
ANALYSIS OF A VISCOUS TWO-FIELD GRADIENT DAMAGE
MODEL

PART II: PENALIZATION LIMIT
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Abstract. The paper analyses the behaviour for penalty parameter tending to infinity of a
damage model which features two damage variables coupled through a penalty term. It turns out
that in the limit both damage variables coincide and satisfy a classical viscous damage model.
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1. Introduction. This paper is concerned with a two-field damage model in-
volving two different damage variables which are connected through a penalty term
in the stored energy functional. While the well-posedness of the model was investi-
gated in the companion paper, this work addresses the limit analysis for penalization
parameter approaching ∞.

The penalized damage model analyzed in the companion paper [17] features two dam-
age variables and describes the evolution in time of the local damage variable d in
an elastic body, when applying a time-dependent force �. The thereby induced dis-
placement is denoted by u, while the non-local damage variable is denoted by ϕ. The
mathematical model reads

(u(t), ϕ(t)) ∈ argmin
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)),

−∂dE(t,u(t), ϕ(t), d(t)) ∈ ∂Rδ(ḋ(t)), d(0) = d0 a.e. in Ω

⎫⎬⎭ (P)

for almost all t ∈ (0, T ). The stored energy E : [0, T ] × V × H1(Ω) × L2(Ω) → R is
given by

E(t,u, ϕ, d) := 1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈�(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22,

(1.1)
where α > 0 denotes the gradient regularization and β > 0 stands for the penalization
parameter. The viscous dissipation functional Rδ : L2(Ω) → [0,∞] is defined as

Rδ(η) :=

{
r
∫
Ω
η dx+ δ

2‖η‖22, if η ≥ 0 a.e. in Ω,

∞, otherwise,
(1.2)

where r > 0 stands for the fracture toughness of the material and δ > 0 is the viscosity
parameter.

In the present paper the viability of the penalty approach is established. This is
twofold. Firstly, it turns out that working with two damage variables coupled through
a penalty term makes sense from a mathematical point of view, since it turns out that
they both become equal in the limit. Secondly, the resulting one-field gradient damage
model falls into the category of classical partial damage models introduced in [7].
The limit behaviour β → ∞ of the solutions of (P) is studied by means of an equivalent
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reformulation of (P) in terms of an energy identity. The latter one plays an essential
role in the present work, as it not only ensures the convergence of the penalized
solutions, but it is also crucial for deriving the energy inequality which characterizes
the limit damage variable. In combination with well known convex analysis results,
this allows for deriving a one field gradient damage model. This features one damage
variable less, which is the limit of the sequence of (penalized) local as well as nonlocal
damage variables. Moreover, the new damage variable possesses more space regularity.
Nevertheless, the one field gradient damage model can be transformed into a classical
partial damage model analyzed in [13].

Let us put our work into perspective. Numerous damage models have been addressed
by many authors under different aspects. In [1–3, 6] various viscous damage mod-
els have been analyzed with regard to existence and regularity of solutions. The
concept of viscosity also plays an important role in the mathematical treatment of
rate-independent damage models, as the vanishing viscosity approach is a promi-
nent method to establish solutions for rate-independent problems. We only refer
to [5, 12–15, 19–21], and the references therein. An important tool in the context of
damage modeling is the energy inequality. This can take many forms, depending on
the properties of the energy- and dissipation functionals, see [18]. Therein an overview
of various notions of solutions for rate-independent damage models is given. We only
mention here the global energetic solutions and balanced viscosity (BV) solutions.
The energy inequality is a powerful tool when it comes to limit analysis, e.g. it allows
the construction of BV solutions for rate-independent damage models. This has been
demonstrated in [13] for a gradient damage model in the spirit of [7]. However, to the
best of our knowledge, a damage model containing two damage variables has never
been investigated so far with regard to a rigorous mathematical analysis, although
these models are frequently used for numerical simulations, cf. e.g. [16, 22–24, 26].
This concerns the existence and regularity of solutions, let alone the behavior of the
damage variables and the displacement field, as the penalty vanishes. The mathemat-
ical model (P) was inspired by the one presented in [4]. The latter one was slightly
modified because of mathematical reasons, by replacing the less regular variable, d,
by the more regular, ϕ, in the balance of momentum equation. As expected, the
deviation between (P) and the original model vanishes in the limit β → ∞. In [13]
and preprint, the existence of viscous solutions is obtained via time-discretization and
regularization, respectively. Our final result shows that the existence thereof may also
be obtained via penalization.

The paper is organized as follows. Section 2 collects the notations and standing
assumptions, as well as known results from companion paper [17] which are needed
in the actual paper. In Section 3 we derive an equivalent formulation of the evolution
in (P), namely the energy identity. Section 4 is devoted entirely to the limit analysis
β → ∞ of (P). This is done in two steps. We first prove that the variables in (P) are
bounded in suitable spaces, such that the existence of the limit variables is ensured.
We then pass to the limit in the elliptic system which characterizes the minimization
problem in (P), as well as in the energy identity. The latter one results in an energy
inequality, which describes the evolution of the limit damage variable. Based on this
results, Section 5 deals with deriving a one field gradient damage model in terms of
an evolutionary equation and addresses the unique solvability thereof. In Section 6
it is established that the one field gradient damage model is equivalent to a viscous
damage model analyzed in [13].
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2. Notation, Standing Assumptions, and Known Results. Throughout
the paper, C denotes a generic positive constant. If X and Y are two linear normed
spaces, the space of linear and bounded operators from X to Y is denoted by L(X,Y ).
The dual of a linear normed space X will be denoted by X∗. For the dual pairing
between X and X∗ we write 〈., .〉X and, if it is clear from the context, which dual
pairing is meant, we just write 〈., .〉. By ‖·‖p we denote the Lp(Ω)−norm for p ∈ [1,∞]
and by (·, ·)2 the L2(Ω)−scalar product. If X is compactly embedded in Y , we write
X ↪→↪→ Y . In the rest of the paper N ∈ {2, 3} denotes the spatial dimension. By
bold-face case letters we denote vector valued variables and vector valued spaces.

Definition 2.1. For p ∈ [1,∞] we define the following subspace of W 1,p(Ω):

W 1,p
D (Ω) := {v ∈ W 1,p(Ω) : v|ΓD

= 0},
where ΓD is a part of the boundary of the domain Ω, see Assumption 2.2 below. The
dual space of W 1,p′

D (Ω) is denoted by W−1,p
D (Ω), where p′ is the conjugate exponent

of p. If p = 2, we abbreviate V := W 1,2
D (Ω).

Before we turn to our assumptions on the data, we summarize the often used symbols
in Table 2.1 for convenience of the reader.

Table 2.1
Functionals, operators and variables

Symbol Meaning Definition
I Reduced energy functional Definition 3.1
Rδ Viscous dissipation functional (1.2)
u Displacement
ϕ Nonlocal damage
d Local damage
Ẽ Energy functional without penalty (??)
Ĩ Reduced energy functional without penalty Definition ??
R̃1 Dissipation functional after passing to the limit (5.10)
R̃δ Viscous dissipation functional after passing to the limit Definition 4.13

Let us now state our standing assumptions. We begin with the smoothness of the
computational domain.

Assumption 2.2. The domain Ω ⊂ R
N , N ∈ {2, 3}, is bounded with Lipschitz

boundary Γ. The boundary consists of two disjoint measurable parts ΓN and ΓD such
that Γ = ΓN ∪ ΓD. While ΓN is a relatively open subset, ΓD is a relatively closed
subset of Γ with positive measure.

In addition, the set Ω ∪ ΓN is regular in the sense of Gröger, cf. [9]. That is, for
every point x ∈ Γ, there exists an open neighborhood Ux ⊂ R

N of x and a bi-Lipschitz
map (a Lipschitz continuous and bijective map with Lipschitz continuous inverse)
Ψx : Ux → R

N such that Ψx(x) = 0 ∈ R
N and Ψx

(Ux ∩ (Ω ∪ ΓN )
)

equals one of the
following sets:

E1 :=
{
y ∈ R

N : |y| < 1, yN < 0
}
,

E2 :=
{
y ∈ R

N : |y| < 1, yN ≤ 0
}
,

E3 := {y ∈ E2 : yN < 0 or y1 > 0} .
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A detailed characterization of Gröger-regular sets in two and three spatial dimensions
is given in [10].

Assumption 2.3. The function g : R → [ε, 1] satisfies g ∈ C2(R) and g′, g′′ ∈ L∞(R)
with some ε > 0. With a little abuse of notation the Nemystkii-operators associated
with g and g′, considered with different domains and ranges, will be denoted by the
same symbol.

Assumption 2.4. The fourth-order tensor C ∈ L∞(Ω;L(RN×N
sym )) is symmetric and

uniformly coercive, i.e., there is a constant γC > 0 such that

C(x)σ : σ ≥ γC|σ|2 ∀σ ∈ R
N×N
sym and f.a.a. x ∈ Ω, (2.1)

where | · | denotes the Frobenius norm on R
N×N and (· : ·) the scalar product inducing

this norm.

Assumption 2.5. For the applied volume and boundary load we require

� ∈ C1([0, T ];W−1,p
D (Ω)),

where p > N is specified below, see Assumption 2.7.1 and Assumption 5.4.

Moreover, the initial damage is supposed to satisfy d0 ∈ L2(Ω).

Our last assumption concerns the balance of momentum associated with the energy
functional in (1.1). While the aforementioned assumptions are comparatively mild,
this condition is rather restrictive, at least in three spatial dimensions, see Remark
2.8 below. For its precise statement we need the following

Definition 2.6. For given ϕ ∈ L1(Ω) we define the linear form Aϕ : V → V ∗ as

〈Aϕu, v〉V :=

∫
Ω

g(ϕ)Cε(u) : ε(v) dx.

The operator Aϕ considered with different domains and ranges will be denoted by the
same symbol for the sake of convenience.

Assumption 2.7. For the rest of the paper we require the following:

1. There exists p > N such that, for all p ∈ [2, p] and all ϕ ∈ L1(Ω), the operator
Aϕ : W 1,p

D (Ω) → W−1,p
D (Ω) is continuously invertible. Moreover, there exists

a constant c > 0, independent of ϕ and p, such that

‖A−1
ϕ ‖L(W−1,p

D (Ω),W 1,p
D (Ω)) ≤ c

holds for all p ∈ [2, p] and all ϕ ∈ L1(Ω).
2. The penalization parameter β is sufficiently large, depending only on α, p,

and N .

Remark 2.8. The critical assumption is Assumption 2.7.1. If N = 2, then this con-
dition is automatically fulfilled, see [17, Lemma 3.2]. The situation chances however,
if one turns to N = 3. In this case this assumption can be guaranteed by imposing
additional and rather restrictive conditions on the data, in particular on the ellipticity
and boundedness constants associated with C and g, see [17, Remark 3.21] for more
details. However, as explained in [17, Remark 3.22], one could alternatively mod-
ify the energy functional in (1.1) by replacing ‖∇ϕ‖22 with the H3/2-seminorm. This
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would allow to drop Assumption 2.7.1 in the three dimensional case, too. However, we
chose not to work with the H3/2-seminorm, as the associated bilinear form is difficult
to realize in numerical computations.

As an immediate consequence of Assumption 2.7.1 and the regularity of � in Assump-
tion 2.5 one can introduce the following

Definition 2.9. We define the operator U : [0, T ]×H1(Ω) → W 1,p
D (Ω) by U(t, ϕ) :=

A−1
ϕ �(t). We will frequently consider U with different range and domain (w.r.t. the

second variable), but denote it by the same symbol.

Thanks to Assumption 2.7.1 there exists a constant c > 0, independent of t and ϕ,
such that

‖U(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω), (2.2)

which will be frequently used in the sequel.

In the rest of this section we recall some known results and definitions from the
companion paper [17] that will be used in the upcoming analysis.

Lemma 2.10 (Lipschitz continuity of U , [17, Proposition 3.7]). Let p > 2 and r ∈[
2p/(p− 2),∞]

be given. Then there exists L > 0 such that for all ϕ1, ϕ2 ∈ H1(Ω) ∩
Lr(Ω) and all t1, t2 ∈ [0, T ] it holds

‖U(t1, ϕ1)− U(t2, ϕ2)‖W 1,π
D (Ω) ≤ L(|t1 − t2|+ ‖ϕ1 − ϕ2‖r), (2.3)

where 1/π = 1/p+ 1/r.

Lemma 2.11 (Fréchet differentiability of U , [17, Proposition 5.6]). It holds U ∈
C1([0, T ]×H1(Ω);V ) and at all t ∈ [0, T ] and ϕ, δϕ ∈ H1(Ω) we have

∂tU(t, ϕ) = A−1
ϕ �̇(t) ∈ W 1,p

D (Ω), (2.4a)

Aϕ

(
∂ϕU(t, ϕ)(δϕ)

)
= div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ)) in V ∗, (2.4b)

where div : L2(Ω;Rn×n
sym ) → V ∗ denotes the distributional divergence. Moreover, there

exists a constant c > 0, independent of t and ϕ, such that

‖∂tU(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω). (2.5)

In order to state the Euler-Lagrange equations associated with the energy mini-
mization in (P) let us further define the mappings B : H1(Ω) → H1(Ω)∗ and
F : [0, T ]×H1(Ω) → H1(Ω)∗ by

〈Bϕ,ψ〉H1(Ω) :=

∫
Ω

α∇ϕ · ∇ψ + βϕψ dx, ϕ, ψ ∈ H1(Ω), (2.6)

〈F (t, ϕ), ψ〉H1(Ω) :=
1

2

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))ψ dx, ϕ, ψ ∈ H1(Ω). (2.7)

Note that F is well defined because of the Sobolev embedding H1(Ω) ∈ Ls(Ω) with
s = 6 for N = 3 and s < ∞ for N = 2 in combination with Assumption 2.7.1.

Lemma 2.12. The mapping F possesses the following properties:
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• [17, Eq. (3.30)] It is Lipschitzian in the following sense: For all t1, t2 ∈ [0, T ]
and all ϕ1, ϕ2, ψ ∈ H1(Ω) there holds

|〈F (t1, ϕ1)−F (t2, ϕ2), ψ〉H1(Ω)| ≤ C
(‖ϕ1−ϕ2‖ 2p

p−2
+ |t1− t2|

)‖ψ‖ 2p
p−2

, (2.8)

with a constant C > 0 independent of (ti, ϕi)i=1,2.
• [17, Lemma 5.9] It is continuously Fréchet differentiable from (0, T )×H1(Ω)

to H1(Ω)∗, and for all (t, ϕ) ∈ [0, T ] ×H1(Ω) and all (δt, δϕ) ∈ R ×H1(Ω)
we have

〈F ′(t, ϕ)(δt, δϕ), z〉H1(Ω) =
1

2

∫
Ω

g′′(ϕ)(δϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))z dx

+

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
z dx

(2.9)
for all z ∈ H1(Ω).

• [17, Eq. (5.28)] For its partial derivative w.r.t. ϕ there holds

|〈∂ϕF (t, ϕ)z, z〉H1(Ω)| ≤ k‖z‖22 + c̃(k)‖z‖2H1(Ω) (2.10)

for all z ∈ H1(Ω) and all k > 0, where c̃ : R+ → R
+ is a monotonically

decreasing function, which tends to 0 as k → ∞.

With the mappings B and F at hand we can characterize the solution to the energy
minimization in (P) as follows:

Lemma 2.13 (Energy minimizer, [17, Prop. 3.13, Thm. 3.18]). For every (t, d) ∈
[0, T ]× L2(Ω), the optimization problem

min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d)

admits a unique minimizer (u, ϕ) ∈ W 1,p
D (Ω) ×H1(Ω) characterized by u = U(t, ϕ)

and ϕ = Φ(t, d), where Φ : [0, T ] × L2(Ω) → H1(Ω) is defined by Φ(t, d) := (B +
F (t, ·))−1(βd).

Lemma 2.14 (Fréchet differentiability of Φ, [17, Prop. 5.12]). The solution operator
Φ is continuously Fréchet differentiable from (0, T )×L2(Ω) to H1(Ω). Moreover, for
all (t, d) ∈ [0, T ]×L2(Ω) and all (δt, δd) ∈ R×L2(Ω) its derivative solves the following
linearized equation

BΦ′(t, d)(δt, δd) + F ′(t, ϕ)
(
δt,Φ′(t, d)(δt, δd)

)
= βδd, (2.11)

where we use the abbreviation ϕ := Φ(t, d).

Finally we turn our attention to the differential inclusion in (P). First note that the
functional E is partially Fréchet differentiable w.r.t. d on [0, T ]×V ×H1(Ω)×L2(Ω),
and its partial derivative is given by

∂dE(t,u, ϕ, d) = β(d− ϕ). (2.12)

Therefore, in view Lemma 2.13, (P) reduces to the following evolutionary equation

− β
(
d(t)− Φ(t, d(t))

) ∈ ∂Rδ(ḋ(t)) ∀ t ∈ [0, T ], d(0) = d0. (2.13)
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As shown in [17, Lemma 3.23], this equation is equivalent to the following non-smooth
operator differential equation:

ḋ(t) =
1

δ
max{−β

(
d(t)− Φ(t, d(t))

)− r, 0} ∀ t ∈ [0, T ], d(0) = d0. (2.14)

This handy reformulation of (P) and (2.13), respectively, is a main advantage of the
penalty-type regularization of partial damage models and provides a useful starting
point for a numerical solution of (P), see hier ref???!!! We end this section by
recalling the main result of the companion paper:
Theorem 2.15 (Existence and uniqueness for the penalized damage model, [17, Thm.
5.13]). There exists a unique solution (u, ϕ, d) of the problem (P), satisfying u ∈
C1([0, T ];V ), ϕ ∈ C1([0, T ];H1(Ω)), d ∈ C1,1([0, T ];L2(Ω)) and the following system
of differential equations:

− div g(ϕ(t))ε(u(t)) = �(t) in W−1,p
D (Ω) (2.15a)

−αΔϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗ (2.15b)

ḋ(t)− 1

δ
max{−β(d(t)− ϕ(t))− r, 0} = 0, d(0) = d0. (2.15c)

for every t ∈ [0, T ].
Note that, thanks to the definition of B and F , the equations in (2.15a) and (2.15b) are
just equivalent to u(t) = U(t, ϕ(t)) and ϕ(t) = Φ(t, d(t)), respectively. Note further
that, thanks to the uniqueness of the solution, (2.15a)–(2.15c) is uniquely solvable,
too, and therefore equivalent to (P).

3. Energy Identity. As seen in Theorem 2.15, for a given β > 0 sufficiently
large, there exists a unique local damage variable, which we denote by dβ to indicate
its dependency on the parameter β. The other variables are uniquely determined by
dβ through ϕβ = Φ(·, dβ(·)) and uβ = U(·, ϕβ(·)). The purpose of this section is to
derive a characterization of the local damage dβ , which allows to find an estimate of
the form ‖dβ‖X ≤ C for all β > 0, where X is a suitable reflexive Banach space and
C > 0 is a constant independent of the penalty parameter β. Such an estimate will
then allow to pass to the limit in the penalized damage model as β → ∞, see Section
4 below. As seen in (2.13) and (2.14) above, there are various ways to describe the
evolution of the local damage. However, all these descriptions have the disadvantage
of containing the term β(dβ − ϕβ), which is not necessarily uniformly bounded w.r.t.
β in suitable spaces that allow a passage to the limit. Our aim is therefore to find
an alternative description of the evolution of the local damage, which only contains
expressions that are bounded w.r.t. β. Such a description is given by the energy
identity in Proposition 3.5 below.
For the rest of this section we drop the index β to shorten the notation. As already
indicated above, the displacement u and the nonlocal damage ϕ are uniquely deter-
mined by the local damage d so that it is reasonable to reduce the whole system to
the variable d only. For this purpose we define the following:
Definition 3.1. The reduced energy functional I : [0, T ]× L2(Ω) → R is given by

I(t, d) := E(t,U(t,Φ(t, d)),Φ(t, d), d).
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The reduced energy functional will be a key ingredient for deriving the energy identity.
On account of (1.1) and Definitions 2.6 and 2.9 it can be rewritten as

I(t, d) = 1

2
〈AΦ(t,d)

(U(t,Φ(t, d))),U(t,Φ(t, d))〉V − 〈�(t),U(t,Φ(t, d))〉V

+
α

2
‖∇Φ(t, d)‖22 +

β

2
‖Φ(t, d)− d‖22

= −1

2
〈�(t),U(t,Φ(t, d))〉V +

α

2
‖∇Φ(t, d)‖22 +

β

2
‖Φ(t, d)− d‖22. (3.1)

This reformulation of the reduced energy allows to show the following

Lemma 3.2 (Fréchet differentiability of I). It holds I ∈ C1([0, T ] × L2(Ω)) and, at
all (t, d) ∈ [0, T ]× L2(Ω), we have

∂tI(t, d) = −〈�̇(t),U(t,Φ(t, d))〉V , ∂dI(t, d) = β(d− Φ(t, d)). (3.2)

Proof. First note that the mapping

f : [0, T ]× L2(Ω) → R, f(t, d) := 〈�(t),U(t,Φ(t, d))〉V
can be seen as product of the functions � and [0, T ]×L2(Ω) � (t, d) �→ U(t,Φ(t, d)) ∈
V . The latter one is continuously Fréchet differentiable, thanks to Lemmas 2.11 and
2.14. Together with Assumption 2.5 the product rule yields f ∈ C1([0, T ] × L2(Ω)).
Thus, thanks to Lemma 2.14, we deduce from (3.1) that I ∈ C1([0, T ]× L2(Ω)) and,
for given (t, d) ∈ [0, T ]× L2(Ω) and (δt, δd) ∈ R× L2(Ω), it holds

I ′(t, d)(δt, δd) = −1

2
〈�̇(t)δt,U(t,Φ(t, d))〉V − 1

2
〈�(t),U ′(t,Φ(t, d))(δt, δϕ)〉V

+ α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2,
(3.3)

where we abbreviate δϕ = Φ′(t, d)(δt, δd). To derive the formulas for the partial
derivatives, first observe that (2.4a) tested with U(t, ϕ), Definitions 2.6 and 2.9, and
the symmetry of C imply

〈�̇(t),U(t,Φ(t, d))〉V = 〈AΦ(t,d)∂tU(t,Φ(t, d)),U(t,Φ(t, d))〉V
= 〈�(t), ∂tU(t,Φ(t, d))〉V .

(3.4)

If one tests (2.4b) tested with U(t,Φ(t, d)) ∈ V , one further obtains

− 1

2
〈�(t), ∂ϕU(t,Φ(t, d))δϕ〉V + α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2

= −1

2
〈div (g′(Φ(t, d))(δϕ)Cε(U(t,Φ(t, d))),U(t,Φ(t, d))〉V

+ α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2

= 〈F (
t,Φ(t, d)

)
+BΦ(t, d), δϕ〉H1(Ω) − β(d, δϕ)2 + β(d− Φ(t, d), δd)2

= β(d− Φ(t, d), δd)2 ∀ δd ∈ L2(Ω),

(3.5)

where div : L2(Ω;RN×N
sym ) → V ∗ denotes the distributional divergence. Note that

the last two equalities follow from (2.6), (2.7), and the definition of Φ, respectively.
Inserting (3.4) and (3.5) in (3.3) leads to (3.2).
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As an immediate consequence of Lemma 3.2 and the chain rule, one obtains the
following

Corollary 3.3 (Total derivative of I(·, d(·))). Let d ∈ C1([0, T ], L2(Ω)) be given.
Then the map [0, T ] � t �→ I(t, d(t)) is continuously differentiable with

d

dt
I(t, d(t)) = ∂tI(t, d(t)) + (∂dI(t, d(t)), ḋ(t))2 ∀ t ∈ [0, T ].

With the help of the reduced energy I we will deduce the energy identity from the
evolutionary equation in (2.13). To this end note first that, due to the second equation
in (3.2), the evolutionary equation (2.13) or equivalently (2.14) can also be written as

− ∂dI(t, d(t)) ∈ ∂Rδ(ḋ(t)) ∀ t ∈ [0, T ], d(0) = d0. (3.6)

Since Rδ is proper and convex, this is in turn equivalent to

Rδ(ḋ(t))+R∗
δ

(−∂dI(t, d(t))
)
= (−∂dI(t, d(t)), ḋ(t))2 ∀ t ∈ [0, T ], d(0) = d0, (3.7)

which will be the starting point for proving the energy identity in Proposition 3.5
below. To summarize, we obtained the following four alternative, but yet equivalent
formulations:

• the subdifferential formulations in (2.13) and (3.6), respectively,
• the nonsmooth operator differential equation in (2.14),
• Young’s equation in (3.7).

In all what follows, we refer to these equivalent formulations simply as penalized dam-
age evolution. Note that, since (2.13) and (2.14), respectively, are uniquely solvable
by Theorem 2.15, the same holds for (3.6) and (3.7).

Lemma 3.4. If d satisfies the penalized damage evolution, then, for every t ∈ [0, T ],
there holds R∗

δ

(− ∂dI(t, d(t))
)
= δ

2‖ḋ(t)‖22.
Proof. Let d satisfy the penalized damage evolution. Then it follows from (3.6) that
∂Rδ(ḋ(t)) �= ∅ so that ḋ ≥ 0. Hence, inserting (1.2) and (3.2) in (3.7) leads to

R∗
δ

(−∂dI(t, d(t))
)
= (−β(d(t)−ϕ(t)), ḋ(t))2−r‖ḋ(t)‖1− δ

2
‖ḋ(t)‖22 ∀ t ∈ [0, T ], (3.8)

where we again abbreviated ϕ = Φ(·, d(·)). From the equivalent formulation (2.14)
multiplied with ḋ(t) and integrated over Ω, we deduce that δ‖ḋ(t)‖22 = (−β(d(t) −
ϕ(t)), ḋ(t))2 − r‖ḋ(t)‖1. Inserting this into (3.8) gives the assertion.

Proposition 3.5 (The energy identity). The unique solution d ∈ C1([0, T ];L2(Ω))
of the penalized damage evolution fulfills for all 0 ≤ s ≤ t ≤ T the energy identity∫ t

s

Rδ(ḋ(τ))dτ +

∫ t

s

R∗
δ

(− ∂dI(τ, d(τ))
)
dτ + I(t, d(t))

= I(s, d(s)) +
∫ t

s

∂tI(τ, d(τ))dτ.
(3.9)

Proof. Corollary 3.3 combined with (3.7) yields at all τ ∈ [0, T ] the identity

Rδ(ḋ(τ)) +R∗
δ

(− ∂dI(τ, d(τ))
)
= ∂tI(τ, d(τ))− d

dt
I(τ, d(τ)). (3.10)
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Recall that ḋ ≥ 0 as a result of (2.14). This implies in view of (1.2) and ḋ ∈
C([0, T ], L2(Ω)) that the map [0, T ] � τ �→ Rδ(ḋ(τ)) ∈ R is continuous. From Lemma
3.4 and Corollary 3.3 we deduce the continuity w.r.t. time of all terms in (3.10) and
therefore, the integrability thereof. Integrating (3.10) w.r.t. time then yields (3.9).

Remark 3.6. One can show that the reverse statement of Proposition 3.5 is also
true such that the energy identity is actually just another equivalent formulation of
the penalized damage evolution. To do so, one combines the energy identity (3.9) with
Corollary 3.3 and Young’s inequality and in this way obtains (3.7), which was one
of the equivalent formulations of the penalized damage evolution. However, for the
upcoming analysis we only need the implication stated in Proposition 3.5 so that we
do not go into more details.

4. Limit Analysis. This section proves the viability of the penalty approach in
the sense that one can pass to the limit β → ∞ and in this way obtain a one-field
damage model. In Section 5 below, we will see that the limit system is equivalent to
a classical viscous partial damage model.

In the first part of this section we focus on finding bounds independent of β in suitable
spaces for the local and nonlocal damage, respectively. Note that, for the displace-
ment, such a bound is already given in (2.2). This allows us to find weakly convergent
subsequences. The limiting behaviour thereof, as β → ∞, is studied in the second
and third part of this section.

4.1. Uniform Boundedness. The starting point for the derivation of bounds
independent of β is the energy identity in Proposition 3.5. For this purpose we require
the following additional assumption, which is rather self-evident in many practical
applications:

Assumption 4.1. From now on we assume that at the beginning of the process the
body is completely sound, i.e. d0 ≡ 0, and that there is no load acting upon the body
at initial time, i.e. �(0) ≡ 0.

As a first consequence of Assumption 4.1, we obtain in view of (2.15) that

u(0) = ϕ(0) = ḋ(0) ≡ 0. (4.1)

Lemma 4.2 (Boundedness of the local damage). Let Assumption 4.1 hold. Then
there exists a constant C > 0, independent of β, such that ‖d‖H1(0,T ;L2(Ω)) ≤ C.

Proof. The result follows mainly from the energy identity in Proposition 3.5. In order
to see this, set s := 0 and t = T in (3.9) and use (1.2), Lemma 3.4, (3.1), and (3.2),
as well as Assumption 4.1, and (4.1) to obtain

δ

∫ T

0

‖ḋ(τ)‖22 dτ =
1

2
〈�(T ),u(T )〉V +

∫ T

0

〈−�̇(τ),u(τ)〉V dτ

−
(
r

∫ T

0

‖ḋ(τ)‖1 dτ +
α

2
‖∇ϕ(T )‖22 +

β

2
‖ϕ(T )− d(T )‖22

)
≤

∫ T

0

‖�̇(τ)‖V ∗‖u(τ)‖V dτ +
1

2
‖�(T )‖V ∗‖u(T )‖V ≤ C

with C > 0 independent of β. The assertion then follows from d0 = 0 and Poincaré-
Friedrich’s inequality.
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Next let us turn to the uniform boundedness of ϕ. We will establish the existence of
a constant C independent of β such that ‖ϕ‖H1(0,T ;H1(Ω)) ≤ C. In view of (4.1) and
Poincaré-Friedrich’s inequality, we only need to show that there is C > 0 independent
of β such that

‖ϕ̇‖2L2(0,T ;H1(Ω)) =

∫ T

0

‖ϕ̇(τ)‖22 dτ +

∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ C. (4.2)

The starting point herefor is the equation characterizing the time derivative of the
nonlocal damage. In view of Lemmata 2.12 and 2.14 this equation is given by

Bϕ̇(t) + ∂tF (t, ϕ(t)) + ∂ϕF (t, ϕ(t))ϕ̇(t) = βḋ(t) in H1(Ω)∗. (4.3)

Testing (4.3) with ϕ̇(t), integrating over [0, T ], and using (2.6) lead to

∫ T

0

α‖∇ϕ̇(τ)‖22 dτ = β

=: I1︷ ︸︸ ︷∫ T

0

(ḋ(τ)− ϕ̇(τ), ϕ̇(τ))2 dτ

−
∫ T

0

〈∂tF (t, ϕ(t)) + ∂ϕF (t, ϕ(t))ϕ̇(t), ϕ̇(t)〉 dτ︸ ︷︷ ︸
=: I2

.

(4.4)

Lemma 4.3. Under Assumption 4.1 it holds I1 ≤ 0.
Proof. From Theorem 2.15 we recall that ḋ and ϕ are Lipschitz continuous, and
therefore ḋ ∈ W 1,∞(0, T ;L2(Ω)). Hence, by [25, Theorem 3.1.40], the mapping f :
[0, T ] → L2(Ω) defined through

f(t) := δḋ(t) + β(d(t)− ϕ(t)) + r (4.5)

is almost everywhere differentiable. Let now t ∈ (0, T ) be arbitrary, but fixed and
h > 0 sufficiently small such that t+h ∈ (0, T ). From (2.14) it follows that ḋ(τ, x) ≥ 0,
f(τ, x) ≥ 0, and f(τ, x) ḋ(τ, x) = 0 for all τ ∈ [0, T ] and almost all x ∈ Ω. Thus we
arrive at (f(t± h)− f(t)

h
, ḋ(t)

)
2
≥ 0

Passing to the limit h ↘ 0 and keeping in mind the fact that f is almost every-
where differentiable implies (ḟ(t), ḋ(t))2 = 0 f.a.a. t ∈ (0, T ). Thanks to (4.5) this is
equivalent to δ(d̈(t), ḋ(t))2 + (β(ḋ(t)− ϕ̇(t)), ḋ(t))2 = 0, which can be continued as

δ

2

d

dt
‖ḋ(t)‖22 + β‖ḋ(t)− ϕ̇(t))‖22 + β(ḋ(t)− ϕ̇(t), ϕ̇(t))2 = 0 (4.6)

for almost all t ∈ (0, T ). Due to Theorem 2.15, ϕ̇ and ḋ are both continuous with
values in L2(Ω) so that we can integrate (4.6) over [0, T ]. This finally yields

δ

2
‖ḋ(T )‖22 −

δ

2
‖ḋ(0)‖22 + β

∫ T

0

‖ḋ(τ)− ϕ̇(τ))‖22 dτ + β

∫ T

0

(ḋ(τ)− ϕ̇(τ), ϕ̇(τ))2 dτ = 0,

which on account of (4.1) gives the assertion.
Lemma 4.4. For all k > 0 it holds

|I2| ≤ ĉ(k)

∫ T

0

‖ϕ̇(τ)‖2H1(Ω) dτ + k

∫ T

0

‖ϕ̇(τ)‖22 dτ + C k,
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where ĉ : R+ → R
+ is a monotonically decreasing function, independent of β, which

tends to 0 as k → ∞ and C > 0 is a constant independent of β.

Proof. Let t ∈ [0, T ] be arbitrary, but fixed. From (2.9) we deduce

〈∂tF (t, ϕ(t)), ϕ̇(t)〉 = −〈div (g′(ϕ(t))ϕ̇(t)Cε(u(t))), ∂tU(t, ϕ(t))〉V .
Due to p > N we have H1(Ω) ↪→ L

2p
p−2 (Ω) and thus, Hölder’s inequality with (p −

2)/2p+ 1/p+ 1/2 = 1 in combination with (2.2) and (2.5) yields∣∣〈∂tF (t, ϕ(t)), ϕ̇(t)〉H1(Ω)

∣∣ ≤ ‖g′(ϕ(t))‖∞‖ϕ̇(t)‖ 2p
p−2

‖u(t)‖W 1,p
D (Ω)‖∂tU(t, ϕ(t))‖V

≤ C‖ϕ̇(t)‖H1(Ω),

with C > 0 independent of β. On account of the generalized Young inequality, this
can be continued as follows∣∣〈∂tF (t, ϕ(t)), ϕ̇(t)〉H1(Ω)

∣∣ ≤ 1

4k
‖ϕ̇(t)‖2H1(Ω) + Ck ∀ k > 0. (4.7)

Together with (2.10) and the definition of I2 in (4.4), this gives the assertion with
ĉ(k) = 1

4k + c̃(k) so that ĉ is indeed independent of β, monotonically decreasing and
tends to 0 as k → ∞.

Lemma 4.5 (Boundedness of the gradient). Let Assumption 4.1 hold. Then there
exist constants C1, C2 > 0, independent of β, such that∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ C1

∫ T

0

‖ϕ̇(τ)‖22 dτ + C2.

Proof. Applying Lemmata 4.3 and 4.4 to the right hand side in (4.4) yields

(α− ĉ(k))

∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ (ĉ(k) + k)

∫ T

0

‖ϕ̇(τ)‖22 dτ + C k

for all k > 0. Since ĉ tends to zero as k → ∞, there is a K > 0 such that ĉ(K) < α
holds. Choosing k = K thus yields the assertion. Note that K does not depend on
β, since ĉ is independent of β.

Lemma 4.6 (Boundedness of the L2-component). Let Assumption 4.1 hold. Then,
for β > 0 sufficiently large, there holds ‖ϕ̇‖L2(0,T ;L2(Ω)) ≤ C with a constant C > 0
independent of β.

Proof. From (4.4) and Lemma 4.3 we deduce∫ T

0

‖ϕ̇(τ)‖22 dτ ≤
∫ T

0

(ḋ(τ), ϕ̇(τ))2 dτ − 1

β
I2 + I1 − α

β

∫ T

0

‖∇ϕ(τ)‖22 dτ

≤
∫ T

0

(ḋ(τ), ϕ̇(τ))2 dτ − 1

β
I2.

(4.8)

Young inequality implies for the first term on the right hand side in (4.8) that∫ T

0

(ḋ(τ), ϕ̇(τ))2 dτ ≤ 1

2

∫ T

0

‖ḋ(τ)‖22 dτ +
1

2

∫ T

0

‖ϕ̇(τ)‖22 dτ. (4.9)
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In order to estimate the second term on the right hand side in (4.8), we apply Lemma
4.4 for some fixed k > 0, which thanks to Lemma 4.5 gives

1

β
|I2| ≤ C1

β

∫ T

0

‖ϕ̇(τ)‖22 dτ +
C2

β
(4.10)

with constants C1 and C2 independent of β on account of Lemmata 4.4 and 4.5.
Inserting (4.9) and (4.10) in (4.8) then implies∫ T

0

‖ϕ̇(τ)‖22 dτ ≤ 1

2

∫ T

0

‖ḋ(τ)‖22 dτ +
(1
2
+

C1

β

)∫ T

0

‖ϕ̇(τ)‖22 dτ +
C2

β
. (4.11)

Now, for β sufficiently large such that C1/β < 1/2, the assertion follows from Lemma
4.2.
As a consequence of Lemmata 4.5 and 4.6 and Poincaré-Friedrich’s inequality together
with (4.1) we can now state the main result of this section:
Corollary 4.7 (Boundedness of the nonlocal damage). Under Assumption 4.1 there
exists a β0 > 0 and a constant C > 0 such that ‖ϕ‖H1(0,T ;H1(Ω)) ≤ C for all β ≥ β0.

4.2. Passing to the Limit in the Elliptic System. We start our limit analysis
with the elliptic system in (2.15a) and (2.15b). In order to emphasize the dependency
on the penalty parameter, we do not longer suppress the index β and denote the
unique solution of (P) and (2.15a)–(2.15c), respectively, by (uβ , ϕβ , dβ).
Proposition 4.8 (Passing to the limit in (2.15a)). Let Assumption 4.1 hold. Then,
for every sequence βn → ∞, there exist a (not relabeled) subsequence {ϕβn

}n∈N such
that

ϕβn
⇀ ϕ in H1(0, T ;H1(Ω)), (4.12)

uβn
= U(·, ϕβn

(·)) → U(·, ϕ(·)) =: u in C([0, T ];V ) (4.13)

as n → ∞.
Proof. Since H1(0, T ;H1(Ω)) is a reflexive Banach space, Corollary 4.7 implies the
existence of a (not relabeled) subsequence of {ϕβn}n∈N such that (4.12) holds.
To prove the second assertion, we apply Lemma 2.10 with π = 2. Then the number
r in Lemma 2.10 is given by r = 2p/(p − 2) and (2.3) implies that the mapping
Uc : C([0, T ];Lr(Ω) � ϕ �→ U(·, ϕ(·)) ∈ C([0, T ];V ) is Lipschitz continuous with
constant L > 0. Note that L is independent of β, since β does not appear in the
elliptic equation (2.15a) associated with U . Now, since p > 2 by Assumption 2.7.1, the
embedding H1(Ω) ↪→↪→ Lr(Ω) is compact, which implies that H1(0, T ;H1(Ω)) ↪→↪→
C([0, T ];Lr(Ω)) is a compact as well, cf. [25, Corollary 3.1.42]. Consequently (4.12)
leads to ϕβn

→ ϕ in C([0, T ];Lr(Ω)) and the Lipschitz continuity of Uc then gives
(4.13).
For the rest of this section we denote by {βn}n∈N a fixed sequence such that {ϕβn

}
converges weakly in H1(0, T ;H1(Ω)) and by ϕ the limit of this particular sequence.
Proposition 4.8 guarantees the existence of such a sequence. Notice however that
(at this point) ϕ depends on the chosen subsequence. Nevertheless, as we will see in
Proposition 5.7 below, under a (rather restrictive) regularity condition on the elliptic
operator Aϕ, the weak limit is unique so that the whole sequence converges weakly.
Proposition 4.9 (Passing to the limit in (2.15b)). Let Assumption 4.1 hold and
let {βn}n∈N be the subsequence from Proposition 4.8 and ϕ the corresponding limit.
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Then there holds

dβn
⇀ ϕ in H1(0, T ;L2(Ω)) as n → ∞,

which implies in particular that both damage variables coincide in the limit.

Proof. First of all, Lemma 4.2 yields the existence of a subsequence {βnk
}k∈N so that

dβnk
⇀ d in H1(0, T ;L2(Ω)) as k → ∞. (4.14)

Now, let t ∈ [0, T ] and ψ ∈ H1(Ω) be arbitrary, but fixed. Testing (2.15b) with ψ
gives the following estimate, where we use Corollary 4.7, the boundedness of g′ from
Assumption 2.3, and (2.2):∫

Ω

(
dβn(t)− ϕβn(t)

)
ψ dx

≤ 1

βn

(
α‖∇ϕβn

(t)‖2 + ‖g′(ϕβn
(t))‖∞‖Cε(uβn

(t)) : ε(uβn
(t))‖ p

2

)‖ψ‖H1(Ω)

≤ C

βn
‖ψ‖H1(Ω) → 0 as n → ∞.

(4.15)

Note that H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)), which yields the boundedness of
‖∇ϕβn

(t)‖2 uniformly in t. Of course the above estimate also holds for the sub-
sequence {βnk

}k∈N and hence, (4.14) and the convergence of {ϕn} by assumption
imply ∫

Ω

(d(t)− ϕ(t))ψ dx ≤ 0,

and, since t and ψ were arbitrary, this gives in turn d(t) = ϕ(t) for all t ∈ [0, T ].
Hence, we obtain dβnk

⇀ ϕ in H1(0, T ;L2(Ω)) as k → ∞. Thus the weak limit is
unique and a well known argument implies the convergence of the whole sequence
{dβn

} to ϕ.

4.3. Passing to the Limit in the Energy Identity. We no turn our attention
to the passage to the limit in (2.15b). However, as already indicated at the beginning
of Section 3, the term β(d− ϕ) involved in (2.15b) is not bounded in suitable spaces
that allow a passage to the limit. Passing to the limit therein will result in an energy
inequality, which turns out to be equivalent to an evolutionary equation as shown in
Section 5.

We begin by introducing the energy and dissipation functionals that will arise after
passing to the limit. The energy without penalty term reads as follows

Definition 4.10 (Energy functionals without penalty). We define the energy func-
tional without penalty term by

Ẽ : [0, T ]× V ×H1(Ω) → R,

Ẽ(t,u, ϕ) := 1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈�(t),u〉V +
α

2
‖∇ϕ‖22.

The reduced energy functional without penalty is given by

Ĩ : [0, T ]×H1(Ω) → R, Ĩ(t, ϕ) := Ẽ(t,U(t, ϕ), ϕ).
14



Remark 4.11. Since the expressions in the definition of Ẽ involving the displacement
are not affected by the penalty term, it can be shown completely analogously to [17,
Proposition 3.4] that, for a given pair (t, ϕ) ∈ [0, T ]×H1(Ω), u solves

min
u∈V

Ẽ(t,u, ϕ),

iff u = U(t, ϕ) with U as defined in Definition 2.9. As a consequence we obtain
Ĩ(t, ϕ) = minu∈V Ẽ(t,u, ϕ).
Completely analogous to (3.1), the definitions of Ẽ and U allow to rewrite the reduced
energy functional without penalty as

Ĩ(t, ϕ) = −1

2
〈�(t),U(t, ϕ)〉V +

α

2
‖∇ϕ‖22. (4.16)

Lemma 4.12 (Fréchet differentiability of Ĩ). It holds Ĩ ∈ C1([0, T ]×H1(Ω)) and its
partial derivatives read

∂tĨ(t, ϕ) = −〈�̇(t),U(t, ϕ)〉V , ∂ϕĨ(t, ϕ) = −α�ϕ+ F (t, ϕ), (4.17)

where � : H1(Ω) → H1(Ω)∗ denotes the distributional Laplace operator.
Proof. The proof is completely along the lines of the proof of Lemma 3.2 so that we
shorten the depiction. By applying the product rule to (4.16), one obtains that I is
indeed continuously Fréchet-differentiable with

I ′(t, ϕ)(δt, δϕ) = −1

2
〈�̇(t)δt,U(t, ϕ)〉V − 1

2
〈�(t),U ′(t, ϕ)(δt, δϕ)〉V + α(∇ϕ,∇δϕ)2.

Similarly to (3.4) and (3.5), the first to addends can be reformulated by using (2.4a),
the symmetry of C, (2.4b), and the definition of F to obtain

1

2
〈�̇(t)δt,U(t, ϕ)〉V +

1

2
〈�(t),U ′(t, ϕ)(δt, δϕ)〉V = 〈�̇(t)δt,U(t, ϕ)〉V −〈F (t, ϕ), δϕ〉H1(Ω),

which completes the proof.
Next we introduce the viscous dissipation functional corresponding to the situation
without penalty:
Definition 4.13 (Viscous dissipation functional without penalty). We define the
functional R̃δ by

R̃δ : H1(Ω) → [0,∞], R̃δ(η) :=

{
r
∫
Ω
η dx+ δ

2‖η‖22 if η ≥ 0 a.e. in Ω,

∞ otherwise.

Note that R̃δ coincides with Rδ from (1.2) apart from its domain which is now H1(Ω)
instead of L2(Ω).
In order to pass to the limit in (3.9) we consider a sequence βn → ∞ such that

ϕβn ⇀ ϕ in H1(0, T ;H1(Ω)), (4.18)

dβn
⇀ ϕ in H1(0, T ;L2(Ω)), (4.19)

uβn
→ U(·, ϕ(·)) in C([0, T ];V ). (4.20)
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Recall that such a sequence exists according to Propositions 4.8 and 4.9.

Lemma 4.14. Under Assumption 4.1 it holds for all t ∈ [0, T ] that∫ t

0

R̃δ(ϕ̇(τ)) dτ ≤ lim inf
n→∞

∫ t

0

Rδ(ḋβn
(τ)) dτ.

Proof. Let t ∈ (0, T ) be arbitrary, but fixed. From (4.19) it follows that

ḋβn
⇀ ϕ̇ in L2(0, t;L2(Ω)) (4.21)

so that ḋβn
≥ 0 a.e. in Ω × (0, t), see (2.15c), implies ϕ̇ ≥ 0 a.e. in Ω × (0, t) by

the weak closedness of the set of non-negative functions in L2(0, t;L2(Ω)). Thus
Cavalieri’s principle implies∫ t

0

R̃δ(ϕ̇(τ)) dτ = r ‖ϕ̇‖L1(0,t;L1(Ω)) +
δ

2
‖ϕ̇‖2L2(0,t;L2(Ω))

and the same obviously holds for Rδ(ḋβn
(τ)), cf. (1.2). The result then follows from

the weak lower semicontinuity of (squared) norms.

Lemma 4.15. Let Assumption 4.1 hold. Then for all t ∈ [0, T ] we have

∂dI(t, dβn
(t)) ⇀ ∂ϕĨ(t, ϕ(t)) in H1(Ω)∗ as n → ∞.

Proof. Let t ∈ [0, T ] be arbitrary, but fixed and set again r = 2p/(p − 2). As
explained at the end of the proof of Proposition 4.8, Assumption 2.7.1 implies the
compact embedding H1(0, T ;H1(Ω)) ↪→↪→ C([0, T ];Lr(Ω)) so that (4.18) results in

ϕβn(t) → ϕ(t) in Lr(Ω) for n → ∞. (4.22)

Furthermore, since H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)), one finds for an arbitrary,
but fixed ω ∈ L2(Ω;Rd) that the functional

H1(0, T ;H1(Ω)) � v �→
∫
Ω

ω · ∇v(t) dx ∈ R

is linear and continuous so that (4.18) implies

∇ϕβn(t) ⇀ ∇ϕ(t) in L2(Ω) for n → ∞. (4.23)

From (3.2) and (2.15b) we moreover deduce

∂dI(t, dβn
(t)) = βn(dβn

(t)− ϕβn
(t)) = −α�ϕβn

(t) + F (t, ϕβn
).

Together with (4.17) and (2.8) this yields for every v ∈ H1(Ω) that

|〈∂dI(t, dβn
(t))− ∂ϕĨ(t, ϕ(t)), v〉H1(Ω)|

≤ α|(∇ϕβn
(t)−∇ϕ(t),∇v)2|+ |〈F (t, ϕβn

)− F (t, ϕ), v〉|
≤ α|(∇ϕβn

(t)−∇ϕ(t),∇v)2|+ C ‖ϕβn
(t)− ϕ(t)‖r‖v‖r.
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The result then follows from (4.22), (4.23), and H1(Ω) ↪→ Lr(Ω) by Assumption 2.7.1.

Lemma 4.16. Under Assumption 4.1 it holds for all t ∈ [0, T ]∫ t

0

R̃∗
δ

(− ∂ϕĨ(τ, ϕ(τ))
)
dτ ≤ lim inf

n→∞

∫ t

0

R∗
δ(−∂dI(τ, dβn

(τ))) dτ.

Proof. Again, let t ∈ [0, T ] by arbitrary, but fixed. By definition of the Fenchel-
conjugate, it holds for any ξ ∈ L2(Ω) that

R̃∗
δ(ξ) = sup

v∈H1(Ω)

(
(ξ, v)2 − R̃δ(v)

) ≤ sup
v∈L2(Ω)

(
(ξ, v)2 −Rδ(v)

)
= R∗

δ(ξ). (4.24)

Notice that we used in the above estimate that Rδ and R̃δ are defined with different
domains, see (1.2) and Definition 4.13. Further, R̃∗

δ : H1(Ω)∗ → (−∞,∞] is convex
and lower semicontinuous and thus weakly lower semicontinuous, which thanks to
Lemma 4.15 leads to

R̃∗
δ

(− ∂ϕĨ(τ, ϕ(τ))
) ≤ lim inf

n→∞ R̃∗
δ

(− ∂dI(τ, dβn
(τ))

) ∀ τ ∈ [0, t].

By setting ξ := −∂dI(τ, dβn(τ)) ∈ L2(Ω), see (3.2), in (4.24), the above estimate can
be continued as

R̃∗
δ

(− ∂ϕĨ(τ, ϕ(τ))
) ≤ lim inf

n→∞ R∗
δ

(− ∂dI(τ, dβn
(τ))

)
= lim inf

n→∞
δ

2
‖ḋβn(τ)‖22 (4.25)

for all τ ∈ [0, t], where the last equation follows from Lemma 3.4. Applying Fatou’s
lemma to the right hand side gives∫ t

0

lim inf
n→∞ R∗

δ

(− ∂dI(τ, dβn(τ))
)
dτ ≤ lim inf

n→∞

∫ t

0

R∗
δ

(− ∂dI(τ, dβn(τ))
)
dτ. (4.26)

Furthermore, arguing analogously to the derivation of (4.23), one sees that (4.19)
implies dβn(τ) ⇀ ϕ(τ) in L2(Ω) for every τ ∈ [0, T ]. Thus (4.25) shows that R̃∗

δ

( −
∂ϕĨ(τ, ϕ(τ))

)
is finite for every τ . In addition, due to (4.17) and H1(0, T ;H1(Ω)) ↪→

C([0, T ];H1(Ω)), the map [0, t] � τ �→ ∂ϕĨ(τ, ϕ(τ)) ∈ H1(Ω)∗ is continuous. Since
R̃∗

δ is lower semicontinuous, it thus follows that the mapping

[0, t] � τ �→ R̃∗
δ(−∂ϕĨ(τ, ϕ(τ))) ∈ R

is lower semicontinuous as well and therefore, measurable. Now we can integrate
(4.25) over (0, t), which combined with (4.26) finally gives the assertion.

Proposition 4.17 (The energy inequality without penalty). Let Assumption 4.1
hold. Then the limit function ϕ ∈ H1(0, T ;H1(Ω)) fulfills for all t ∈ [0, T ] the estimate∫ t

0

R̃δ(ϕ̇(τ)) dτ +

∫ t

0

R̃∗
δ

(− ∂ϕĨ(τ, ϕ(τ))
)
dτ + Ĩ(t, ϕ(t))

≤ Ĩ(0, ϕ(0)) +
∫ t

0

∂tĨ(τ, ϕ(τ)) dτ.
(4.27)
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Proof. Let t ∈ [0, T ] be arbitrary, but fixed. Setting s := 0 in (3.9) yields∫ t

0

Rδ(ḋβn
(τ)) dτ +

∫ t

0

R∗
δ

(− ∂dI(τ, dβn
(τ))

)
dτ + I(t, dβn

(t))

= I(0, dβn
(0)) +

∫ t

0

∂tI
(
τ, dβn

(τ))
)
dτ ∀n ∈ N.

(4.28)

In view of Lemmas 4.14 and 4.16 we only need to discuss the last three terms in the
above equation. To this end, we combine (3.1) and (4.16) with (4.20), (4.23), and the
weakly lower semicontinuity of ‖ · ‖22, which gives

Ĩ(t, ϕ(t)) = −1

2
〈�(t),U(t, ϕ(t))〉V +

α

2
‖∇ϕ(t)‖22

≤ lim inf
n→∞

(
− 1

2
〈�(t),uβn

(t)〉V +
α

2
‖∇ϕβn

(t)‖22 +
βn

2
‖ϕβn

(t)− dβn
(t)‖22︸ ︷︷ ︸

≥0

)
= lim inf

n→∞ I(t, dβn(t)),

i.e., the desired convergence of the last term on the left hand side of (4.28). It remains
to discuss the right hand side in (4.28). Thanks to Assumption 4.1 and (4.1) the initial
value just vanishes, i.e.,

I(0, dβn(0)) = 0 ∀n ∈ N, (4.29)

and, in light of (4.16), �(0) = 0 by Assumption 4.1, and the pointwise convergence in
(4.23), which gives ∇ϕ(0) = 0, we obtain the same for the limit, i.e., Ĩ(0, ϕ(0)) = 0.
Therefore, the formulas for the partial derivatives of I and Ĩ in (3.2) and (4.17)
together with the regularity of � and the convergence of the displacement in (4.20)
finally implies

I(0, dβn
(0)) +

∫ t

0

∂tI(τ, dβn
(τ))) dτ

=

∫ t

0

〈−�̇(τ),uβn
(τ)〉 dτ →

∫ t

0

〈−�̇(τ),U(τ, ϕ(τ))〉 dτ

= Ĩ(0, ϕ(0)) +
∫ t

0

∂tĨ(τ, ϕ(τ)) dτ

which completes the proof.
In the next sections we use the energy inequality in (4.27) to show that the limit in
(4.18)–(4.20) satisfies a system of equations which is equivalent to a classical viscous
partial damage model containing only one single damage variable. As secondary result
we will also see that the inequality (4.27) is in fact equivalent to an energy identity,
see Remark 5.2 below.

5. A Single-Field Gradient Damage Model. In this section we show that
every solution of the energy inequality (4.27) satisfies an evolutionary equation and
vice versa. The proof mainly follows the arguments of [13, Proposition 3.2].
Proposition 5.1. Let Assumption 4.1 hold. Then any ϕ ∈ H1(0, T ;H1(Ω)), which
fulfills for all t ∈ [0, T ] the energy inequality (4.27), also satisfies the following evolu-
tionary equation

− ∂ϕĨ(t, ϕ(t)) ∈ ∂R̃δ(ϕ̇(t)) f.a.a. t ∈ (0, T ). (5.1)
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The reverse assertion is true as well.

Proof. We start the proof with two auxiliary results needed for both implications
stated in the Proposition. To this end let ϕ ∈ H1(0, T ;H1(Ω)) first be arbitrary, but
fixed. Since R̃δ is convex and proper, a classical result from convex analysis result
leads to

R̃δ(ϕ̇(t)) + R̃∗
δ(−∂ϕĨ(t, ϕ(t))) = −〈∂ϕĨ(t, ϕ(t)), ϕ̇(t)〉H1(Ω) (5.2)

⇐⇒
−∂ϕĨ(t, ϕ(t)) ∈ ∂R̃δ(ϕ̇(t)) (5.3)

Further note that (4.17), combined with (2.7), (2.2), and the boundedness assumption
on g′, implies

‖∂ϕĨ(t, v)‖H1(Ω)∗ ≤ C ‖v‖H1(Ω) + c ∀ (t, v) ∈ [0, T ]×H1(Ω), (5.4)

where C, c > 0 are independent of (t, v). By using the density of C1([0, T ];H1(Ω)) in
H1(0, T ;H1(Ω)) REF!!! and the continuous Fréchet differentiability of Ĩ by Lemma
4.12, as well as (5.4), one shows that the function [0, T ] � t �→ Ĩ(t, ϕ(t)) ∈ R belongs
to H1(0, T ) with weak derivative

d

dt
Ĩ(., ϕ(.)) = ∂tĨ(., ϕ(.)) + 〈∂ϕĨ(., ϕ(.)), ϕ̇(.)〉H1(Ω) ∈ L2(0, T ). (5.5)

Note that ϕ ∈ H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)) and (5.4) imply ∂ϕĨ(t, v) ∈
L∞(0, T ;H1(Ω)∗), which in turn renders the L2-regularity of d

dt Ĩ(., ϕ(.)).
Let us now assume that ϕ fulfills (4.27) for all t ∈ [0, T ]. Due to Ĩ(·, ϕ(·)) ∈ H1(0, T )
the energy inequality implies by setting t = T that∫ T

0

R̃δ(ϕ̇(τ)) dτ +

∫ T

0

R̃∗
δ(−∂ϕĨ(τ, ϕ(τ))) dτ

≤ −
∫ T

0

( d

dt
Ĩ(τ, ϕ(τ))− ∂tĨ(τ, ϕ(τ))

)
dτ = −

∫ T

0

〈∂ϕĨ(τ, ϕ(τ)), ϕ̇(τ)〉H1(Ω) dτ,

where we used (5.5) for the last equality. Combining this with Young’s inequality,
i.e.,

R̃δ(ϕ̇(t)) + R̃∗
δ(−∂ϕĨ(t, ϕ(t))) ≥ −〈∂ϕĨ(t, ϕ(t)), ϕ̇(t)〉H1(Ω) f.a.a. t ∈ (0, T ),

leads to (5.2) and consequently (5.3), which shows the first implication.

The reverse assertion can be concluded by following the lines of the proof of Propo-
sition 3.5. To see this, assume that ϕ ∈ H1(0, T ;H1(Ω)) satisfies (5.1). From the
equivalence (5.3) ⇐⇒ (5.2) and (5.5) we then obtain

R̃δ(ϕ̇(t))+R̃∗
δ(−∂ϕĨ(t, ϕ(t))) = − d

dt
Ĩ(t, ϕ(t))+∂tĨ(t, ϕ(t)) f.a.a. t ∈ (0, T ). (5.6)

Note that any ϕ, which fulfills (5.1), automatically satisfies ϕ̇ ≥ 0 in view of Definition
4.13. The latter one then also ensures the L1-integrability of R̃δ(ϕ̇(·)). For the right
hand side in (5.6) we have due to Lemma 4.12 and (5.5) that ∂tĨ(·, ϕ(·)) ∈ C[0, T ]
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and d
dt Ĩ(·, ϕ(·)) ∈ L2(0, T ), respectively. Thus, we are allowed to integrate (5.6) in

time, which implies∫ t

0

R̃δ(ϕ̇(τ)) dτ +

∫ t

0

R̃∗
δ(−∂ϕĨ(τ, ϕ(τ))) dτ

= Ĩ(0, ϕ(0))− Ĩ(t, ϕ(t)) +
∫ t

0

∂tĨ(τ, ϕ(τ)) dτ
(5.7)

for all t ∈ [0, T ]. This completes the proof.
Remark 5.2. An inspection of the proof of Proposition 5.1 shows that, in order to
prove (5.1), it suffices that the integral equation (4.27) holds only at t = T . Moreover,
the proof shows that (4.27) implies (5.1) which in turn gives (5.7). In this way we
have shown that (4.27) is indeed an energy identity. Furthermore, integrating (5.6)
over an arbitrary interval [s, t] ⊂ [0, T ] (instead of [0, t]) leads to an energy identity,
completely analogous to (3.9) so that the passage to the limit β → ∞ indeed preserves
the structure of the energy identity. We also refer to [13, Proposition 3.2].
We summarize our results so far in the following
Theorem 5.3 (Single-field damage model). Let Assumption 4.1 hold and {βn}n∈N

be a sequence with βn → ∞ as n → ∞. Then there is a subsequence (denoted by the
same symbol) such that

ϕβn ⇀ ϕ in H1(0, T ;H1(Ω)), dβn ⇀ ϕ in H1(0, T ;L2(Ω)),

uβn → U(·, ϕ(·)) in C([0, T ];V ).
(5.8)

Moreover, every limit (ϕ,u) ∈ H1(0, T ;H1(Ω)) × C([0, T ];V ) with u := U(·, ϕ(·)) of
such a sequence satisfies f.a.a. t ∈ (0, T ) the following PDE system:

− div g(ϕ(t))ε(u(t)) = �(t) in V ∗, (5.9a)

δ ϕ̇− α�ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) ∈ −∂R̃1(ϕ̇(t)), ϕ(0) = 0, (5.9b)

with the (non-viscous) dissipation potential R̃1 defined by

R̃1 : H1(Ω) → [0,∞], R̃1(η) :=

{
r
∫
Ω
η dx, if η ≥ 0 a.e. in Ω,

∞, otherwise.
(5.10)

Proof. The existence of the subsequence has already been established in Propositions
4.8 and 4.9. Furthermore, (5.9a) is just equivalent to u := U(·, ϕ(·)). It remains to
verify (5.9b), which follows from (5.1). To see this, just apply (4.17) and the definition
of F to the left hand side of (5.1) and use the sum rule for convex subdifferentials for
the right hand side.
The above theorem shows that (5.9) admits at least one solution. Of course, it would
be desirable to have the uniqueness of the solution, too, in particular, since this
guarantees the uniqueness of the limit in (5.8) and thus the (weak) convergence of
the whole sequence. Unfortunately, for this purpose, we have to require the following
rather restrictive assumption. We underline that this assumption is only needed to
show the uniqueness, while the the rest of the analysis remains unaffected, if it is not
fulfilled.
Assumption 5.4. To ensure uniqueness of the solution of (5.9), we require that there
exists some p > 4 in the two-dimensional case and p ≥ 6 in the three-dimensional case
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such that the operator Aϕ : W 1,p
D (Ω) → W−1,p

D (Ω) is continuously invertible for every
ϕ ∈ H1(Ω) and the norm of its inverse is bounded uniformly w.r.t. ϕ.

Remark 5.5. Assumption 5.4 is fulfilled, provided that no mixed boundary conditions
are present, the domain is smooth enough, and the difference between the boundedness
and ellipticity constants of the stress strain relation is sufficiently small, cf. [17, Re-
mark 3.21] and [9, 11]. Adapted to our situation this means that the values ε γC and
‖C‖∞ have to be sufficiently close to each other, which is clearly rather restrictive
(beside the smoothness assumption on the domain), cf. also Remark 2.8. These as-
sumptions on the data can be weakened, if one uses Hs(Ω) with s > N/2 instead
H1(Ω) as function space for the nonlocal damage in the penalized model (P). We
refer to [13, Sections 2.4 and 3.2] for details. Since the bilinear form associated with
Hs(Ω) is harder to realize in numerical practice, we do not follow this approach.

Before proving the unique solvability of (5.1), we need to refine the estimate (2.8).

Lemma 5.6. Under Assumption 5.4, we have for all t ∈ [0, T ] and all ϕ1, ϕ2, ψ ∈
H1(Ω) the following estimate

|〈F (t, ϕ1)− F (t, ϕ2), ψ〉H1(Ω)| ≤ C ‖ϕ1 − ϕ2‖H1(Ω)‖ψ‖2, (5.11)

with a constant C > 0 independent of t, ϕ1, ϕ2, and ψ.

Proof. Let t ∈ [0, T ] and ϕ1, ϕ2, ψ ∈ H1(Ω) be arbitrary, fixed. The estimate (5.11)
follows with exactly the same arguments as in [17, Lemma 3.15]. For convenience of
the reader we shortly recall the arguments. We denote ui := U(t, ϕi) for i = 1, 2. The
definition of F in (2.7) implies

|〈F (t, ϕ1)− F (t, ϕ2), ψ〉|
≤

∫
Ω

∣∣(g′(ϕ1)− g′(ϕ2))Cε(u1) : ε(u1)ψ
∣∣ dx

+

∫
Ω

∣∣g′(ϕ2)[Cε(u1) : ε(u1)− Cε(u2) : ε(u2)]ψ
∣∣ dx =: I1 + I2

(5.12)

Let us abbreviate r := 2p/(p−4). Then Assumption 5.4 guarantees H1(Ω) ↪→ Lr(Ω),
which together with the Lipschitz continuity of g′, (2.2), and Höder’s inequality with
1/r + 2/p + 1/2 = 1 implies the assertion for I1. In case of I2 the estimate follows
from (2.2), and Lemma 2.10 with 1/π = 1/p+ 1/r.

Proposition 5.7. Under Assumptions 5.4, system (5.9) admits a unique solution
(ϕ,u) ∈ H1(0, T ;H1(Ω))× C([0, T ];V ).

Proof. Let (ϕi,ui) ∈ H1(0, T ;H1(Ω))×C([0, T ];V ), i = 1, 2 be two solutions of (5.9).
First note that, from the definition of F in (2.7) and ui(·) = U(·, ϕ(·)) imply that ϕi

satisfies

δϕ̇i(t)− α�ϕi(t) + F (t, ϕi(t)) ∈ −∂R̃1(ϕ̇i(t)), i = 1, 2, (5.13)

f.a.a. t ∈ (0, T ). Therefore, ∂R̃1(ϕ̇i(t)) �= ∅, which gives ϕ̇1, ϕ̇2 ≥ 0 f.a.a. t ∈ (0, T ).
By testing (5.13) for i = 1 with ϕ̇2 − ϕ̇1 and vice versa and adding the arising
inequalities, we arrive at

δ‖ϕ̇1(t)− ϕ̇2(t)‖22 + α(∇ϕ1(t)−∇ϕ2(t),∇ϕ̇1(t)−∇ϕ̇2(t))2

≤ 〈F (t, ϕ2(t))− F (t, ϕ1(t)), ϕ̇1(t)− ϕ̇2(t)〉H1(Ω) f.a.a. t ∈ (0, T ).
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Then, adding α(ϕ1(t) − ϕ2(t), ϕ̇1(t) − ϕ̇2(t))2 on both sides of this estimate and
applying Lemma 5.6 lead to

δ‖ϕ̇1(t)− ϕ̇2(t)‖22 + α(ϕ1(t)− ϕ2(t), ϕ̇1(t)− ϕ̇2(t))H1(Ω)

≤ C‖ϕ1(t)− ϕ2(t)‖H1(Ω)‖ϕ̇1(t)− ϕ̇2(t)‖2
≤ C

4ε
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) + Cε ‖ϕ̇1(t)− ϕ̇2(t)‖22 ∀ ε > 0,

where the last estimate follows from the generalized Young inequality. By choosing
ε := δ/(2C) we conclude

α(ϕ1(t)− ϕ2(t), ϕ̇1(t)− ϕ̇2(t))H1(Ω) ≤ C2

2δ
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) (5.14)

f.a.a. t ∈ (0, T ). On account of [25, Lemma 3.1.43] we have for all t ∈ [0, T ]∫ t

0

(ϕ1(τ)− ϕ2(τ), ϕ̇1(τ)− ϕ̇2(τ))H1(Ω) dτ

=
1

2
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) −

1

2
‖ϕ1(0)− ϕ2(0)‖2H1(Ω)

and, due to ϕ1(0) = ϕ2(0), we obtain after integrating (5.14) that

α

2
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) ≤

C2

2δ

∫ t

0

‖ϕ1(τ)− ϕ2(τ)‖2H1(Ω) dτ ∀ t ∈ [0, T ],

which by means of Gronwall’s lemma leads to

‖ϕ1(t)− ϕ2(t)‖2H1(Ω) ≤ 0 ∀ t ∈ [0, T ] (5.15)

and thus completes the proof.

As an immediate consequence of the uniqueness result we obtain the following

Corollary 5.8. If Assumption 5.4 is fulfilled, then the convergence in (5.8) is not
only valid for a subsequence, but for the whole sequence {(dβn

, ϕβn
,uβn

)}.

6. Comparison to Classical Partial Damage Models. In this sequel we
show that the one-field gradient damage model given by (5.9b) falls into the category
of classical partial damage models. To be more specific, we prove that in the two-
dimensional case, (5.1) is equivalent to the viscous damage model studied in [13],
provided that the body is sound at the beginning of the process. In this situation,
the model in [13] reads

−∂zI(t, z(t)) ∈ ∂Rδ̄(ż(t)) f.a.a. t ∈ (0, T ), z(0) = 1, (6.1)

where δ̄ > 0 stands for the viscosity parameter. The energy functional is given
by [13, (1.1)] and posseses in the two-dimensional case the exact same structure as
Ẽ , see (??). The function spaces and the assumptions on the data are introduced
in [13, Section 2.1 and 2.2], respectively, and coincide with the throughout this paper
considered function spaces and standing assumptions. Although the definition of Ē
in [13, Section 2.2] does not feature some parameter ᾱ > 0, which denotes the degree
of gradient regularization, as in (1.1), this does not cause any problems, since we
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can endow the space H1(Ω) with the equivalent norm ᾱ‖ · ‖H1(Ω). We work with
homogenous Dirichlet datum uD = 0, see [13, (2.16)] and don’t consider the function
f , i.e. f = 0. Although the condition [13, (2.16)] does not allow for the function f
to be the zero function, this is not problematic, since [13, (2.16)] is needed only for
proving the existence of solutions for (6.1), which in our case can be concluded from
Propositions 4.17 and 5.1 and the upcoming transformation of (5.9b) in (6.1). The
main difference between (5.9b) and (6.1) consists in the definition of the dissipation
functional, see [13, (1.3)], which implies, that unlike in our situation, the therein
considered damage variable can only decrease in time. This is due to the fact that
in the model analyzed in [13] the damage variable z : [0, T ] × Ω → R measures
the soundness of the material, not the degree of the material rigidity loss, as in our
case. That is, the larger the values of z, the sounder the body. To be more precise,
one has in the designed model z(t, x) = 0 and z(t, x) = 1 when the system is fully
damaged and completely sound, respectively. Moreover, in [13] it is shown under
additional assumptions that for an initial datum z0(x) ∈ [0, 1], one has z(t, x) ∈ [0, 1]
throughout the whole process, for at least one of the solutions of (6.1), thus proving
the viability of the mathematical model in this aspect. However one has to impose
conditions on the function which measures the degree of elasticity loss, which we here
call ḡ, e.g. that ḡ is monotonically increasing, which in [13] makes perfectly sense
from a practical point of view. Conditions on the (nonzero) function f are imposed
as well. We refer here to [13, Proposition 4.5] for more details. The above motivates
the following transformation

z := 1− ϕ

ϕmax
∈ H1(0, T ;H1(Ω)). (6.2)

In (6.2) and in the rest of the sequel ϕ denotes a solution of (5.1), which is assumed
to satisfy ϕ(t, x) ≤ ϕmax ∈ R for almost all (t, x) ∈ (0, T ) × Ω. Thus, in order to be
able to work with (6.2) we have to require

Assumption 6.1. Hereafter, the limit function ϕ belongs to L∞((0, T )× Ω).

Remark 6.2. As already stated in Remark 5.5, one can proceed as in [13, Section
2.4] and use the space Hs(Ω), where s > N/2, as function space for the nonlocal
damage in the penalized model (P). In this situation, the limit function ϕ belongs
to the space H1(0, T ;Hs(Ω)) and due to the embedding Hs(Ω) ↪→ C0,γ(Ω̄) for some
γ ∈ (0, 1], Assumption 6.1 is then automatically fulfilled.

Due to Assumption 6.1 we may use the notation ϕmax := ‖ϕ‖L∞((0,T )×Ω) in the rest
of the section.
Our goal is to show that the variable z defined in (6.2) satisfies (6.1). Due to (6.2)
we have to tranform the function g and resize α, the viscosity parameter δ and the
fracture toughness r, see (6.3) and (6.6) below. Note that all these transformations
are reversible, in the sense that from the viscous model analyzed in [13] one can derive
(5.1). Moreover, (6.3) and (6.6) preserve the assumed properties of the transformed
data. In order to distinguish between the two models, we add the symbol ¯ to the
notations used for the data, functionals and operators in [13], in case that the therein
used notations coincide with ours.
Recall that the coefficient function g assesses the degree of the material elasticity loss.
That is why in practice this is expected to be monotonically decreasing, unlike ḡ, which
should monotonically increase, see also [13, Remark 4.6.]. This is also confirmed by
the transformation necessary in order to obtain the equivalence between (5.1) and
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(6.1). In view of (6.2) we need to define

g(x) := g(ϕmax(1− x)) ∀x ∈ R, (6.3)

which, as expected, leads to

g(z(t)) = g(ϕ(t)) ∀ t ∈ [0, T ]. (6.4)

Note that g satisfies condition [13, (2.10)] due to Assumptions 2.3. With a little abuse
of notation we will denote by g also the corresponding Nemytskii operator. Since in
the two-dimensional case the operator g : H1(Ω) → Lτ (Ω) is continuously Fréchet
differentiable for τ ∈ [1,∞), the same holds for the operator ḡ and on account of (6.3)
we can write

g′(z(t)) = −ϕmaxg
′(ϕ(t)) ∀ t ∈ [0, T ]. (6.5)

In order to obtain the wished form of (6.1) we still need to resize the following data:

ᾱ := αϕ2
max, (6.6a)

δ̄ := δ ϕ2
max, (6.6b)

κ := rϕ2
max. (6.6c)

Since it is interesting to see how both models behave with respect to each other under
the influence of the same external load, we impose

� := �. (6.7)

We now have all the necessary tools for proving that, via the transformations (6.2),
(6.3), (6.6a), (6.6b) and (6.6c), the limit model (5.1) can be converted into (6.1). We
begin by enumerating some consequences of (6.2), which will turn out to be very
useful in what follows. For almost all t ∈ (0, T ) we have

ϕ(t) = ϕmax(1− z(t)), (6.8a)
ϕ̇(t) = −ϕmax ż(t), (6.8b)

∇ϕ(t) = −ϕmax∇z(t). (6.8c)

Further, notice that [13, (2.28)] reads

∂zI(t, z(t)) = −ᾱ�z(t) +
1

2
g′(z(t))Cε

(U(t, z(t))) : ε(U(t, z(t))) ∀ t ∈ [0, T ], (6.9)

where U(t, z(t)) solves the balance of momentum equation

− div
(
ḡ(z(t))Cε

(U(t, z(t)))) = �̄(t) ∀ t ∈ [0, T ].

We refer here to [13, (2.13) and (2.19)]. Relying on (6.4) and (6.7), (??) gives in turn

U(t, z(t)) = U(t, ϕ(t)) ∀ t ∈ [0, T ]. (6.10)

From (6.9), (6.6a), (6.8c), (6.5) and (6.10) we follow

∂zI(t, z(t)) = ϕmax(α�ϕ(t)− 1

2
g′(ϕ(t))Cε

(U(t, ϕ(t))) : ε(U(t, ϕ(t))), (6.11)
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i.e.

∂zI(t, z(t)) = −ϕmax ∂ϕĨ(t, ϕ(t)) ∀ t ∈ [0, T ]. (6.12)

Note that (6.12) is ensured by (??) and (2.7). Further, by comparing (5.10) and [13,
(1.3)] and using (6.8b), we find

ξ ∈ ∂R̃1(ϕ̇(t))

⇐⇒ 〈ξ, v − ϕ̇〉 ≤ R̃1(v)− R̃1(ϕ̇) = r/κ
(R1(−v)−R1(ϕmaxż(t))

)
⇐⇒ 〈−ξ, v − ϕmaxż(t)〉 ≤ r/κ

(R1(v)−R1(ϕmaxż(t))
) ∀ v ∈ H1(Ω)

⇐⇒ −ξ ∈ rϕmax/κ ∂R1(ż(t)),

hence in view of (6.6c)

∂R̃1(ϕ̇(t)) = −1/ϕmax ∂R1(ż(t)) f.a.a. t ∈ (0, T ). (6.13)

We now make use of the formulation (5.13) of the evolutionary equation (5.1) by
keeping (??) in mind. By means of (6.12), (6.8b), (6.6b) and (6.13) this can be
rewritten as

1/ϕmax

(
∂zI(t, z(t)) + δ̄ż(t)

) ∈ −1/ϕmax∂R1(ż(t)) f.a.a. t ∈ (0, T ), z(0) = 1.

By applying sum rule for convex subdifferentials we now obtain (6.1). The initial
condition z(0) = 1 follows immediately from (5.13) and (6.2).
Remark 6.3. Note that if one has in (6.1) the initial condition z(0) = z0 a.e. in Ω,
where z0 is some constant between 0 and 1, then (5.13) and (6.1) are still equivalent
by making the transformation z := z0

(
1 − ϕ

ϕmax

)
and redefining ḡ in (6.3) and the

data in (6.6) accordingly.
Remark 6.4. The equivalency of (5.13) and (6.1) can be also proven in the three-
dimensional case. One must of course proceed as in [13, Section 2.4] and work with
the Sobolev-Slobodeckij space H3/2(Ω) instead of H1(Ω), as function space for the
nonlocal damage in the penalized model (P). As already stated in Remarks 5.5 and
6.2, this implies that the limit function ϕ belongs to H1(0, T ;H3/2(Ω)). Note that [13,
Proposition 4.5.] is then no longer applicable.
Remark 6.5. However, the result in this section proves the existence of solutions for
(6.1) also in the situation when f = 0, situation which was excluded in [13], because
of [13, (2.16)]. This shows that while for f as in [13, (2.16)], viscous solutions may
be approximated via time-discretization and regularization, respectively, for f = 0, the
existence of viscous solutions results via penalizing, assuming that one deals in [13]
with an initial condition as in Remark 6.3.
Since the condition [13, (2.16)] is needed in [13] only in the context of showing existence
of solutions and does not affect the vanishing viscosity analysis, the equivalency of
(5.13) and (6.1) allows us to conclude that, provided that Assumption 6.1 holds, the
model

−∂ϕĨ(t, ϕ(t)) ∈ ∂R̃1(ϕ̇(t)) f.a.a. t ∈ (0, T ), ϕ(0) = 0,

admits BV solutions, see [13, Section 5] for more details.
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