26 15
10−5 16 10 22 22 17 15 17

Continuation Newton w.r.t. τs
10−2 10 14 19 12 8 7 7
10−3 14 20 26 15 8 8 8
10−4 21 26 34 23 10 17 8
10−5 22 45 41 29 11 10 10

Table 5. Pressure dependent yield stress: The numbers of nonlinear itera-
tions for Bingham flow with pressure dependent yield stress in (6) with fixed point
method δn = 0.0 and dynamically balanced Newton, varying the lower bound yield
stress τmin and fixed upper bound yield stress τmax = 0.1

Method τmin

0.0 0.0001 0.001 0.01 0.1

Fixed Point 356 356 356 356 356
Newton 79 68 68 56 27

yield stress. In a first step, the yield stress is taken as a function of the pressure as
described in (6). We fix the upper bound of the yield stress and change the lower
bound of the yield stress to allow significant changes in the pressure which should
mainly influence the convergence behavior. However, due to the ‘min-max’ flow rule,
we cannot differentiate w.r.t. the pressure so that we apply the described Newton
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modification for the velocity part only, while the pressure dependence is treated in
a fixed point style only. Nevertheless, the comparison of the standard fixed point
method and the newly dynamically balanced Newton, which is presented in Table

5, shows already a clearly improved behavior. In the next step, we will apply a
flow model including pressure and shear rate which will allow differentiation w.r.t.
both arguments (as demonstrated in the shown models for granular flow) so that
an extension of the new Newton method to pressure-dependent yield stress fluids
can be realized and numerically analyzed, too.

4 Summary

We shortly presented a new Newton-type method for flow problems with yield stress
which are typical for viscoplastic Bingham models as well as granular flow models
with pressure-dependent yield stress. The model is approximated with a regular ap-
proach to derive the Jacobian. Then, the partial contributions to the Jacobian are
segregated in order to differ between ‘good’ and ‘bad’ parts (due to their expected
numerical behavior). Firstly, we showed the insufficiency of the classical globally
damped Newton. Secondly, we derived a statically balanced Newton approach, by
taking different parts of the Jacobian in a static manner for different yield stress
values. Thirdly, we went further with dynamic changes allowing the selection of the
‘optimal’ contributions inside of the Jacobian, here mainly based on the residual
changes. The numerical results demonstrate the ability to simulate the Bingham
viscoplastic model in the primitive variables for a small regularized parameter ε and
pressure-dependent yield stress. Moreover, we pointed out how this approach can
be extended to more complex (and more realistic) flow models which are typical
for granular flow models.

This work was supported by DAAD and the grant STW/DFG:TU 102/44-1.
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