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Abstract

In this work, we develop extended one-step methods for solving optimal control problems
governed by ordinary and delay differential equations. The proposed problem is reduced to
either a constrained or unconstrained minimization problem according to the nature of the
dynamic system and the given conditions. Pontryagin’s maximum (or minimum) principle
is used to characterize the optimal controls. Numerical results with simulations compared
with other methods are presented to show the efficiency of the methodology.

Keywords: Extended one-step methods; Optimal Control; Ordinary differential equations,
Delay differential equations; Indirect approach

1 Introduction

Control theory is application-oriented mathematics that deals with the basic principles under-
lying the analysis and design of (control) systems. Systems can be engineering systems (air
conditioner, aircraft, CD player etcetera), economic systems, biological systems and so on. To
control means that one has to influence the behavior of the system in a desirable way: for ex-
ample, in the case of an air conditioner, the aim is to control the temperature of a room and
maintain it at a desired level, while in the case of an aircraft, we wish to control its altitude at
each point of time so that it follows a desired trajectory. Historically, optimal control is consid-
ered as an extension of the calculus of variations which is a branch of mathematics concerning
problems that seek to find the path, curve, or surface for which a given function has a minimum
or maximum. Optimal control problems governed by ordinary differential equations (ODEs),
have a variety of applications in economics, biology and medicine [2, 3, 4, 5, 8].

On the other hand, many important economic and engineering systems do not react at once,
but with a delay to changes in external influences e.g. transportation-lags and hence have been
considered the optimal control problems with delays and obtaining their approximate solutions
very important issues in control theory and have attracted much attention of many researchers;
See [7, 9, 10, 11, 12, 13].

Most of optimal control problems, however, can not be solved analytically and consequently,
reliable numerical methods are essentially required. There are two ways to solve the optimal
control problems, ’direct’ and ’indirect’ approaches. In the direct approach, the optimal control
problem is transformed into a nonlinear programming problem. While indirect approach is based
on the calculus of variations or the Pontryagin maximum (or Minimum) principle, which in turn
reduces to a boundary value problem.
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In this paper, we adapt extended one-step method (EOSM) for solving the dynamic system
of optimal control problem, governed by ordinary differential equations (ODEs) and delay dif-
ferential equations (DDEs). The method is based on indirect approach using Forward-Backward
Sweep method to find the optimal control variable. The organization of this paper is as follows:
Section 2 presents the first order necessary optimality conditions for undelayed optimal control
problems with bounded controls as well as with linear dependence on the control. The first or-
der optimality conditions for delayed optimal control problems with delay on the state and the
control is presentence in section 3. In section 4, the extended one step schemes, up to order five
for ODEs as well as for DDEs are presented. In Section 5, we present Forward-Backward Sweep
approach, which will be used to solve the undelayed and delayed control problems. Numerical
results and compressions are presented in Section 6.

2 First order necessary optimality conditions for undelayed op-
timal control problems

The simplest Optimal Control Problem (OCP) governed by ordinary differential equations can
be stated as,

min
u

J(y(t), u(t)) =

∫ T

t0

f(t, y(t), u(t)) dt

s.t. y′(t) =g(t, y(t), u(t)), y(t0) = y0.

(1)

J is called objective functional, u is the control and y is called the state variable. The functions
f and g are continuously differentiable functions in all three arguments. The control variable can
be piecewise continuous, so that it can have discrete jumps. and the associated state variable
Variable must be piecewise differentiable, so that it cannot have discrete jumps.

Pontryagin’s Maximum(or Minimum) Principle is a powerful method for the computation
of optimal controls, which has the crucial advantage that it does not require prior evaluation of
the infimal cost function. We describe the method and illustrate its use in numerical examples.
Pontryagin introduced the idea of adjoint functions to append the differential equation to the
objective functional. Adjoint functions have a similar purpose as Lagrange multipliers in multi-
variate calculus, which append constraints to the function of several variables to be maximized
or minimized.

Theorem 1 (Pontryagin’s Minimum Principle [2]) If u∗(t) and y∗(t) are optimal for problem
(1), then there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, y∗(t), u(t), λ(t)) ≥ H(t, y∗(t), u∗(t), λ(t))

for all the controls u at each time, where the Hamiltonian H is

H = f(t, y(t), u(t)) + λ(t)g(t, y(t), u(t)),

and

λ′(t) = −∂H(t, y∗(t), u∗(t), λ(t))
∂y

= −(fy + λ(t)gy), (2)

with the transversality condition
λ(T ) = 0.

and the control satisfy
∂H

∂u
= 0 ⇒ fu + λ(t)gu = 0

on t0 ≤ t ≤ T

Proof 1 The proof exists in [2].
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2.1 Optimal control with bounded controls

Since many real world application problems require bounds on the controls. Consider the fol-
lowing optimal control problem with bounded control:

min J(y(t), u(t)) =

∫ T

t0

f(t, y(t), u(t)) dt

s.t. y′(t) =g(t, y(t), u(t)),

y(t0) =y0
a ≤ u(t) ≤ b,

(3)

where a and b are real constants with a ≤ b. Pontryagin’s Minimum Principle still valids for
problem (3) except the minimization is over all admissible controls, that is a ≤ u(t) ≤ b, ∀t ∈
[t0, T ]. The Hamiltonian functional is

H = f(t, y(t), u(t)) + λ(t)g(t, y(t), u(t)),

and necessary conditions for the state y∗ and p∗ are the same as in Theorem 2, namely

y′(t) = g(t, y(t), u(t)), y(t0) = y0,

the adjoint state equation

λ′(t) = −∂H

∂y
= −(fy + λ(t)gy),

with the transversality condition λ(T ) = 0. but with the optimal control u∗ satisfies the following
condition:

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if
∂H

∂u
> 0

a ≤ u∗ ≤ b if
∂H

∂u
= 0

b if
∂H

∂u
< 0

(4)

If we have a maxmization problem instead of a minimization problem (3), then u∗ is instead
chosen to maxmize H pointwise. This has the effect of reversing > and < in the first and third
lines of (4).

2.2 Linear dependence on the control

An optimal control problem with linear dependence on the control can be written as

min
u

∫ T

t0

f1(t, y(t)) + u(t)f2(t, y(t)) dt

s.t. y′(t) = g1(t, y(t)) + u(t)g2(t, y(t)),

y(t0) = y0
a ≤ u(t) ≤ b.

(5)

The Hamiltonian is

H = [f1(t, y(t)) + λ(t)g1(t, y(t))] + u(t)[f2(t, y(t)) + λ(t)g2(t, y(t))]. (6)

The optimality condition
∂H

∂u
= f2(t, y) + λ(t)g2(t, y)
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has no information on the control, thus we define a switching function as

ψ = f2(t, y) + λ(t)g2(t, y).

If we are solving a minimization problem, the optimal control takes the form:

u∗(t) =

⎧⎨
⎩

a if ψ > 0

∈ [a, b] if ψ = 0

b if ψ < 0

(7)

The control u∗ is referred to as a bang-bang control if ψ = 0 cannot be sub-stained over the
interval [t0, T ] but occurs only at finitely many points. In this case, the control is either at the
upper bound b or at the lower bound a.

3 First order necessary optimality conditions for delayed opti-
mal control problems

Delayed optimal control problems variable exhibit in general a qualitatively different system
dynamics compared to instantaneous optimal control problems. Consider the following retarded
optimal control problem with constant delay r ≥ 0 in the state y(t) and s ≥ 0 in the control
u(t)

Minimize J(y, u) =

∫ T

t0

f(t, y(t), y(t− r), u(t), u(t− s))dt, (8a)

subject to DDEs

y′(t) =g(t, y(t), y(t− r), u(t), u(t− s)), t ∈ [t0, T ] (8b)

y(t) =φ(t), t ∈ [t0 − r, t0], (8c)

u(t) =ψ(t), t ∈ [t0 − s, t0]. (8d)

The Hamiltonian H for the delayed control problem is defined in analogy to the non-delayed
control problem:

H = f(t, y, w, u, v) + λ · g(t, y, w, u, v), (9)

where w and v denoting the delayed state and control variables.
The first order optimality conditions for the delayed control problem obtained by applying the
Pontryagin’s Minimum Principle with delay which derived by Göllmann et al. [24] and consisting
of:
the state differential equation

y′(t) = g(t, y(t), y(t− r), u(t), u(t− s)), t ∈ [t0, T ] (10)

the adjoint state differential equation

λ′(t) = −Hy − χ[t0,T−r](t)Hw(t+ r) (11)

where χ[t0,T−r] denotes the indicator function of the interval [t0, T − r] and defined by

χ[t0,T−r] =

{
1 if t ∈ [t0, T − r],

0 otherwise.

with transversality conditions
λ(T ) = 0.

Local minimum condition for the Hamiltonian

Hu + χ[t0,T−s](t)Hv(t+ s) = 0. (12)
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4 Extended one-step methods

Given the initial value problem

y′(t) = f(t, y(t)), 0 < t ≤ b,

y(0) = y0, t = 0.
(13)

It is well known that the order of a k−step method cannot exceed k + 2, therefore the A-stable
linear multistep method (LMM) can not exceed 2 [14]. To overcome this ”order barrier” imposed
by A-stability, we use the so called extended one-step A-stable methods of order up to five,
constructed by coupling several LMMs (see [21], to solve the dynamical system of the problem.
After discretization of the problem (13), one can get

yn+1 = yn + h[ α0fn + α1fn+1 +

m−1∑
j=2

αjfn+j ] + κn(h) , (14)

with

yn+j = βj0yn + βj1yn+1 + h[ γj0fn + γj1fn+1 +

j−1∑
i=2

γjifn+i] + Enj(h). (15)

The extended one-step scheme of such problem takes the form

yn+1 = yn + h[ α0fn + α1fn+1 +

m−1∑
j=2

αj f̂n+j ] + Tn(h),

ŷn+j = βj0yn + βj1yn+1 + h[ γj0fn + γj1fn+1 +

j−1∑
i=2

γjif̂n+i]

(16)

where αj , βj0, βj1, γj0, γj1 and γji, j = 2, 3, . . .m− 1 are real coefficients, fn = f(tn, yn) and
yn is an approximation to y(tn) at a sequence of equally spced points, tn = nh, n = 0, 1, . . . , N .
One can refer to such a methods (omitting Tn(h)) by Table 1.

α0 α1 α2 ... αm−1

β20 β21 γ20 γ21
β30 β31 γ30 γ31 γ32

...
...

...
. . .

βm−1,0 βm−1,1 γm−1,0 γm−1,1 γm−1,2 . . . γm−1,m−2

Table 1: Coefficeints of the extended one-step methods.

Usmani and Agarwall [15] deduced an extended one-step third order A-stable scheme by
requiring that En2(h) = O(h3). Later, Jacques [16] modified the method of such schemes to
obtain a one parameter family of third order L-stable method by requiring that En2(h) = O(h3).
Chawla et al. [20] obtained a two-parameter family of fourth order and A-stable methods by
requiring that En2(h) and En3(h) = O(h3) ;there exists a one-parameter sub-family of these
methods which are, in addition, L-stable. Chawla et al. [21] extended these ideas to obtain a
two-parameter family of fifth order and gave sub-families of A-stable and L-stable methods.
The general idea, for the derivation of a methods of order m , we require that κn(h) and Tn(h) =
O(hm+1) while Enj(h) = O(hm−1).
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Table 2: A-stable scheme (left) and L-stable scheme (right) of order four for the ODEs (13) [20].
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Table 3: A-stable scheme (left) and L-stable scheme of order 5 for the ODEs (13) [21].

Tables 2 & 3 display the tubule of A-stable and L-stable of order four and five, respectively.

We extend the above schemes to the DDEs

y′(t) = f(x, y(t), y(α(t)), a ≤ t ≤ b,

y(t) = g(t), ν ≤ t ≤ a.
(17)

Here f , α and g denote given functions with α(t) ≤ t for t ≥ a , the function α is usually called
the delay or lag function and y is unknown solution for t > a. If the delay is a constant, it is
called the constant delay, if it is a function of only time, then it is called the time dependent
delay, if it is a function of time and the solution y(t), then it is called the state dependent delay.
The existence, uniqueness, and continuation of solutions to the above problem have been studied
by Driver [1].

The extended one-step scheme for DDE (17) is given by

yn+1 = yn + h[ α0fn + α1fn+1

+

m−1∑
j=2

αj f̂n+j ], n = 0, 1, . . . , N − 1,
(18)

where f̂n+j = f(tn+j , ŷn+j , y
h(α(tn+j))) and αj , j = 2, 3, . . .m − 1 are real coefficients. The

function yh is computed from⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yh(t) = g(t) for t ≤ a

yh(t) = βj0yk + βj1yk+1 + h[ γj0fk

+ γj1fk+1 +

j−1∑
i=2

γjif̂k+i] ,

tk < t ≤ tk+1 k = 0, 1, . . .

(19)

where βj0, βj1, γj0, γj1 and γji are real coefficients. The function ŷn+j are computed from (19)
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when t = tn+j . In this paper, we will use ˜ for the coefficients of ŷn+j as in the following form

ŷn+j = β̃j0yn + β̃j1yn+1 + h[ γ̃j0fn + γ̃j1fn+1

+

j−1∑
i=2

γ̃jif̂n+i]
(20)

Scheme of third order (m = 3)

In order to determine the coefficients α0, α1 and α2, we rewrite (18) for m = 3 in the exact form

y(tn+1) = y(tn) + h [α0f(tn, y(tn), y(α(tn)))

+ α1f(tn+1, y(tn+1), y(α(tn+1)))

+ α2f(tn+2, y(tn+2), y(α(tn+2)))]

+ κ(tn+1).

(21)

We expand the left and right sides of (21) in the Taylor series at the point tn+1, equate the
coefficients up to the third order terms O(h3) and solving the resulting system of equations, we
obtain

α0 =
5

12
, α1 =

2

3
, α2 = − 1

12
(22)

and

κ(tn+1) =
h4

24
y(4)(ξ) (23)

where tn < ξ < tn+2. Substituting from (22) into (18) for m = 3, we obtain

yn+1 = yn +
h

12

[
5fn + 8fn+1 − f̂n+2

]
(24)

where
yh(t) = g(t) for t ≤ a (25)

and yh(t) with t > a is defined by

yh(t) = β20yk + β21yk+1 + h [γ20fk + γ21fk+1] ,

for tk < t ≤ tk+1; k = 0, 1, . . .
(26)

In order to determine the coefficients β20, β21, γ20 and γ21, we rewrite (26) in the exact form

y(t) =β20y(tk) + β21y(tk+1) + h [γ20f(tk, y(tk), y(α(tk)))

+ γ21f(tk+1, y(tk+1), y(α(tk+1)))] + E(tk+1).
(27)

Similarly, we expand the left and right sides of (27) with Taylor series at point tk+1 and equate
the coefficients up to the terms of second order O(h2). We obtain the resulting system of
equations ⎧⎪⎨

⎪⎩
β20 + β21 = 1

β20 − γ20 − γ21 = −δ(t)

β20 − 2γ20 = δ2(t)

(28)

where

δ(t) =
1

h
(t− tk+1). (29)
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The solution of the above system (28) is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β20 = 1− β21

γ20 =
1

2
(1− β21 − δ2(t))

γ21 =
1

2
(δ2(t) + 2δ(t)− β21 + 1)

(30)

and

E(tk+1) =
h3

12
(2δ3(t) + 3δ2(t) + β1 − 1)y(3)(η) (31)

where β21 is a free parameter and tk < η < tk+1. Substituting from (30) into (26), we obtain

yh(t) =(1− β21)yk + β21yk+1 +
h

2

[
(1− β21 − δ2(t))fk

+(δ2(t) + 2δ(t)− β21 + 1)fk+1

]
,

for tk < t ≤ tk+1; k = 0, 1, . . . ,

(32)

Finally, from ( 32), the approximation ŷn+2 is determined in the form

ŷn+2 = (1− β21)yn + β21yn+1 − h

2

[
β21fn + (β21 − 4)fn+1

]
. (33)

Equations (24), (32) and (33) are the basis of the third order methods (see [22]). It has proved
that this method is P-stable for β21 ∈ (−∞, 2] (see [22])

We can estimate the parameters for schemes of order 4 and order 5 in the same manner (see
[23]).

5 Numerical Methods for Optimal Control Problems

In this section, we provide the numerical algorithm for solving optimal control problems which
are generally nonlinear. These problems generally do not have analytic solutions (e.g., like the
linear-quadratic optimal control problem). As a result, it is necessary to employ numerical
methods to solve optimal control problems. In the early years of optimal control (circa 1950s to
1980s) the forward approach for solving optimal control problems was that of indirect methods.
In an indirect method, the calculus of variations is employed to obtain the first-order optimal-
ity conditions. These conditions result in a two-point (or, in the case of a complex problem,
a multi-point) boundary-value problem. This boundary-value problem actually has a special
structure because it arises from taking the derivative of a Hamiltonian.

The indirect methods is based on Pontryagin’s Maximum Principle, in which it is necessary
to explicitly get the adjoint state equation, the control equation and the transversality condition.
A numerical approach using the indirect method, know as Forward-backward sweep method [2]
applied here in order to solve the optimal control problem governed by ODEs. The main idea
of the algorithm is described as follows:

1. Provide an initial guess for the control variable u over the interval .

2. Use the initial condition for the state variable y0 = y(t0) and the values for u to solve for
the state forward in time by using EOSM.

3. Solve the adjoint state backward in time by using EOSM, with the given state solution
from the previous step and the transversality condition, λ(T ) = 0.
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4. Update the value of the control by entering the new values of the state and the adjoint
state into the characterization of the optimal control.

5. Verify for convergence by repeating steps 1-4 until successive values of all state, adjoint,
and control functions are sufficiently close.

The solution technique of the first order optimality conditions for delay optimal control
problems can be considered as follows:
Let there exists a step size h > 0 and integers (N,m1,m2) ∈ IN3 with r = m1h, s = m2h and
T − t0 = Nh. We put m = max{m1,m2} and τ = max{r, s}. Then τ = mh, and we consider m
knots to left of t0 and right of T . Hence, we obtain the following partition:

	 = t−m = −τ < · · · < t−1 < t0 < t1 < · · · < tN = T < · · · < tN+m. (34)

Thus, we have ti = t0 + ih, where −m ≤ i ≤ N + m. Next, we define the state and adjoint
variables y(t), λ(t) and the controls u(t) in terms of nodal points yi, λi, ui. Therefore, we get the
following algorithm:

Algorithm 1 Numerical algorithm for solving optimal control problem.

Step 1:
for i = −m, ..., 0, do

yi = φ(ti) and ui = ψ(ti),
end for
for i = N, ..., N +m, do

λi = 0,
end for
Step 2:
for i = 0, ..., N − 1, do

Solve the state forward in time by using EOSM.
end for
Step 3:
for i = 0, ..., N − 1, do

Solve he adjoint state backward in time by using EOSM, with the given state solution
from the previous step and the transversality condition, λ(T ) = 0.

end for
Step 4:
Update the value of the control by entering the new values of the state and the adjoint state
into the characterization of the optimal control.
Step 5:
Verify for convergence by repeating steps 1-4 until successive values of all state, adjoint, and
control functions are sufficiently close.

6 Numerical Examples

In this section, we present various examples of unconstrained and constrained optimal control
problems governed by ordinary and delay differential equations to show the efficiency of the
extended one step method. All the results obtained by applying the third order extended one
step method with β21 = 0
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Example 1 [14] Consider the Feldaum problem of minimizing

min
u

J(y, u) =
1

2

∫ 1

0
(y + u2)dt (35)

subject to
y′(t) = −y(t) + u(t), y(0) = 1 (36)

and analytical solution:

y(t) = −1

2
+

1

4
et−1 + e−t(

3

2
− 1

4
e−1) (37)

u(t) = −0.5(1− et−1) (38)

In Table 4, we compare the results of the third order extended one step method by the analytical
solution, results obtained in [18] and RK methods of order 3. The numerical simulations of the
optimal state and optimal control are given in Figure 1.

t exact EOSM [18] R-K
u(t) y(t) u(t) y(t) u(t) y(t) u(t) y(t)

0 -0.3161 1.0000 -0.3151 1.0000 -0.38582 1.0000 -0.3952 1.0000
0.2 -0.2753 0.7651 -0.2744 0.7666 -0.27687 0.75939 -0.3569 0.7842
0.4 -0.2256 0.5810 -0.2248 0.5837 -0.19023 0.57994 -0.3044 0.6091
0.6 -0.1648 0.4403 -0.1642 0.4438 -0.11889 0.44720 -0.2326 0.4710
0.8 -0.0906 0.3374 -0.0902 0.3416 -0.05714 0.35047 -0.1344 0.3677
1 0 0.2680 0 0.2728 0 0.28196 0 0.2984

Table 4: values of the controls and states for example 1.

Example 2 ([2]) Consider the following optimal control problem

min
u

J(y, u) =

∫ 1

0
y2(t) + u(t)2dt (39)

subject to
y′1(t) = y2(t), y1(0) = 0, y1(1) = 1. (40)

y′2(t) = u(t), y2(0) = 0.

In this example, we have 2 state variables y1, y2 and control u. For each state equation, there
is one associated adjoint equation.If each state variable has two conditions (as an initial and a
final time condition), then the adjoint variable associated with that state trajectory will have no
transversality condition. The optimal states y1 and y2 are shown in Figure 2.

Example 3 ([2]) Consider the following optimal control with bounded control

max
u1,u2

∫ 1

0
y(t)− 1

8
u1(t)

2 − 1

2
u2(t)

2dt (41)

subject to
y′1(t) = u1(t) + u2(t), y(0) = 0, (42)

1 ≤ u1(t) ≤ 2.

The optimal controls u1 and u2 are given in Figure 3.
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Figure 1: Optimal control and state for example 1.

Example 4 ([17]) This is an example for the Bang-Bang Controls

max
u

J(y, u) =

∫ 2

0
2y(t)− 3u(t)dt (43)

subject to
y′1(t) = y(t) + u(t), y(0) = 5 (44)

0 ≤ u(t) ≤ 2

If we view this as a simple population model with exponential growth, our aim to increase the
population as much as possible and keeping the cost of the control down. The optimal control
and state are shown in figure 4.

Example 5 (see[24])
Consider the following optimal control problem governed by delay differential equation with the
delay r = 1 in the state and s = 2 in the control

Minimize J(y, u) =

∫ 3

0
(y2 + u2)dt (45)
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Figure 2: Optimal states for example 2.
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Figure 3: Optimal controls for Example 3.

subject to
y′(t) = y(t− 1)u(t− 2), t ∈ [0, 3] (46)

y(t) = 1, −1 ≤ t ≤ 0 (47)

u(t) = 0, −2 ≤ t ≤ 0 (48)

The optimality system is:

y′(t) = y(t− 1)u(t− 2), t ∈ [0, 3] (49)
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Figure 4: Optimal Control and state for example 4.

with initial state profile
y(t) = 1, −1 ≤ t ≤ 0 (50)

The co-state equations

λ′(t) =
{ − 2y(t)− λ(t+ 1)u(t− 1), t ∈ [0, 2]

− 2y(t), t ∈ [2, 3]
(51)

with the transversality condition
λ(3) = 0

and the control

u(t) =

⎧⎨
⎩ − 1

2
λ(t+ 2), t ∈ [0, 1]

0, t ∈ [1, 3]
(52)

The optimal state and optimal obtained by applying the extended one step method comapred
by the analytical solution are given in Figure 5

Example 6 (see[25])

Minimize J(y, u) =
1

2

∫ 5

0
(10y21 + y22 + u2)dt (53)

13



−1 −0.5 0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

1
we compare the exact solution by the numerical solution of y

the numerical solution
the exact solution

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0
we compare the exact solution by the numerical solution of u

the numerical solution
the exact solution

Figure 5: Comparison of the numerical solution of the optimal control and state by the exact
soltion

subject to
y′1(t) = y2(t) (54)

y′2(t) = −10y1(t)− 5y2(t)− 2y1(t− τ)− y2(t− τ) + u(t) (55)

with initial state profile
y1(t) = y2(t) = 1, −τ ≤ t ≤ 0 (56)

The optimality system is:
y′1(t) = y2(t) (57)

y′2(t) = −10y1(t)− 5y2(t)− 2y1(t− τ)− y2(t− τ) + u(t) (58)

with initial state profile
y1(t) = y2(t) = 1, −τ ≤ t ≤ 0 (59)

The co-state equations

λ′
1(t) =

{ − 10y1(t) + 10λ2(t) + 2λ2(t+ τ), t ∈ [0, 5− τ ]

− 10y1(t) + 10λ2(t), t ∈ [5− τ, 5]
(60)
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Figure 6: The curve of optimal control for example 6 under different values of delay.

λ′
2(t) =

{ − y2(t)− λ1(t) + 5λ2(t) + 2λ2(t+ τ), t ∈ [0, 5− τ ]

− y2(t)− λ1(t) + 5λ2(t), t ∈ [5− τ, 5]
(61)

with the transversality condition

λi(tf )
∗ = 0, i = 1, 2

and the control equation
u(t) = −λ2(t), t ∈ [0, 5] (62)

This optimal control problem is solved for different values of τ , namely 0.1,0.5, 1 and 2 using
the extended one-step method; See Figure 7-6
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Figure 7: The curve of states for example 6 with different values of delay.

7 Conclusion

In this paper, we provided a new numerical method, based on extended one-step schemes, for
solving optimal control problems governed by ODEs and DDEs. All the results have been
obtained by applying the third order extended one step method with β21 = 0 . We presented
different problem reformulations and compared the performance w.r.t exact solutions. The
suggested method is suitable and efficient for optimal control systems governed by both ordinary
and delay differential equations.
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