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Project
Numerical study of flow across multiple obstacles in a uniform
stream of infinite extent for low Reynolds numbers and various
angles of attack of the upstream velocity.

Aim

• Examine a two-dimensional low Reynolds number flow over obstacles immersed in a stream of

infinite extent.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = U∞ = 1.

• Study the problem for Reynolds number in the range 1 ≤ Re ≤ 100 and the angle of attack of the

upstream velocity at α = −5◦; 0◦; 5◦.

• Analyse the resulting drag and lift forces acting on obstacles with respect to the angle of attack of

the upstream velocity and the Reynolds number.

• Determine the influence of one obstacle onto the resulting drag and lift coefficients of other obsta-

cles.

Aerodynamic problem

We consider the two-dimensional, steady , incompressible, viscous fluid at low Reynolds number with an

uniform velocity U∞ around the circular and elliptical cylinders in unbounded domain. The governing

Navier-Stokes equations in terms of dimensional primary variables for the laminar fluid flow are:

−ν � u+ u · �u+�p = 0,�.u = 0 in Ω

with prescribed boundary values on the boundary ∂Ω.

Here, u(Ux, Uy) is a velocity, Ux, Uy are the x and y-components of the velocity, ρ = 1 is the density, ν

is the kinematic viscosity of the fluid. As common in the mathematical literature (see [?]), we consider

the viscosity parameter 1/ν as the Reynolds number Re = UL/ν assuming L = U = 1, where L is a

characteristic length scale of the flow, U is a characteristic velocity scale of the flow.

Numerical simulation of the problems in a unbounded flow region requires the computational domain to

be truncation. According to the results reported in the literature the size of the bounded computational

domain has to be enough large to provide accurate results for low Reynolds numbers.

The boundary conditions on ∂Ω are prescribed as follows:

On the surface of obstacles (Dirichlet boundary conditions):

u = 0 is the standard no-slip condition.
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Upstream entrance:

Ux = cosα,Uy = sinα, where α is the angle of attack of the upstream velocity.

Downstream outflow:

ν ∂u
∂n − pn = 0, is the so-called ’do-nothing’ boundary conditions.

Numerical methodology

• Problem Solver

The numerical study is carried out using the code cc2d which is the part of the FEATFLOW1.1

software. The FEATFLOW package is the solver package for viscous, incompressible fluid flow

in 2D and 3D for both stationary and non stationary problems. The Navier-Stokes equations

are approximated using a finite element method for the spatial discretization with nonconforming

quadrilateral finite elements.

The code cc2d is a direct, fully coupled approach for solving the discrete version of the incompress-

ible Navier-Stokes equations for 2D flows at low and intermediate Reynolds numbers.

The nonlinear algebraic systems are exploited by iterative solution methods. The nonlinear prob-

lems are treated by the adaptive fixed point defect correction method. The linear subproblems

are solved by a multigrid method. The Multigrid method uses hierarchy of grids. The code cc2d

divides each quadrilateral of the coarse mesh into four quadrilaterals to form the next fine mesh.

The Multigrid algorithm visits all coarser grids in order given by multigrid cyrcle (in our simulation

- type F). At the end of this process we have the solution on the finest mesh.

The Samarskij weighted upwind scheme is used for stabilization of convective terms.

• Preprocessing

The coarse grid are defined by two files which are generated using preprocessing tool DeViSoRgrid.

• Postprocessing

The process of visualisation is based on tool The General Mesh Viewer.

Graphics were created using the Gnuplot program.
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1 Task I

Title: Numerical study of flow across an ellipse and a circle placed in a uniform stream of infinite extent.

The x-component of the upstream velocity Ux ≤ 0.

Submitted by:

• Rajesh, Koduri

• Mohammed Shahfir, Kajah Najmudeen

Aim

• Examine a two-dimensional low Reynolds number flow around the ellipse and the circle immersed

in a stream of infinite extent (see Fig.1.1).

• The x-component of the upstream velocity Ux ≤ 0.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = U∞ = 1.

• Study the problem for Reynolds number in the range 1 ≤ Re ≤ 100 and the angle of attack of the

upstream velocity at α = −5◦; 0◦; 5◦.

• Analyse the resulting drag and lift forces acting on obstacles with respect to the angle of attack of

the upstream velocity and the Reynolds number.

• Determine the influence of the circle onto the resulting drag and lift coefficients of the ellipse.

1.1 Computational domain

Fig.1.1 Computational Domain

• The exterior geometry of the rectangle:

h = 40.0, l = 80.0 - height and width of the bounding box.

C(0.0, 0.0) is the position of the center of the rectangle.

(−40.0,−20.0) is the point of the left lower corner of the box.

(40.0, 20.0) is the point of the right upper corner of the box.

4



• Position of the ellipse (boundary 2):

h1 = 2.0, l1 = 10.0 - height and width of the ellipse.

C(0.0, 0.0) is the position of the center of the ellipse.

E = 5 is the aspect ratio of the ellipse (E = l1/h1).

• Position of the circle (boundary 3):

R = 0.5 is the radius of the circle with its center at C(−8.0,−1.0).

1.2 Implementation of Boundary conditions

• The case of α = 00

Upstream entrance (the Dirichlet boundary conditions):

Ux = −1.0, Uy = 0.0 on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

Downstream exit (Do nothing’s” boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0 .

on the line x = −40.0 ; −20.0 ≤ y ≤ 20.0.

• In the case of α = 5◦

Upstream entrance:the Dirichlet boundary condition

Ux = cos(α), Uy = sin(α) on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40 ; y = −20.0.

Downstream exit: ”Do nothing’s” boundary conditions

on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

• In the case of α = −5◦

Upstream entrance:the Dirichlet boundary condition

Ux = cos(α), Uy = sin(α) on the line: x = 40.0 ; −20 ≤ y ≤ 20.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

Downstream exit: ”Do nothing’s” boundary conditions

on the line:−40.0 ≤ x ≤ 40.0 ; y = −20.0 .

on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

1.3 Spatial Discretization, Mesh refinement and

Computational requirements in the code cc2d

We perform series of calculations on different solution levels: 3 - 7.

Table 1.1 presents the progression of grid sizes through seven levels and the typical computational
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requirement.

Information about mesh refinement, memory capacity and computational time (Total Time) is available

in the protocol file.

Table 1.1 Mesh refinement and computational requirements.

Level NEL NMT d.o.f IWMAX Total Time

Lev 1: coarse mesh 102 221 544 0.064MB 0.06sec

Lev 5 : mesh 26.112 52.496 131.104 19.67MB 30.51sec

Lev 7 : finest mesh 417.792 836.672 2.091.136 313.82MB 1632.07sec

NEL is the total number of cells associated with pressure unknowns.

NMT is the total number of midpoints of edges associated with x- and y- components velocity unknowns.

Degrees of freedom d.o.f.‘s is expressed by NEL+2*NMT.

IWMAX is the amount of memory in MB.

The coarse mesh which covers the whole domain is presented in Figure 1.2, the part of the mesh around

the obstacles on level 2 is present in Figure 1.3(a)and the part of the mesh around the obstacles on level

3 is present in Figure 1.3(b).

Fig. 1.2 The coarse mesh (level 1)

Fig.1.3(a) Mesh on level 2 Fig.1.3(b) Mesh on level 3.

1.4 Investigation of the accuracy of the solution:

The mesh refinement is needed to improve solution accuracy across the whole domain. We can control

the relative accuracy of a solution to compare solutions on levels 3 - 7 with a solution on a finest mesh

(level 7). The table 1.2 shows the change in drag coefficient Cdrag depending on the mesh refinement.
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The calculations were made for Re = 10, α = −5◦. Reference value Cref is the drag coefficient of the

ellipse on the finest mesh (level 7).

Table 1.2. The behaviour of drag coefficient Cdrag of the ellipse according to computational

levels for Re = 10, α = −5◦

Level 3 4 5 6 7

Cdrag 2.1455 2.0841 2.0683 2.0671 2.0652

(Cdrag-Cref )/Cref 3.88% 0.92% 0.15 % 0.02% 0.0%

1.5 Results and Conclusions

• The 2D steady incompressible, viscous flow past the circle and ellipse was investigated numerically.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = 1.

• The x-component of the upstream velocity Ux ≥ 0.

• The problem has been solved over a range of Reynolds numbers 1 ≤ Re ≤ 100

and the angle of attack of the upstream velocity α = −5◦; 0◦; 5◦.

• Drag force:

a. Drag force decreases as Reynolds number increases (see Fig 1.4a ).

b. Drag force very slightly increases as angle of attack α increases (see Fig 1.4(a),1.5).

• Lift Force:

a. The lift coefficient varies significantly with angle of the attack (see Fig. 1.4(b):

b. In the case α = 0 the lift coefficient converges very rapidly to 0 as Reynolds number increases.

c. In the case α = 5◦ the lift coefficient decreases as Reynolds number increases.

d. In the case α = −5◦ the lift coefficient increases as Reynolds number increases.

• The effect of the interaction between obstacles were examined (see Fig. 1.6 - 1.7).

It can be seen that the value of the drag force acting on an isolated ellipse is larger than those

obtained by the corresponding simulation of flow past two obstacles.

• Flow patterns were investigated.

• Fig. 1.8 - 1.11 show velocity magnitude contours. It can be infer that for Re=10 velocity drops

around obstacles and when Reynolds number increases velocity around obstacles also increases and

streamlines becomes sharper.

• The phenomena of flow recirculation and separation in the rear of the both cylinders are observed

for Re ≥ 20. The usual formation of clockwise and counter-clockwise vortex pairs take place. The

length of this vortex formation increases with Re.
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(a) Drag coefficient (b) Lift coefficient
Fig.1.4 Variation of drag (a) and lift (b) coefficients of ellipse with the different Reynolds

numbers and the angle of attacks

Fig.1.5 Variation of drag coefficient of the ellipse with the angle of attack −5◦ ≤ α ≤ 5◦

and Re = 10, 80.

(a) Drag coefficient α = −5◦ (b) Drag coefficient aα = 0◦

Fig.1.6 Drag coefficient of an isolated ellipse and Drag coefficient of an ellipse obtained
by corresponding simulation of flow past two obstacles at different Re and

α = −5◦(a); α = −0◦(b)

Fig.1.7 Drag coefficient of an isolated ellipse and Drag coefficient of an ellipse obtained
by corresponding simulation of flow past two obstacles at different Re and α = 5◦
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a. Re = 10 and α = −5◦ b. Re = 80 and α = −5◦

Fig.1.8 Velocity magnitude plot

a. Re = 10 and α = 0◦ b. Re = 80 and α = 0◦

Fig.1.9 Velocity magnitude plot

a. Re = 10 and α = 5◦ b. Re = 80 and α = 5◦

Fig.1.10 Velocity magnitude plot

a. α = 0◦ b. α = 5◦ (c) α = −5◦

Fig.1.11 Velocity magnitude plot around the ellipse at Re = 80
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2 Task II

Title: Numerical study of flow across an ellipse and a circle placed in a uniform stream of infinite extent.

The x-component of the upstream velocity Ux ≥ 0. Submitted by:

• Kushal Patel

• Rajesh Rajendran

• Sandesh Shete

Aim

• Examine a two-dimensional low Reynolds number flow around the ellipse and the circle immersed

in a stream of infinite extent (see Fig.2.1).

• The x-component of the upstream velocity Ux ≥ 0.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = U∞ = 1.

• Study the problem for Reynolds number in the range 1 ≤ Re ≤ 100 and the angle of attack of the

upstream velocity at α = −5◦; 0◦; 5◦.

• Analyse the resulting drag and lift forces acting on obstacles with respect to the angle of attack of

the upstream velocity and the Reynolds number.

• Determine the influence of the circle onto the resulting drag and lift coefficients of the ellipse.

2.1 Computational domain

Fig.2.1 Computational Domain

• The exterior geometry of the rectangle:

h = 40.0, l = 80.0 - height and width of the bounding box.

C(0.0, 0.0) is the position of the center of the rectangle.

(−40.0,−20.0) is the point of the left lower corner of the box.

(40.0, 20.0) is the point of the right upper corner of the box.
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• Position of the ellipse (boundary 2):

h1 = 2.0, l1 = 10.0 - height and width of the ellipse.

C(0.0, 0.0) is the position of the center of the ellipse.

E = 5 is the aspect ratio of the ellipse (E = l1/h1).

• Position of the circle (boundary 3):

R = 0.5 is the radius of the circle with its center at C(−8.0,−1.0).

2.2 Implementation of Boundary conditions

• Case α = 00

Upstream entrance (the Dirichlet boundary conditions):

Ux = 1.0, Uy = 0.0 on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Downstream exit (Do nothing’s boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0 .

on the line x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = −5◦

Upstream entrance (the Dirichlet boundary condition):

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40 ; y = 20.0.

Downstream exit (Do nothing’s” boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = 5◦

Upstream entrance (the Dirichlet boundary condition) :

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20 ≤ y ≤ 20.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.

Downstream exit (Do nothing’s boundary conditions):

on the line:−40.0 ≤ x ≤ 40.0 ; y = 20.0 .

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

2.3 Spatial Discretization, Mesh refinement and

Computational requirements in the code cc2d

We perform series of calculations on different solution levels: 3,4,5,6,7. Table 2.1 presents the progression

of grid sizes through seven levels and the typical computational requirement.
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Information about mesh refinement, memory capacity and computational time (Total Time) is available

in the protocol file.

Table 2.1. Mesh refinement and computational requirements.

Level NEL NMT d.o.f IWMAX Total Time

Lev 1: coarse mesh 102 221 544 0.064MB 0.06sec

Lev 5 : mesh 26.112 52.496 131.104 19.67MB 30.51sec

Lev 7 : finest mesh 417.792 836.672 2.091.136 313.82MB 1632.07sec

NEL is the total number of cells associated with pressure unknowns.

NMT is the total number of midpoints of edges associated with x- and y- components velocity unknowns.

Degrees of freedom d.o.f.‘s is expressed by NEL+2*NMT.

IWMAX is the amount of memory in MB.

The coarse mesh which covers the whole domain is presented in Figure 2.2(a), the part of the mesh

around the obstacles on level 2 is present in Figure 2.2(b) and the part of the mesh around the obstacles

on level 3 is present in Figure 2.2(c).

Fig.2.2(a) The coarse mesh (level 1)

Fig.2.2(b) Mesh on level 2 Fig. 2.2(c) Mesh on level 3.

2.4 Investigation of the accuracy of the solution:

The mesh refinement is needed to improve solution accuracy across the whole domain. We can control

the relative accuracy of a solution to compare solutions on levels 3 - 7 with a solution on a finest mesh
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(level 7). The table 2.2 shows the change in drag coefficient Cdrag depending on the mesh refinement.

The calculations were made for Re = 10, α = −5◦. Reference value Cref is the drag coefficient of the

ellipse on the finest mesh (level 7).

Table 2.2. The behaviour of drag coefficient Cdrag of the ellipse according to

computational levels for Re = 10, α = −5◦

Level 3 4 5 6 7

Cdrag 1.0065 0.92601 0.90489 0.89996 0.89905

(Cdrag-Cref )/Cref 11.96% 3% 2.56% 0.66% 0.0%

2.5 Results and Conclusions

• The 2D steady incompressible, viscous flow past the circle and ellipse was investigated numerically.

• The numerical study has been carried out using the code cc2d which is the part of Featflow1.1

software.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = 1.

• The x-component of the upstream velocity Ux ≥ 0.

• The problem has been solved over a range of Reynolds numbers 1 ≤ Re ≤ 100

and the angle of attack of the upstream velocity α = −5◦; 0◦; 5◦.

• Drag force:

a. Drag force decreases as Reynolds number increases due to influence of skin friction (Fig. 2.3).

b. Drag force decreases as the angle of attack α increases (Fig. 2.3, Fig. 2.5).

• Lift Force:

a. At positive small angles of attack 0◦ < α ≤ 5◦ the lift force decreases as Reynolds number

increases (Fig. 2.4).

b. At negative angles of attack −5◦ ≤ α < 0◦ and α = 0◦ the lift force increases as Reynolds

number increases (Fig. 2.4(b)).

• The effect of the interaction between obstacles was examined. It can be seen that the value of the

drag forces acting on an isolated ellipse are larger than those obtained by corresponding simulations

of flow past the cirle and the ellipse (Fig. 2.6-2.7).

• Flows patterns around the circle and ellipse are presented.

• The vortex structures were investigated. The phenomena of flow recirculation and separation in

the rear of the obstacles are observed for Re ≥ 20. The usual formation of clockwise and counter-

clockwise vortex pairs take place (see Fig. 2.9-2.11).
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Fig.2.3 Variation of the drag coefficient with Reynolds number and angle of attack for the
ellipse

Fig.2.4 Variation of the lift coefficient with Reynolds number and angle of attack for the
ellipse

• Angle of attack α = −5◦, Fig. 2.9

Figure 2.10 shows magnified image in which we can see vortex formation between circle and el-

lipse. We can see that as Reynolds number increases velocity around obstacles also increases and

streamlines becomes sharper.

• Angle of attack α = 0◦, Fig. 2.10

In Figure 2.10 we can see that as Reynolds number increases velocity around obstacles also increases

and streamlines becomes sharper and straight.

• Angle of attack α = 5◦, Fig. 11

Figure 2.11 (a,b) shows Velocity magnitude plot at Re = 10 and Re = 80 respectively. We can

see that as Reynolds number increases velocity around obstacles also increases and streamlines

becomes sharper.

• At positive small angles of attack 0◦ ≤ α ≤ 5◦ and Re = 80 the flow around two obstacles behaves

like if this group of obstacles formed only one large obstacle. The both obstacles behave more like

one streamline surface ( see Fig 2.12 a, b).

• At α = −5◦, the both obstacles behave more like a single obstacle (Fig 2.12 c).
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Fig.2.5 Variation of the drag coefficient of the ellipse with the angle of attack −5◦ ≤ α ≤ 5◦

and Re = 10, 70.

(a) Drag coefficient at α = −5◦ (b) Drag coefficient at α = 0◦

Fig.2.6 Variation of drag coefficient of ellipse with the different Reynolds numbers at the
angle of attacks α = −5◦ (a) and α = 0◦ (b)

Fig.2.7 Drag coefficient of an isolated ellipse and Drag coefficient of an ellipse obtained
by corresponding simulation of flow past two obstacles at different Re and α = 5◦
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(a) Re = 10 and α = −5◦ (b) Re = 80 and α = −5◦

Fig.2.8 Pressure plot

(a) Re = 10 and α = −5◦ (b) Re = 80 and α = −5◦

Fig.2.9 Velocity magnitude plot

(a) Re = 10 and α = 0◦ (b) Re = 80 and α = 0◦

Fig.2.10 Velocity magnitude plot

(a) Re = 10 and α = 5◦ (b) Re = 80 and α = 5◦

Fig.2.11 Velocity magnitude plot

(a) α = 0◦ (b) α = 5◦ (c) α = −5◦

Fig.2.12 Velocity magnitude plot around the ellipse at Re = 80
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3 Task III

Title: Numerical study of flow across a circle, an ellipse and a rectangle placed in succession in a uniform

stream of infinite extent. The x-component of the upstream velocity Ux ≥ 0.

Submitted by:

• Prabhat Ranjan Bhat (146078)

• Vikram Bangalore Nagendra (146062)

• Sankaranarayanan Subramanian (146094)

Aim

• Examine a two-dimensional low Reynolds number flow around the ellipse, the circle and the rect-

angle immersed in a uniform stream of infinite extent (see Fig.3.1).

• The x-component of the upstream velocity Ux ≥ 0.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = U∞ = 1.

• Solve the problem for different angle of attack of the upstream velocity α = −5◦; 0◦; 5◦ and

Reynolds number 1 ≤ Re ≤ 100

• Analyse the resulting drag and lift forces acting on obstacles with respect to the angle of attack of

the upstream velocity and Reynolds number.

• Determine the influence of the circle and the rectangle onto the resulting drag and lift coefficients

of the ellipse.

3.1 Computational domain

• The exterior geometry of the rectangle:

h = 40.0, l = 80.0 - height and width of the bounding box.

C(0.0, 0.0) is the position of the center of the rectangle.

(−40.0,−20.0) is the point of the left lower corner of the box.

(40.0, 20.0) is the point of the right upper corner of the box.

• Position of the ellipse (boundary 2):

h1 = 2.0, l1 = 10.0 - height and width of the ellipse.

C(0.0, 0.0) is the position of the center of the ellipse.

E = 5 is the aspect ratio of the ellipse (E = l1/h1).

• Position of the circle(boundary 3):

R = 0.5 is the radius of the square with its center at C(−8.0,−1.0).
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3.1 Computational Domain

• Position of the rectangle (boundary 4):

h2 = 1.5.0, l2 = 1.0 - height and width of the rectangle.

C(6.5,−2.25) is the position of the center of the rectangle.

3.2 Implementation of Boundary conditions

• Case α = 00

Upstream entrance (the Dirichlet boundary conditions):

Ux = 1.0, Uy = 0.0 on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Downstream exit (Do nothing’s boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0 .

on the line x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = −5◦

Upstream entrance (the Dirichlet boundary condition):

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40 ; y = 20.0.

Downstream exit (Do nothing’s” boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = 5◦
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Upstream entrance (the Dirichlet boundary condition) :

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20 ≤ y ≤ 20.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.

Downstream exit (Do nothing’s boundary conditions):

on the line:−40.0 ≤ x ≤ 40.0 ; y = 20.0 .

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

3.3 Spatial Discretization, Mesh refinement and

Computational requirements in the code cc2d

We perform series of calculations on different solution levels: 3 - 7. Information about mesh refine-

ment, memory capacity and computational time (Total Time) is available in the protocol file. Table

3.1 presents the progression of grid sizes through seven levels and the typical computational requirement.

Table 3.1 Mesh refinement and computational requirements.

Level NEL NMT d.o.f IWMAX Total Time

Lev 1: coarse mesh 101 221 543 0.064MB 0.06sec

Lev 5 : mesh 25.856 52.016 129.888 19.67MB 30.51sec

Lev 7 : finest mesh 413.696 828.608 2.070.912 313.82MB 1632.07sec

Fig.3.2 Mesh on level 2

Fig.3.3 Mesh on level 3

NEL is the total number of cells associated with pressure unknowns.

NMT is the total number of midpoints of edges associated with x- and y- components velocity unknowns.

Degrees of freedom d.o.f.‘s is expressed by NEL+2*NMT.
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IWMAX is the amount of memory in MB.

The coarse mesh which covers the whole domain is presented in figure 3.2, the part of the mesh around

the obstacles on level 2 is present in figure 3.2 and the part of the mesh around the obstacles on level 3

is present in figure 3.3.

3.4 Investigation of the accuracy of the solution:

The mesh refinement is needed to improve solution accuracy across the whole domain. We can control the

relative accuracy of a solution to compare solutions on levels 3, 4, 5, 6, 7 with a solution on a finest mesh

(level 7). The table 3.2 shows the change in drag coefficient Cdrag depending on the mesh refinement.

The calculations were made for Re = 10, α = −5◦. Reference value Cref is the drag coefficient of the

ellipse on the finest mesh ( level 7).

Table 3.2. The behaviour of drag coefficient Cdrag of the ellipse according to

computational levels for Re = 10, α = −5◦

Level 3 4 5 6 7

Cdrag 0.99582 0.93999 0.92437 0.92109 0.92114

(Cdrag-Cref )/Cref 8.1% 2.05% 0.35% 0.001% 0.0%

3.5 Results and Discussions

• The 2D steady incompressible, viscous flow past the circle, ellipse and rectangle was investigated

numerically.

• The numerical study has been carried out using the code cc2 from Featflow1.1 software.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = 1.

• The x-component of the upstream velocity Ux ≥ 0.

• The problem has been solved over a range of Reynolds numbers 1 ≤ Re ≤ 100

and the angle of attack of the upstream velocity α = −5◦; 0◦; 5◦.

• Drag force:

a. Drag force decreases as Reynolds number increases (Fig. 3.4).

b. Drag force decreases as the angle of attack α increases (Fig. 3.4).

• Lift Force:

a. At positive small angle of attack 0◦ ≤ α ≤ 5◦ the lift coefficient of ellipse decreases as Reynolds

number increases (Fig. 3.5).

b. At angles of attack α = 0◦ and for Re ≥ 30 we observe that the lift force can be neglected.
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Fig.3.4 Variation of drag coefficient of the ellipse with different Re and angle of attacks

• The effect of the interaction between obstacles was examined. It can be seen that the value of the

drag forces acting on an isolated ellipse are larger than those obtained by corresponding simulations

of flow past three obstacles (Figures 3.6 (a-b)).

• Flows patterns around the obstacles are presented.

• The vortex structures were investigated. The phenomena of flow recirculation and separation in

the rear of the both cylinders are observed for Re ≥ 20. The usual formation of clockwise and

counter-clockwise vortex pairs take place.

• Angle of attack α = −5◦, Fig. 3.8

Figure 3.8 shows velocity magnified image at Re = 10; 80. We can see vortex formation between

the circle and the ellipse. Velocity around obstacles increases and streamlines becomes sharper as

Reynolds number increases. The ellipse and rectangle behave more like one streamline surface as

Reynolds number decreases (Figures 3.8(a)).

• Angle of attack α = 0◦, Fig. 3.9

Figure 3.9 shows velocity magnified image at Re = 10; 80. Streamlines become straight as Reynolds

number increases. We can see vortex formation between the circle, the ellipse and the rectangle.

• Angle of attack α = 5◦, Fig. 3.10

Figure 10 shows velocity magnified image at Re = 10; 80. Velocity around obstacles increases

and streamlines becomes sharper as Reynolds number increases. The flow around the obstacles

becomes very copmlex.
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Fig.3.5 Variation of lift coefficient of the ellipse with different Re and angle of attacks

a. α = −5◦ b. α = 5◦

Fig.3.6 Drag coefficient of an isolated ellipse and Drag coefficient of an ellipse
obtained by corresponding simulation of flow past two obstacles

at different Re and α = −5◦ (a) and α = 5◦ (b)

(a) Re = 10 and α = −5◦ (b) Re = 80 and α = −5◦

Fig.3.7 Pressure plot
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(a) Re = 10 and α = −5◦ (b) Re = 80 and α = −5◦

Fig.3.8 Velocity magnitude plot

(a) Re = 10 and α = 0◦ (b) Re = 80 and α = 0◦

Fig.3.9 Velocity magnitude plot

(a) Re = 10 and α = 5◦ (b) Re = 80 and α = 5◦

Fig.3.10 Velocity magnitude plot
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4 Task IV

Title: Numerical study of formation of vortex field in two successive ellipses placed in a uniform stream

of infinite extends.

Submitted by:

• Provodin Artem

• Alberto Morales San Juan

Aim

• Examine a two-dimensional low Reynolds number flow around two ellipses in succession immersed

in a stream of infinite extent (see Fig.4.1).

• The x-component of the upstream velocity Ux ≥ 0.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = U∞ = 1.

• Study the problem for Reynolds number in the range 1 ≤ Re ≤ 100 and the angle of attack of the

upstream velocity at α = −5◦; 0◦; 5◦.

• Analyse the resulting drag and lift forces acting on obstacles with respect to the angle of attack of

the upstream velocity and the Reynolds number.

• Determine the influence of the small eplipse onto the resulting drag and lift coefficients of the large

ellipse.

4.1 Computational Domain

Fig.4.1 Computational Domain
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• The exterior geometry of the rectangle:

h = 40, l = 80 - height and width of the bounding box.

C(0.0, 0.0) is the position of the center of the rectangle.

(−40.0,−20.0 is the point of the left lower corner of the box.

(40.0, 20.0) is the point of the right upper corner of the box.

• Position of the large ellipse (boundary 2):

h1 = 2, l1 = 10.0 - height and length of the ellipse:

C(0.0, 0.0) is the position of the center of the ellipse.

E = 5 is the aspect ratio of ellipse (E = l1/h1).

• Position of the small ellipse (boundary 3):

h2 = 1, l2 = 2.0 - height and length of the ellipse:

C(−8.0,−1.0) is the position of the center of the ellipse.

E = 2 is the aspect ratio of ellipse (E = l2/h2).

4.2 Implementation of Boundary conditions

• Case α = 00

Upstream entrance (the Dirichlet boundary conditions):

Ux = 1.0, Uy = 0.0 on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Downstream exit (Do nothing’s boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = 20.0.

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0 .

on the line x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = −5◦

Upstream entrance (the Dirichlet boundary condition):

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20.0 ≤ y ≤ 20.0.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40 ; y = 20.0.

Downstream exit (Do nothing’s” boundary conditions):

on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

• Case α = 5◦

Upstream entrance (the Dirichlet boundary condition) :

Ux = cos(α), Uy = sin(α) on the line: x = −40.0 ; −20 ≤ y ≤ 20.

Ux = cos(α), Uy = sin(α) on the line: −40.0 ≤ x ≤ 40.0 ; y = −20.0.
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Downstream exit (Do nothing’s boundary conditions):

on the line:−40.0 ≤ x ≤ 40.0 ; y = 20.0 .

on the line: x = 40.0 ; −20.0 ≤ y ≤ 20.0.

4.3 Spatial Discretization, Mesh refinement and Computational require-

ments in the code cc2d

We perform series of calculations on different solution levels: 3,4,5,6,7. Table 4.1 presents the progression

of grid sizes through seven levels and the typical computational requirement.

Information about mesh refinement, memory capacity and computational time (Total Time) is available

in the protocol file.

Table 4.1. Mesh refinement and computational requirements.

Level (NEL) (NMT) d.o.f IWMAX Time

Lev 1: coarse mesh 58 133 324 0.038MB 0.03sec

Lev 5: 14.848 29.968 74.784 11.23MB 37.59sec

Lev 7: finest mesh 237.568 476.224 1.190.016 178.616 MB 1180.35sec

NEL is the total number of cells associated with pressure unknowns.

NMT is the total number of midpoints of edges associated with x- and y- components velocity unknowns.

Degrees of freedom d.o.f.‘s is expressed by NEL+2*NMT.

IWMAX is the amount of memory in MB.

The coarse mesh which covers the whole domain is presented in Figure 4.2, the part of the mesh around

the obstacles on level 2 - Figure 4.3(a) and on level 3 - Figure 4.3(b).

Fig.4.2 The coarse mesh (level 1)

Fig.4.3(a) Mesh on level 2 Fig.4.3(b) Mesh on level 3.
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4.4 Investigation of the accuracy of the solution:

The mesh refinement is needed to improve solution accuracy across the whole domain. We can control

the relative accuracy of a solution to compare solutions on levels 3, 4, 5, 6, 7 with a solution on a finest

mesh (level 7). The table 4.2 shows the change in drag coefficient Cdrag depending on the mesh refine-

ment. The calculations were made for Re = 10, α = −5◦. Reference value Cref is the drag coefficient of

the large ellipse on the finest mesh (level 7).

Table 4.2. The behaviour of drag coefficient Cdrag of the large ellipse according to compu-

tational levels for Re = 10, α = −5◦

Level 3 4 5 6 7

Cdrag 1.5018 1.4454 1.397 1.3752 1.3732

(Cdrag − Cref )/Cref 9.37% 5.27% 1.74% 0.15% 0.0%

4.5 Results and Conclusions

The problem has been solved for α = −5◦; 0◦; 5◦ and different Reynolds numbers 1 ≤ Re ≤ 100. We

investigated forces acting on the large ellipse (downstream obstacle) with respect to the Reynolds number

Re and the angle of attack α of the upstream velocity.

Fig.4.4 The drag coefficients for α = −5◦, α = 5◦, α = 0◦.

Fig.4.5 The lift coefficients for α = −5◦, α = 5◦, α = 0◦.
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Fig.4.6 (a) Drag coefficient in 3D Fig.4.6 (b) Lift coefficient in 3D

(a) α = −5◦ (b) α = 0◦

Fig.4.7 Drag coefficient of an large isolated ellipse and Drag coefficient of that obtained
by corresponding simulation of flow past two obstacles for different Re and α

• The 2D steady incompressible, viscous flow past two ellipses was investigated numerically.

• The numerical study has been carried out using the code cc2d which is the part of Featflow1.1

software.

• The magnitude of the uniform upstream velocity |u(Ux, Uy)|∞ = 1.

• The x-component of the upstream velocity Ux ≥ 0.

• The problem has been solved over a range of Reynolds numbers 1 ≤ Re ≤ 100

and the angle of attack of the upstream velocity α = −5◦; 0◦; 5◦.

• Drag force:

a. Drag force decreases as Reynolds number increases (see Fig. 4.4, Fig. 4.6a).

b. Drag force decreases as the angle of attack α increases (see Fig. 4.4).
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• Lift force:

a. The lift coefficient varies significantly with angle of the attack (see Fig. 4.5, Fig. 4.6b):

b. In the case α = 0 the lift coefficient converges very rapidly to 0 as Reynolds number increases.

c. In the case α = 5◦ the lift coefficient decreases as Reynolds number increases.

d. In the case α = −5◦ the lift coefficient varies depend on Reynolds number.

• The effect of the interaction between obstacles was examined. It can be seen that the value of the

drag forces acting on an isolated ellipse are larger than those obtained by corresponding simulations

of flow past two cylinders (Figure 4.7).

• Flows patterns around two ellipses are presented.

• The vortex structures were investigated. The phenomena of flow recirculation and separation in

the rear of the both ellipses are observed for Re ≥ 20. The usual formation of clockwise and

counter-clockwise vortex pairs take place.

• At angle of attack α = −5◦

¿From figure 4.8 we can see that as Reynolds number increases velocity around obstacles also

increases and streamlines becomes sharper. As the angle of attack is negative flow converges in

downwards. Figure 8 shows magnified image in which we can see vortex formation between the

ellipses.

• At angle of attack α = 0◦

¿From Velocity magnitude plot (Figure 4.9) we can see that as Reynolds number increases velocity

around obstacles also increases and streamlines becomes sharper. As angle of attack is 0◦ flow is

straight.

• At angle of attack α = 5◦

Figure 4.10 shows Velocity magnitude plot at the angle of attack α = 5◦. We can see that

as Reynolds number increases velocity around obstacles also increases and streamlines becomes

sharper.

• At low Reynolds number Re = 5 and 0◦ ≤ α ≤ 5◦5 (see Fig. 4.8(a), 4.9(a), 4.10(a)) the flow

around two obstacles behaves like if this group of obstacles formed only one large obstacle and

both obstacles behave more like one streamline surface.

• It is seen from Figure 4.8(b) that for higher Reynolds number Re = 40 and the negative angle of

attack α = −5◦ the both ellipses behave more like a single obstasle.
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(a) Re = 5 and α = −5◦ (b) Re = 40 and α = −5◦

Fig.4.8 Velocity magnitude plot.

(a) Re = 5 and α = 0◦ (b) Re = 40 and α = 0◦

Fig.4.9 Velocity magnitude plot.

(a) Re = 5 and α = 5◦ (b) Re = 40 and α = 5◦

Fig.4.10 Velocity magnitude plot.

30



5 Task V

Title: TA2: Inverse or optimization problems for multiple (ellipse)ellipsoid configuration.

Submitted by Jyril

• Keywords

Inverse problems, shape recovery, CFD, electromagnetics, acoustics.

• Requirements Navier-Stokes solver, Maxwell solver, Acoustics solver, Mesher

5.1 Objectives

• Aerodynamic reconstruction problem

Recovery of the original position of two ellipses (2D) or ellipsoids (3D)using potential, Euler, or

Navier Stokes flows for Re = 100 and Re = 500.

• Radar wave problem

Reconstruction of the original position of ellipses/ellipsoids using radar cross subsection with per-

fectly conducting material.

• Acoustics problem

Reconstruction of the original position of ellipses/ellipsoids using acoustic waves.

5.2 Computational domain

See the figure 5.1 for 2D case

5.1 Illustration of Computational Domain
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• The exterior geometry of the bounding box:

s1 = s3 = 40 height and width of the bounding box(aerodynamic reconstruction problem).

s1 = s3 = 20 height and width of the bounding box(radar wave/acoustics problem).

s2 = 80 length of the bounding box(aerodynamic reconstruction problem).

s2 = 30 length of the bounding box (radar wave/acoustics problem).

(x0, y0, z0) = (−30,−20,−20) front lower corner of the bounding box (aerodynamic reconstruction

problem).

(x0, y0, z0) = (−15,−10,−10) front lower corner of the bounding box (radar wave/acoustics prob-

lem).

• Position of ellipse/ellipsoid 1

l1 = 2.0 length of ellipse/ellipsoid 1.

h1 = w1 = 0.5 height and width of ellipse/ellipsoid 1.

(x1, y1, z1) = (−7,−0.5, 0) reference position of the ellipse/ellipsoid 1.

α1 = −3◦ reference angle of the ellipse/ellipsoid 1.

• Position of ellipse/ellipsoid 2

l2 = 10.0 length of ellipse/ellipsoid 2.

h2 = w2 = 1.0 height and width of ellipse/ellipsoid 2.

(x2, y2, z2) = (0, 0, 0) reference position of the ellipse/ellipsoid 2.

α2 = 0◦ reference angle of the ellipse/ellipsoid 2.

• Position of ellipse/ellipsoid 3

l3 = 3.5 length of ellipse/ellipsoid 3.

h3 = w3 = 0.5 height and width of ellipse/ellipsoid 3.

(x3, y3, z3) = (7.5,−0.5, 0) reference position of the ellipse/ellipsoid 3.

α3 = 3◦ reference angle of the ellipse/ellipsoid 3.

5.3 Modeling

• Aerodynamic reconstruction problem

Incompressible fluid(Navier-Stokes laminar flow)

Kinematic viscosity ν = 1/10 or ν = 1/50

Reynolds number Re = ν∞l2
ν , Re = 100, 500.

• Radar wave/acoustics problem

Density ρ = 1.
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Radar wave: f = 0.6GHz and λ = 0.5m

Acoustics wave: λ = 0.5m.

5.4 Boundary and initial conditions for computations

• Aerodynamic reconstruction problem

Upstream entrance: vx = cosα, vy = sinα

Angle of attack: α = 5◦

downstream exit: free boundary conditions

Ellipse/ellipsoid surface: no-slip condition.

• Radar wave/acoustics problem

Monostatic radar

Angle of radar illumination 0◦

Outer boundary: absorbing boundary condition at infinity(Enquist)

Ellipse surface: perfectly conducting material.

• Material Parameters

Fluid

• Optimization

Aerodynamic reconstruction problem: Reconstruction of the target pressure on the surface of the

ellipses.

Radar wave/acoustics problem: Recovery of the target radar cross subsection /scattering cross

subsection.

The target vector is x∗ = x1, y1, α1, x3, y3, α3 = −7,−0.5,−3.0◦, 7.5,−0.5, 36◦.

• Design parameters

– Position of ellipse 1:

−10 ≤ x1 ≤ −6.5

−1.5 ≤ y1 ≤ 0.0

– Clockwise angle of ellipse 1:

−10 ≤ α1 ≤ 0

– position of ellipse 3:

7.25 ≤ x3 ≤ 10.0

−1.5 ≤ y3 ≤ 0.0

– clockwise position of ellipse 3:

0.0 ≤ α3 ≤ 10.0

in addition, the ellipse/ellipsoids must not be overlapping.
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5.5 Aerodynamic reconstruction problem

minf = f1 + f2 + f3

where f and L2 error norm of the surface pressure:

f1 =
∫
r1

| p1 − p∗1 |2
f2 =

∫
r2

| p2 − p∗2 |2
f3 =

∫
r3

| p3 − p∗3 |2

where pi and p∗i the target pressure on the surface of the ellipse i.

5.6 Radar wave/Acoustics problem

min
∫
ζ
| u∞ − u∗

∞ |2 dζ

where ζ is the direction of the reflected wave, u∞ and u∗
∞ are the field patterns for the computed case

and the target respectively.

5.7 Results

• Target mesh and the mesh of the best solution in Paraview Compatible format.

• Target geometry compared to the best solution(list of boundary points coordinates)

• The optimized design variable values

• Aerodynamics Reconstruction Problem

Pressure coefficient of the target compared to the best solution(list of points)

Pressure and the velocity field of the target and the best solution in the Paraview compatible

format.

• Radar wave/Acoustics Problem

Radar cross subsection/scattering cross subsection of the best solution compared to the target(list

of values from 0◦ to 360◦)

Scatter field of the target and the best solution(imaginary and real component) in Paraview com-

patible format.

• For the tested algorithms the average convergence of the tested algorithms over 10 runs is required

(a table of increasing number of fitness evaluation on the first column, objective function values

on the second column).

• In addition, the following information is needed:

Mean final value
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Standard deviation of the final values

Minimum final value

Maximum final value

Average number of fitness calculations required.

5.8 Computation Results

• Assessment of error in the quality of interest (QoI) for radar wave problem.

• Inverse problem for Multiple Ellipse Configuration using Global Meta-model based on optimization.

• Recovery of positions in Navier-Stokes flow Re = 100 using SACPDE and Hooke-Jeeves pattern

search.

• Recovery of positions in Navier-Stokes flow Re = 500 using Hooke-Jeeves pattern search.

• Recovery of position in potential flow using GAs and pattern search.

• TA2 test case using Famosa.
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