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Abstract

This work addresses the design of failsafe flux limiters for systems of con-
served quantities and derived variables in numerical schemes for the equa-
tions of gas dynamics. Building on Zalesak’s multidimensional flux-corrected
transport (FCT) algorithm, we construct a new positivity-preserving limiter
for the density, total energy, and pressure. The bounds for the underlying
inequality constraints are designed to enforce local maximum principles in
regions of strong density variations and become less restrictive in smooth
regions. The proposed approach leads to closed-form expressions for the syn-
chronized correction factors without the need to solve inequality-constrained
optimization problems. A numerical study is performed for the compressible
Euler equations discretized using a finite element based FCT scheme.

Keywords: systems of conservation laws, local extremum diminishing
limiters, positivity preservation, flux-corrected transport/remapping

1. Introduction

The ability to enforce local discrete maximum principles and/or positivity
preservation for a set of coupled gas dynamics variables is a highly desired
property of high-resolution schemes for the compressible Euler equations [10,
14, 18] and constrained interpolation (remapping) algorithms [2, 12, 13, 21]

Email addresses: christoph.lohmann@math.tu-dortmund.de (Christoph
Lohmann), kuzmin@math.uni-dortmund.de (Dmitri Kuzmin)

Preprint submitted to Journal of Computational Physics May 3, 2016



for systems of conserved quantities. Many existing tools for constraining the
quantities of interest are based on the use of limiting techniques for numeri-
cal fluxes associated with oscillatory antidiffusive components of a high-order
approximation. The underlying design principles trace their origins to the
classical flux-corrected transport (FCT) algorithm introduced by Boris and
Book [3, 4, 5] and Zalesak [23] in the 1970s. Löhner et al. [15] extended the
FCT methodology to unstructured grid finite element methods and systems
of conservation laws. The first use of flux limiters in the context of remap-
ping goes back to the work of Smolarkiewicz and Grell [19] who proposed a
class of nonconservative monotone interpolation schemes. Conservative flux-
corrected remap (FCR) methods were developed in [11, 14, 12, 21]. As shown
by Bochev et al. [2], the FCR approach to calculating the correction factors
is equivalent to solving an optimization problem with simple box constraints
corresponding to a worst-case scenario. Advanced algorithms for constrained
optimization-based data transfer were proposed in [1, 2, 13].

Flux limiting techniques for systems of coupled variables can be classified
into sequential [12] and synchronized [11, 14, 13, 18] algorithms. A sequen-
tial limiter constrains each quantity of interest under worst-case assumptions
regarding the fluxes that depend on other variables. In synchronized FCT
algorithms [10, 11, 15, 14], the antidiffusive fluxes are multiplied by the min-
imum of the correction factors for selected control variables. Due to the
involved linearizations, such algorithms may require additional a posteriori
corrections to guarantee the nonnegativity of the pressure and internal energy
[11, 24]. In optimization-based synchronized algorithms, different correction
factors may be used in different conservation laws provided that the imposed
constraints are satisfied for each quantity of interest [13]. However, the cost
of coupled flux optimization is rather high, which has led Bochev et al. [1] to
favor globally conservative formulations of the constrained remap problem.

In this paper, we improve the synchronized FCT algorithm presented in [10,
11] by introducing new limiters for the energy and pressure. In contrast to
approaches that rely on linearized transformations of variables, the proposed
limiting strategy does not involve any linearizations and guarantees positivity
preservation without a posteriori fixes. Moreover, the bounds for FCT are
designed to prevent unnecessary limiting in regions of constant pressure. The
calculation of correction factors for the synchronized FCT limiter does not
require solving inequality-constrained optimization problems, which makes
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it an inexpensive alternative to synchronized optimization-based limiters [2,
13]. The ability of the proposed algorithm to handle shocks and contact
discontinuities is illustrated by a numerical study for the Euler equations.

2. Synchronized flux limiting

Consider a system of conservation laws for U = [ρ, ρv, ρE]T , where ρ is the
density, v is the velocity and E is the total energy. In the case of an ideal
polytropic gas, the pressure p is given by the equation of state

p = (γ − 1)

(
ρE − |ρv|2

2ρ

)
, (1)

where γ stands for the constant ratio of specific heats (γ = 1.4 for air).

Let Ui denote a numerical approximation to the vector U of gas dynamics
variables at the ith nodal point or control volume. The simplest representa-
tives of flux-corrected transport (FCT) and flux-corrected remapping (FCR)
algorithms are based on the following predictor-corrector strategy:

1. Calculate a low-order approximation UL
i using a numerical scheme

which is guaranteed to satisfy all relevant maximum principles.

2. Decompose the difference between UL
i and a high-order approximation

UH
i into a sum of antidiffusive fluxes Fij = [fρ

ij, f
ρv
ij , f

ρE
ij ]T such that

miU
H
i = miU

L
i +

∑
j �=i

Fij, Fji = −Fij, (2)

where mi is a positive diagonal entry of the (lumped) mass matrix.

3. Multiply Fij and its companion Fji by a solution-dependent correction
factor αij ∈ [0, 1] such that the flux-corrected approximation

miUi = miU
L
i +

∑
j �=i

αijFij, αji = αij (3)

satisfies inequality constraints of the form

umin
i ≤ ui ≤ umax

i (4)

for each scalar quantity of interest u (density, energy, pressure etc.).
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Following [11, 15], we will limit all components of Fij using the same scalar
correction factor αij. The choice αij ≡ 1 corresponds to the high-order
approximation UH

i , whereas αij ≡ 0 corresponds to the low-order approxi-
mation UL

i . Since the latter is assumed to satisfy the maximum principles,
the bounds for (4) are commonly defined in terms of UL as follows:

umax
i = max

j∈N (i)
uL
j , umin

i = min
j∈N (i)

uL
j , (5)

where uL
i is the low-order approximation to the quantity of interest and N (i)

is the set of nodes containing i and its nearest neighbors j �= i. Throughout
this paper, the shorthand notation “j �= i” is used for j ∈ N (i)\{i}.
For a scalar conserved quantity u, nearly optimal correction factors αij can
be calculated using Zalesak’s multidimensional FCT limiter [23] which we
use to constrain the density (u = ρ) in the next section. The design of
FCT algorithms for systems is more involved because of the strong coupling
between the quantities of interest [10, 15]. For example, any antidiffusive

correction to ρi may produce an undershoot or overshoot in vi :=
(ρv)i
ρi

and/or

E := (ρE)i
ρi

even if the values of (ρv)i and (ρE)i remain unchanged. Similarly,
any adjustment of the conservative variables may result in a violation of local
bounds for the pressure p defined by the equation of state (1). Hence, possible
changes in the values of derived quantities must be taken into account when
it comes to limiting the changes in the conservative variables.

In the next three sections, we present a new synchronized FCT algorithm for
constraining the density, energy, and pressure. After formulating the inequal-
ity constraints for each variable, we derive upper bounds for the correction
factors αij and design practical algorithms for enforcing these bounds.

3. The density limiter

The density ρ is easy to limit and represents a natural control variable because
it is discontinuous at shocks and contact discontinuities alike (in contrast to
the velocity v and pressure p which are continuous at a contact discontinuity).
For this reason, the value of the synchronized correction factor αij should not

4



exceed that of α
(ρ)
ij such that the flux-corrected nodal value ρi satisfies

ρmin
i ≤ ρi = ρLi +

1

mi

∑
j �=i

αijf
(ρ)
ij ≤ ρmax

i ∀αij ≤ α
(ρ)
ij . (6)

The bounds ρmax
i and ρmin

i are defined by (5) with u = ρ. That is,

ρmax
i = max

j∈N (i)
ρLj , ρmin

i = min
j∈N (i)

ρLj . (7)

Assuming the worst-case scenario (no cancellation of positive and negative

fluxes), the provisional correction factor α
(ρ)
ij should be chosen so that

miQ
−,ρ
i ≤ R−,ρ

i P−,ρ
i ≤

∑
j �=i

α
(ρ)
ij f

(ρ)
ij ≤ R+,ρ

i P+,ρ
i ≤ miQ

+,ρ
i , (8)

where

P+,ρ
i =

∑
j �=i

max
{
0, f

(ρ)
ij

}
, P−,ρ

i =
∑
j �=i

min
{
0, f

(ρ)
ij

}
, (9)

Q+,ρ
i = ρmax

i − ρLi , Q−,ρ
i = ρmin

i − ρLi , (10)

R+,ρ
i = min

{
1,

miQ
+,ρ
i

P+,ρ
i

}
, R−,ρ

i = min

{
1,

miQ
−,ρ
i

P−,ρ
i

}
. (11)

Additionally, the symmetry condition α
(ρ)
ji = α

(ρ)
ij must hold for the limited

antidiffusive fluxes to remain skew-symmetric. Correction factors satisfying
the above criteria can be determined using Zalesak’s formula [23]

α
(ρ)
ij =

{
min

{
R+,ρ

i , R−,ρ
j

}
if f

(ρ)
ij ≥ 0,

min
{
R−,ρ

i , R+,ρ
j

}
if f

(ρ)
ij < 0.

(12)

This yields the first provisional bound α
(ρ)
ij for the synchronized correction

factor αij. Using this result, we define the tight density bounds

ρ̃max
i = ρLi +

1

mi

∑
j �=i

max
{
0, α

(ρ)
ij f

(ρ)
ij

}
, (13)

ρ̃min
i = ρLi +

1

mi

∑
j �=i

min
{
0, α

(ρ)
ij f

(ρ)
ij

}
(14)

which we will need to construct the bounds for the energy and pressure below.
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4. The energy limiter

The second natural control variable for a synchronized FCT algorithm is the
total energy. The inequality constraints for (ρE)i are given by

(ρE)min
i ≤ (ρE)i = (ρE)Li +

1

mi

∑
j �=i

αijf
(ρE)
ij ≤ (ρE)max

i , (15)

(ρE)max
i = max

j∈N (i)
(ρE)Lj , (ρE)min

i = min
j∈N (i)

(ρE)Lj (16)

and the upper bound for αij can be determined using Zalesak’s limiter.

The local maximum principle for Ei can be formulated as follows:

Emin
i ≤ Ei =

(ρE)i
ρi

=
(ρE)Li + 1

mi

∑
j �=i αijf

(ρE)
ij

ρLi + 1
mi

∑
j �=i αijf

(ρ)
ij

≤ Emax
i , (17)

Emax
i = max

j∈N (i)

(ρE)Lj
ρLj

, Emin
i = min

j∈N (i)

(ρE)Lj
ρLj

. (18)

According to (17), the limited antidiffusive fluxes must satisfy

ρLi
(
Emin

i − EL
i

) ≤ 1

mi

∑
j �=i

αij

(
f
(ρE)
ij − Emin

i f
(ρ)
ij

)
, (19)

ρLi
(
Emax

i − EL
i

) ≥ 1

mi

∑
j �=i

αij

(
f
(ρE)
ij − Emax

i f
(ρ)
ij

)
. (20)

An explicit formula for αij satisfying such energy constraints can be derived
following the methodology developed in [12] for enforcing velocity constraints
in sequential FCR schemes. In our experience, this way to constrain Ei

produces poor results in the context of synchronized FCT because it imposes
artificial constraints on the fluxes f

(ρ)
ij , especially in the limit f

(ρE)
ij → 0.

To prevent unnecessary limiting of f
(ρ)
ij , the energy bounds can be extended

to cover the full range of admissible density values. We have

ρiE
max
i =

(
ρLi +

1

mi

∑
j �=i

αijf
(ρ)
ij

)
Emax

i ≤ ρ̃max
i Emax

i , (21)

ρiE
min
i =

(
ρLi +

1

mi

∑
j �=i

αijf
(ρ)
ij

)
Emin

i ≥ ρ̃min
i Emin

i , (22)
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where ρ̃max
i and ρ̃min

i are defined by (13) and (14), respectively. Hence,

ρ̃min
i Emin

i − (ρE)Li ≤ 1

mi

∑
j �=i

αijf
(ρE)
ij ≤ ρ̃max

i Emax
i − (ρE)Li (23)

is a sufficient condition for the flux-corrected energy Ei to satisfy

ρ̃min
i Emin

i ≤ ρiEi = (ρE)i ≤ ρ̃max
i Emax

i (24)

for any ρi in the range [ρ̃min
i , ρ̃max

i ] of admissible values, as determined pre-

viously by the density limiter α
(ρ)
ij . Combining this estimate and (15), we

define the local bounds for the proposed energy limiter as follows:

max
{
(ρE)min

i , ρ̃min
i Emin

i

} ≤ (ρE)i ≤ min {(ρE)max
i , ρ̃max

i Emax
i } . (25)

Division by ρi yields the corresponding inequality constraints for Ei

max

{
(ρE)min

i

ρi
,
ρ̃min
i Emin

i

ρi

}
≤ Ei ≤ min

{
(ρE)max

i

ρi
,
ρ̃max
i Emax

i

ρi

}
. (26)

Since ρi is allowed to float in the range [ρ̃min
i , ρ̃max

i ], we have the estimate

max

{
(ρE)min

i

ρ̃max
i

,
ρ̃min
i Emin

i

ρ̃max
i

}
≤ Ei ≤ min

{
(ρE)max

i

ρ̃min
i

,
ρ̃max
i Emax

i

ρ̃min
i

}
. (27)

That is, the sharpness of the local bounds for Ei depends on the ratio of the

tight density bounds
ρ̃min
i

ρmax
i

which approaches 1 in the limit α
(ρ)
ij → 0.

To enforce the energy constraints, we use αij ≤ α
(ρ,E)
ij ≤ α

(ρ)
ij such that

miQ
−,E
i ≤ R−,E

i P−,E
i ≤

∑
j �=i

α
(ρ,E)
ij f

(ρE)
ij ≤ R+,E

i P+,E
i ≤ miQ

+,E
i , (28)

where

P+,E
i =

∑
j �=i

max
{
0, α

(ρ)
ij f

(ρE)
ij

}
, P−,E

i =
∑
j �=i

min
{
0, α

(ρ)
ij f

(ρE)
ij

}
, (29)

Q+,E
i = min {(ρE)max

i , ρ̃max
i Emax

i } − (ρE)Li ,

Q−,E
i = max

{
(ρE)min

i , ρ̃min
i Emin

i

}− (ρE)Li , (30)
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R+,E
i = min

{
1,

miQ
+,E
i

P+,E
i

}
, R−,E

i = min

{
1,

miQ
−,E
i

P−,E
i

}
. (31)

The formula for calculating the correction factors α
(ρ,E)
ij is given by

α
(ρ,E)
ij =

⎧⎨
⎩

min
{
R+,E

i , R−,E
j

}
α
(ρ)
ij if f

(ρE)
ij ≥ 0,

min
{
R−,E

i , R+,E
j

}
α
(ρ)
ij if f

(ρE)
ij < 0.

(32)

This FCT algorithm uses the knowledge that α
(ρ,E)
ij ≤ α

(ρ)
ij . In a practical

implementation, we apply α
(ρ)
ij to all components of Fij = [fρ

ij, f
ρv
ij , f

ρE
ij ]T and

pass the density-limited fluxes α
(ρ)
ij Fij to the energy limiter.

Remark. The algorithm presented in this section can also be used to constrain
the components of (ρv)i and vi. However, componentwise limiting of vector
fields violates the principle of frame indifference. For this reason, the use of
frame invariant velocity/momentum limiters is recommended [16, 25].

5. The pressure limiter

In many cases, the difference between the solutions produced by the energy
limiter αij = α

(ρ,E)
ij and the density limiter αij = α

(ρ)
ij is marginal. However,

it is essential to ensure that the pressure p does not become negative in the
process of flux correction. If the limiting procedure does not guarantee this, it
must be equipped with a ‘failsafe’ postprocessing technique for canceling the
offending antidiffusive fluxes [11, 24]. Otherwise, the approximate Riemann
solver may crash when it comes to calculating the speed of sound.

In this section, we design a pressure limiter which guarantees positivity
preservation a priori. Let the local bounds for pi be defined by

ρ̃min
i pmin

i ≤ ρipi = ρi(γ − 1)

[
(ρE)i − |(ρv)i|2

2ρi

]
≤ ρ̃max

i pmax
i , (33)

pmax
i = max

j∈N (i)
(γ − 1)

[
(ρE)j − |(ρv)j|2

2ρj

]
, (34)

pmin
i = min

j∈N (i)
(γ − 1)

[
(ρE)j − |(ρv)j|2

2ρj

]
. (35)
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The use of ρ̃max
i and ρ̃min

i in the pressure constraints (33) prevents the limiter
from canceling all antidiffusive fluxes in regions of constant pressure. Note

that the lower bound ρ̃min
i pmin

i is nonnegative and ρ̃
max
min
i → ρi as α

(ρ)
ij → 0.

The constrained pressure pi depends on the synchronized correction factors
αij ≤ α

(ρ,E)
ij ≤ α

(ρ)
ij and conservative fluxes (fρ

ij, f
ρv
ij , f

ρE
ij ) as follows:

ρipi
γ − 1

=

(
ρLi +

1

mi

∑
j �=i

αijf
(ρ)
ij

)(
(ρE)Li +

1

mi

∑
j �=i

αijf
(ρE)
ij

)

− 1

2

∣∣∣∣∣(ρv)Li +
1

mi

∑
j �=i

αijf
(ρv)
ij

∣∣∣∣∣
2

= ρLi (ρE)Li +
1

mi

∑
j �=i

αij

(
ρLi f

(ρE)
ij + (ρE)Li f

(ρ)
ij

)

+

(
1

mi

∑
j �=i

αijf
(ρ)
ij

)(
1

mi

∑
k �=i

αikf
(ρE)
ik

)

− 1

2
|(ρv)Li |2 −

1

mi

∑
j �=i

αij(ρv)
L
i · f (ρv)ij

− 1

2

∣∣∣∣∣ 1mi

∑
j �=i

αijf
(ρv)
ij

∣∣∣∣∣
2

.

The estimates corresponding to the worst-case scenario are given by

m2
iQ

−,p
i

γ − 1
≤ R−,p

i P−,p
i ≤ P

(p)
i ≤ R+,p

i P+,p
i ≤ m2

iQ
+,p
i

γ − 1
, (36)

where

P
(p)
i =

m2
i (ρipi − ρLi p

L
i )

γ − 1
(37)

= mi

∑
j �=i

αij

(
ρLi f

(ρE)
ij + (ρE)Li f

(ρ)
ij − (ρv)Li · f (ρv)ij

)

+

(∑
j �=i

αijf
(ρ)
ij

)(∑
k �=i

αikf
(ρE)
ik

)
− 1

2

∣∣∣∣∣
∑
j �=i

αijf
(ρv)
ij

∣∣∣∣∣
2

, (38)

9



P+,p
i = mi

∑
j �=i

max
{
0, α

(ρ,E)
ij

(
ρLi f

(ρE)
ij + (ρE)Li f

(ρ)
ij − (ρv)Li · f (ρv)ij

)}

+
∑
j �=i

∑
k �=i

max
{
0, α

(ρ,E)
ij f

(ρ)
ij α

(ρ,E)
ik f

(ρE)
ik

}
, (39)

P−,p
i = mi

∑
j �=i

min
{
0, α

(ρ,E)
ij

(
ρLi f

(ρE)
ij + (ρE)Li f

(ρ)
ij − (ρv)Li · f (ρv)ij

)}

+
∑
j �=i

∑
k �=i

min
{
0, α

(ρ,E)
ij f

(ρ)
ij α

(ρ,E)
ik f

(ρE)
ik

}
− 1

2

(∑
j �=i

α
(ρ,E)
ij |f (ρv)ij |

)2

, (40)

Q+,p
i := ρ̃max

i pmax
i − ρLi p

L
i , Q−,p

i = ρ̃min
i pmin

i − ρLi p
L
i , (41)

R+,p
i = min

{
1,

m2
iQ

+,p
i

(γ − 1)P+,p
i

}
, R−,p

i = min

{
1,

m2
iQ

−,p
i

(γ − 1)P−,p
i

}
. (42)

The formula for P−,p
i was derived using the triangle inequality to estimate

the second quadratic term in (38). The proof of the estimates

m2
iQ

−,p
i ≤ R−,p

i P−,p
i , R+,p

i P+,p
i ≤ m2

iQ
+,p
i

in the inequality chain (36) exploits the fact that (αij)
2 ≤ αij for αij ∈ [0, 1].

To enforce the pressure bounds, the correction factors αij are defined thus:

αij = min
{
R+,p

i , R−,p
i , R+,p

j , R−,p
j

}
α
(ρ,E)
ij . (43)

Due to the presence of quadratic terms in (38), this formula for αij does not
distinguish between positive and negative antidiffusive fluxes.

Remark. The pressure limiter can be configured to enforce the constraints

pmin
i ≤ pi =

ρLi p
L
i + γ−1

m2
i
P

(p)
i

ρLi + 1
mi

∑
j �=i αijf

(ρ)
ij

≤ pmax
i

using a modification of the above algorithm to find αij ≤ α
(ρ,E)
ij such that

ρLi (p
min
i − pLi ) ≤

γ − 1

m2
i

P
(p)
i − 1

mi

∑
j �=i

αijf
(ρ)
ij ≤ ρLi (p

max
i − pLi ).

However, the use of sharp pressure bounds is not recommended in the context
of synchronized FCT limiting for reasons explained in Section 4.
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6. FEM-FCT for the Euler equations

In what follows, we apply the synchronized FCT limiter to a continuous
piecewise-(bi)linear finite element discretization of the Euler equations

∂U

∂t
+∇ · F(U) = 0 in Ω ⊂ R

d, d ∈ {1, 2, 3} (44)

which represent a system of conservation laws for the gas dynamics variables
U = [ρ, ρv, ρE]T . The triple of flux functions F is defined by

F(U) = {ρv, ρv ⊗ v + pI, (ρE + p)v} = A(U)U, (45)

where A(U) = ∂F
∂U

is the Jacobian matrix and I is the identity tensor.

Let {ϕ1, . . . , ϕN} be a set of finite element basis functions associated with
the vertices of the computational mesh. Substituting the approximations

Uh =
∑
j

Ujϕj, Fh =
∑
j

Fjϕj (46)

into the Galerkin weak form of (44), one obtains the semi-discrete problem

∑
j

(
mij

dUj

dt

)
= −

∑
j

cij · Fj = −
∑
j

(cij ·Aj)Uj, (47)

where Fj = AjUj and the coefficients are given by [11, 10]

mij =

∫
Ω

ϕiϕj dx, cij =

∫
Ω

ϕi∇ϕj dx. (48)

Replacing mij by δij
∑

j mij, we define the lumped mass matrix

ML = diag{mi}, mi =

∫
Ω

ϕi dx =
∑
j

mij. (49)

To construct a low-order scheme for the FEM-FCT algorithm, we add scalar
artificial diffusion to the lumped-mass version of (47). This yields [10, 11]

mi
dUi

dt
= −

∑
j

(cij ·Aj)Uj +
∑
j �=i

dij(Uj − Ui). (50)
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Since approximate Riemann solvers based on Roe’s linearization [17] may
fail to satisfy local maximum principles for some quantities of interest, we
employ Rusanov-type dissipation proportional to the fastest wave speed. The
corresponding artificial diffusion coefficients dij are defined by [10, 11]

dij = max{|cij · vj|+ |cij|cj, |cji · vi|+ |cji|ci}, (51)

where ci =
√
γpi/ρi denotes the local speed of sound.

The low-order predictor UL can be calculated using an explicit or implicit
time discretization of (50). In the below numerical study, we use an explicit
strong stability preserving (SSP) Runge-Kutta scheme of third order [6, 7]
for the 1D test problems and Crank-Nicolson time-stepping in 2D.

The antidiffusive fluxes for the predictor-corrector FCT scheme [8, 11] based
on the above high- and low-order approximations are given by

Fij = Δt

[
mij

(
dUL

i

dt
− dUL

j

dt

)
+ dij(U

L
i − UL

j )

]
, (52)

where Δt is the time step and the nodal time derivatives are defined by (50).

For a detailed description of the FEM-FCT algorithm, we refer to [10, 11].

7. Numerical examples

In this section, we solve standard test problems for the Euler equations using
the FEM-FCT scheme equipped with the new synchronized flux limiter.

7.1. Shock tube problem

Sod’s shock tube problem [20] is a well-known benchmark for the 1D Euler
equations. It models the flow of an inviscid gas in a tube initially separated by
a membrane into two sections. Reflective boundary conditions are prescribed
at the endpoints of the domain Ω = (0, 1). The initial condition for the
nonlinear Riemann problem is given in terms of the primitive variables[

ρL
vL
pL

]
=

[
1.0
0.0
1.0

]
,

[
ρR
vR
pR

]
=

[
0.125
0.0
0.15

]
, (53)
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where the subscripts refer to the subdomains ΩL = (0, 0.5) and ΩR = (0.5, 1).

The numerical solutions presented in Fig. 1 were calculated on a uniform
mesh of 100 linear finite elements using the time step Δt = 10−3. The snap-
shots correspond to the final time T = 0.231. Figure 1(a) shows the low-order
approximation to the density, velocity, and pressure. The solution profiles
are strongly smeared and the local bounds are preserved for all primitive
variables. The FEM-FCT solution displayed in Fig. 1(b) demonstrates the
ability of the proposed limiter to capture shocks in a crisp and nonoscilla-
tory manner. The smearing of the density profile at the contact discontinuity
is inevitable due to the lack of self-steepening. Note that the resolution is
much better than in the case of the underlying low-order scheme. The nodal
values of the density and pressure are in the range defined by the inequal-
ity constraints for the synchronized flux limiter. In particular, positivity
preservation is guaranteed without any additional postprocessing. The ve-
locity profile exhibits small overshoots behind the rarefaction wave. These
overshoots are not suppressed by the synchronized FCT limiter because the
velocity is not included in the set of control variables to be constrained.
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0.6

0.8

1

Figure 1: Sod’s shock tube problem: (a) low-order scheme vs. (b) synchronized FCT
algorithm, h = 10−2, Δt = 10−3, T = 0.231. Density: blue, velocity: green, pressure: red
(for color graphics see the online version of this article).

7.2. Blast wave problem

The blast wave problem of Woodward and Colella [22] is a far more challeng-
ing test. The flow of a gamma-law gas, with γ = 1.4, takes place between
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reflecting walls, and the initial condition consists of the three constant states[
ρL
vL
pL

]
=

[
1.0
0.0

1000.0

]
,

[
ρM
vM
pM

]
=

[
1.0
0.0
0.01

]
,

[
ρR
vR
pR

]
=

[
1.0
0.0
100.0

]
(54)

associated with ΩL = (0, 0.1), ΩM = (0.1, 0.9), and ΩR = (0.9, 1).

The above initial conditions give rise to two strong blast waves which even-
tually collide. The flow evolution involves complex interactions of shocks,
rarefactions, and contact discontinuities in a small region of space. These
interactions are particularly difficult to capture using FCT algorithms which
tend to clip peaks and distort steep fronts within the local bounds. The
latter phenomenon is known as terracing. It can be alleviated by prelimiting
the fluxes or improving the phase accuracy of the high-order scheme [24].

Figures 2 and 3 display the numerical approximations to the density and
pressure at the final time T = 0.038. The mesh size and time step are given
by h = 10−3 and Δt = 10−6, respectively. Again, the FEM-FCT solution is
more accurate than its low-order counterpart and the bounds are preserved.
The clearly visible terracing effect is caused by the poor phase accuracy of the
standard Galerkin scheme and could be cured by adding high-order entropy
viscosity (or another dissipative component) to the antidiffusive flux.
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Figure 2: Blast wave problem: density distribution calculated using (a) low-order scheme
and (b) synchronized FCT algorithm, h = 10−3, Δt = 10−6, T = 0.038.
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Figure 3: Blast wave problem: pressure distribution calculated using (a) low-order scheme
and (b) synchronized FCT algorithm, h = 10−3, Δt = 10−6, T = 0.038.

7.3. Double Mach reflection

In the last example, we consider the double Mach reflection benchmark [22]
for the two-dimensional Euler equations. The computational domain for
this test is the rectangle Ω = (0, 4) × (0, 1). The flow pattern features a
propagating Mach 10 shock in air (γ = 1.4) which initially makes a 60◦ angle
with a reflecting wall. The following pre-shock and post-shock values of the
flow variables are used to define the initial and boundary conditions

⎡
⎣ρLuL
vL
pL

⎤
⎦ =

⎡
⎣ 8.0

8.25 cos(30◦)−8.25 sin(30◦)
116.5

⎤
⎦ ,

⎡
⎣ρRuR
vR
pR

⎤
⎦ =

⎡
⎢⎣1.40.0
0.0
1.0

⎤
⎥⎦ . (55)

Initially, the post-shock values (subscript L) are prescribed in the subdomain
ΩL = {(x, y) | x < 1/6 + y/

√
3} and the pre-shock values (subscript R) in

ΩR = Ω\ΩL. The reflecting wall corresponds to 1/6 ≤ x ≤ 4 and y = 0. No
boundary conditions are required along the line x = 4. On the rest of the
boundary, the post-shock conditions are assigned for x < 1/6+ (1+20t)/

√
3

and the pre-shock conditions elsewhere. The so-defined values along the top
boundary describe the exact motion of the initial Mach 10 shock.

The density and pressure distributions produced by the low-order scheme and
by the synchronized FCT algorithm at the final time T = 0.2 are displayed
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in Figs 4 and 5, respectively. Computations were performed on a uniform
mesh of bilinear elements (h = 1/128). The low-order solution/predictor was
advanced in time using the Crank-Nicolson time-stepping and the time step
Δt = 10−4. The results of this 2D simulation confirm the ability of the syn-
chronized FCT limiter to remove significant amounts of numerical dissipation
without generating negative pressures and/or nonphysical oscillations.

(a) ρ ∈ [1.4, 21.67]

(b) p ∈ [1.0, 552.28]

Figure 4: Double Mach reflection problem: (a) density and (b) pressure distribution at
T = 0.2. Discretization: low-order scheme, 65,536 Q1 elements, Δt = 10−4.

8. Summary

The presented approach to synchronized flux limiting for the density, energy
and pressure guarantees positivity preservation at a fraction of the cost as-
sociated with optimization-based alternatives. At the same time, the revised
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(a) ρ ∈ [1.4, 22.09]

(b) p ∈ [1.0, 543.49]

Figure 5: Double Mach reflection problem: (a) density and (b) pressure distribution at
T = 0.2. Discretization: synchronized FCT algorithm, 65,536 Q1 elements, Δt = 10−4.

definition of local bounds for the energy and pressure makes it failsafe and
less diffusive than the linearized FCT limiter presented in [11]. The proposed
limiting procedure is readily applicable to flux-based remapping algorithms
in the context of Arbitrary Lagrangian Eulerian (ALE) methods. We also en-
visage that it can be easily adapted to discontinuous Galerkin discretizations
of the Euler equations equipped with vertex-based slope limiters [9].
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Flux-Corrected Transport: Principles, Algorithms, and Applications.
Springer, 2nd edition, 2012, pp. 193–238.
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