L>*-ERROR ESTIMATES FOR THE OBSTACLE PROBLEM
REVISITED

C. CHRISTOF?

Abstract. In this paper, we present an alternative approach to a priori L°°-error estimates for
the piecewise linear finite element approximation of the classical obstacle problem. Our approach is
based on stability results for discretized obstacle problems and on error estimates for the finite element
approximation of functions under pointwise inequality constraints. As an outcome, we obtain the
same order of convergence proven in several works before. In contrast to prior results, our estimates
can, for example, also be used to study the situation where the function space is discretized but the
obstacle is not modified at all.
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1. Introduction. This paper is concerned with a priori L°°-error estimates for
the piecewise linear finite element approximation of the classical obstacle problem

1
minf/Vv-Vvdx—U’,v)
2 Ja
st.ve K:={z€ H}(Q): 2> ae. in Q}.

Pointwise error estimates for the problem (P) have been studied by various authors
before. They are typically derived by analyzing the error in mesh cells near the contact
set of the continuous solution (i.e., the set where the solution and the obstacle coincide)
and by subsequently applying the discrete maximum principle of Raviart-Ciarlet (cf.
[5]). We only mention [2,8,13,15] as references. In this paper, we take a more global
perspective and demonstrate that a priori L>-error estimates for the problem (P)
can also be obtained as corollaries of a more general stability result for discretized
obstacle problems. Our method of proof has the advantage that the resulting error
estimates are more flexible than their classical counterparts. They can, for example,
also handle curved obstacles in the discrete setting. Moreover, our approach illustrates
that the problem of estimating the approximation error for (P) is, in fact, a problem
of sensitivity analysis. This interpretation turns out to be very advantageous when it
comes to analyzing the behavior of the approximation error in lower LP-norms and the
limitations of the piecewise linear finite element method. The alternative viewpoint
provided by our analysis and the flexibility of our estimates were, for example, of
major importance for the construction of two counterexamples found in a companion
paper [4] which demonstrate that the convergence rates obtained for the L°°-error
are at least in the one-dimensional setting also optimal if the LP-error, p > 1,
is considered. The latter implies in particular that the Aubin-Nitsche trick does not
work for the obstacle problem. We refer to [4] for details on this topic.

The outline of this paper is the following: In Section 2, we clarify the notation, address
the used discretization scheme, and recall basic results about the solvability of the
obstacle problem and the regularity of its solution. In the subsequent section, we
introduce the concept of discrete supersolutions and use it to study the stability of
the approximate problems obtained from the finite element discretization. We will see
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here that, in contrast to the continuous setting, the solution operator of a discretized
obstacle problem is not Lipschitz as a function of the obstacle if the latter is allowed
to be curved. Section 4 is devoted to the a priori error analysis in the L°°-norm.
Here, it is demonstrated that L°°-error estimates for the obstacle problem follow
straightforwardly from the stability results of Section 3 if the Ritz projection of the
continuous solution is identified with the solution of an appropriately defined discrete
problem. The order of convergence that we ultimately obtain in this section is the
same as in the classical works of Nitsche [15] and Baiocchi [2]. Lastly, in Section 5 we
conclude our investigation with some remarks and a discussion of open problems. The
appendix of this paper contains results about one-sided finite element approximations
that are needed for our argumentation. The theorems found there may also be of
independent interest.

2. Preliminaries. In what follows, Q0 will always denote a bounded Lipschitz
domain in R?, where d € N is arbitrary but fixed. Furthermore, we will use the
standard abbreviations H} (), W™P(Q), C™7(Q) and H~1(2) for the Sobolev spaces
on €, the Hélder spaces on the closure Q and the dual of Hg () w.r.t. the L2-inner
product. The pairing between elements of H:(Q) and H—1(Q) will be denoted with
(.,.). We refer to [1] and [7] for details.

As already mentioned, the objective of this paper is to study the classical unilateral
obstacle problem with zero boundary conditions: Given an f € H~1(Q) (the force)
and a measurable function 1 :  — R (the obstacle) find the solution to

1
min 5@(1},1}) —(f,v)
st.ve K:={z€ H}(Q): 2> ae. in Q}.

(P)

The bilinear form a appearing here is defined to be
a:Hy(Q) x Hy(Q) = R, (v,w) / Vo - Vwda.
Q

Using that a is coercive (due to the inequality of Poincaré-Friedrichs), it is easy to
prove that (P) admits a unique solution provided the admissible set K is not empty.
A detailed analysis shows the following:

THEOREM 2.1. If ¢ : Q — R is a measurable function such that K is not empty,
then for all f € H=1(Q) there is a unique solution u € K to the problem (P) and this
solution is also uniquely determined by the variational inequality

ue K: alu,u—v)<(fu—v) YvekK. (2.1)

Moreover, the solution map S : H=Y(Q) > f + u € H}(Q) is Lipschitz continuous.
If, further, there exists a 2 < q < oo such that 1, f and Q satisfy

- fELYN), v € WHQ) and trep <0 a.e. on O,

- there ezists a constant C = C(£2,q) > 0 such that for all functions v € HJ ()
with Av € LI(Q) it holds

[ollwza < CllAv]|La, (2.2)
then the solution u is in W>9(Q) and there exists a constant C' = C'(Q,q) such that

lullwza < C" (I fllze + [ max(=Azp = f,0)][e) .
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Proof. The unique solvability of (P), the characterization of the solution u by (2.1)
and the Lipschitz continuity of the solution operator follow from standard results like
the well-known theorem of Lions-Stampacchia (see, e.g., [12, Chapter II]). The W24
regularity of the solution can be obtained with an approximation argument. We refer
to [12, Chapter IV] for details. O

A constant C(€, ¢) with property (2.2) exists, for example, if the domain Q has a C1!-
boundary and 2 < ¢ < oo (see [9, Theorem 9.15, Lemma 9.17]) or if 2 is a polygon
with largest interior angle o and 2 < ¢ < (1 — 7/(2a))~! (see [10, Theorem 4.4.4.13]
and [11, Theorem 2.2.3, Theorem 2.4.3.]). It should be noted that the solution
to the problem (P) will in general not possess higher derivatives than stated in the
last theorem even if the obstacle 1 and the force f are smooth. If we consider, for
example, the situation Q = (—2,2), f(z) = 0 and ¥ (z) = 1 — 22, then the solution
u is a spline whose second derivatives are discontinuous at the boundary of the set
{u = ¢} where the solution and the obstacle coincide. This illustrates that higher
order finite elements provide little practical advantages in the case of problem (P) (at
least as far as non-adaptive methods are concerned) and explains, why it makes sense
to restrict the analysis to piecewise linear functions.

Having dealt with the existence, the uniqueness and the regularity of the exact solu-
tion, we now turn our attention to the discretization. First, let us recall some basic
concepts (cf. [3]):

DerFINITION 2.2. If Q C R? is a bounded domain with a Lipschitz boundary, then
a collection T = {T;} of finitely many closed d-dimensional simplices T; is called a
triangulation of € if the following holds:

-yt =9,
- If C; denotes the set of all vertices of a simplex T; € T and conv(...) denotes
the convex hull of a set, then for all T;,T; € T it is true that

T; NT; = conv(C; N Cy).
If a Lipschitz domain admits a triangulation, we call it a d-dimensional polyhedron. A
familiy F = {Th}o<h<n, of triangulations is called quasi-uniform if there are positive
constants p1 and pa such that for all 0 < h < hq it holds

max{diamT : T € T} < p1th and min{diam By : T € Ty} > pah. (2.3)

Here, B denotes the largest ball contained in a simplex T .
To approximate (P), we will consider finite-dimensional minimization problems of the

form

) min %a(vh,vh) = (fn>vn)

s.t. vp € K :={z, € V,? D zp > Y ae.in Qp}

Our standing assumptions are as follows:



ASSUMPTION 2.3.

- {Qn}Yo<h<n, s a family of d-dimensional polyhedra with 2, C Q for all h,

- {Th}Yo<h<hy s a quasi-uniform family of triangulations such that each Ty, is
a triangulation of 2y, for all h,

- V0 :={ve Q) :v|r is affine for all T € T}, and Vlg\q, =0},

- Yp : Qp — R is measurable for all h,

- fn € HY(Q) for all h.

Note that the condition €2, C Q ensures that V! is a subspace of H}(2). This implies
in particular that the quantities a(vp,vp) and (fp,vs) are well-defined. For brevity’s
sake, in what follows we will often suppress the range of the mesh width h, i.e., we
will write {Q,} instead of {Qp,}o<n<n,. B > 0 instead of hg > h > 0 etc. Using again
the theorem of Lions-Stampacchia, it is straightforward to prove:

THEOREM 2.4. If the admissible set Ky, is not empty, then for all f;, € H=Y(Q) there
exists one and only one solution uy € V,? to the problem (Py) and this solution is also
uniquely determined by the variational inequality

up, € Ky, : a(uh,uh — Uh) < <fh7uh — ’U;L> Yoy, € K. (2.4)

Moreover, the solution operator Sy : H=1(2) > fi — uy € HE(Y) is Lipschitz contin-
wous with a Lipschitz constant independent of h.

It should be noted that we do not assume ), to be an element of our finite element
space. This will be of major importance in Section 4.

3. Discrete Supersolutions and Stability Results. To estimate the error
between the continuous solution u and the finite element approximation wu,, we will
study the sensitivity of the solution map (fx,v¥n) — wuy associated with the discrete
problem (Pp). The main tool of our stability analysis will be a variant of the discrete
maximum principle of Raviart-Ciarlet that is tailored to the study of the variational
inequality (2.4). More precisely, we will make use of the following concept:

DEFINITION 3.1. A function gy, is called a discrete supersolution of the problem (Pp)
if it holds:

- gn € Vi i={v € C(Q) : v|7 is affine for all T € Ty},

- a(gn,vn) < (fn,vn) for all v, € V2 with v, <0 in Qp,

- gnh = Yn a.e.in Qp,

- gn >0 on 9Qy,.

The expression a(gn,vy) appearing in the second point of the above definition is, of
course, to be understood as

a(ghﬂ)h) = o Vap - Vo dz.
h

In what follows, we will make frequent use of this slight abuse of notation.

Note that Definition 3.1 extends the concept of supersolutions employed in [12] straight-
forwardly to the discrete setting. The main idea in the following is to prove that
discrete supersolutions exhibit broadly the same behavior as their continuous coun-
terparts, i.e., to show that a discrete supersolution g, majorizes (at least in some
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sense) the solution up of the problem (P,). To obtain such a result, we have to
restrict our analysis to triangulations of a special type:

DEFINITION 3.2. A triangulation Tp, of Qp is said to satisfy the condition (Z) if

a(h, 1) = /Q Vi - Vlde <0 Vi j with z; ¢ 0. (3.1)
h

Here, {x;} denotes the set of all vertices of the triangulation T, (including those on
the boundary 0Q,) and {}} denotes the nodal basis of the space V), (i.e., the basis
with i (z) = 6; for all nodes ).

The condition (Z) expresses that the system matrix arising from the finite element
discretization has to be a Z-matrix. (It is easy to see that it is even an M-matrix
in this case). It should be noted that assumptions of the type (Z) are well-known in
the context of discrete maximum principles (see, e.g., [5]). In our approach, the non-
negativity condition (3.1) will come into play very naturally in the proof of Theorem
3.4. As the following lemma shows, the triangulations satisfying the condition (Z)
can be characterized precisely in terms of certain geometric features:

Lemma 3.3 (]19]).

- If d =1, then every triangulation satisfies (7).
- If d = 2, then (Z) is satisfied if and only if for each edge E of Ty with
E & 0y, it holds

921 + 952 <.

Here, 9?,0? € (0,7) denote the angles that oppose E in the adjacent mesh
cells Ty and Ty (see Figure 3.1).

- Ifd > 2, then (Z) is satisfied if and only if for all edges E of Ty, with E € 0Q,
it holds

Z H2(KE) cot HL > 0.
TOE

Here, for every T = conv(pi, ...,pa+1) € Tn and every E = conv(p;,p;) C T
the quantities k% and 0L are defined by

Kp=9S;NS; and 0% :=4£(S;,S;),
where S; and S; denote the (d — 1)-dimensional simplices
S 1= conv(P1y ooy Die15 Dit1y -y Pd+1)
and
S; =conv(pi, ..., Pj—1,Djt1, s Pd+1)
and £(S;,S;) € (0,m) denotes the angle enclosed by S; and S; (or the normal

vectors of S; and S;, to be more precise). With H'=%(.), we mean the (d—2)-
dimensional Hausdorff measure.



i
Fia. 3.1. The geometric situation in Lemma 3.3 for d =2 and d = 3 (cf. [19]).

Using the results about one-sided finite element approximations found in the appendix
of this paper, we can prove:
THEOREM 3.4. Assume that the admissible set Ky, of the problem (Py) is not empty
and that Ty, satisfies (Z). Assume further that the obstacle vy, in (Py) satisfies

Y € C(Q) and Yylr € CY(T) VYT €T,

for some v € (0,1] and let py be the constant in (2.3). Then (P) admits a unique
solution up, and for every supersolution gn of (Pr) it is true that

Vd .
up < gn + m p%+vh1+v Ymea%( [Ynlcrrry in Qp, (3.2)

where

max  sup |0k n () — Opbn(y)|

h 1, =
[¥nlora () k=Lyrod gty T o — y[|

The above theorem shows that discrete supersolutions at least approximately behave
as expected: They are larger than the solution u; modulo an error that depends on
the mesh width A and the curvature of the obstacle 1. The inequality u;, < gy,
i.e., the behavior observed in the continuous setting (cf. [12, Theorem 116.4]), is only
obtained if 1, is an element of the space Vj,.

Proof of Theorem 3.4. The existence of the solution uy, follows straightforwardly from
Theorem 2.4. To prove inequality (3.2), we will use an argument similar to that
employed in the continuous setting (cf. [12]). In a first step, we define g} = g, + C,
where

Vd

- Ly 14y ]
: 1_1_71)1 max Yot (1)

Note that gj, is again a supersolution since the addition of a positive constant to the
function g has no effect on the properties in Definition 3.1. We now consider the
unique element vy, in V}, with

vp(z;) = min(up(z;), g5 (1)) Vi, (3.3)

where {z;} again denotes the set off all vertices of 7 (including those on the boundary
Q). Since up, € V0, the function v, can be identified with an element of V! and
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from (3.3) we readily obtain that v, < wup holds everywhere in Q,. Furthermore,
it follows from our construction that v, > . To see this, we use that according
to Theorem A.4 from the appendix (applied to z := up — 1p,), for every mesh cell
T € T, with vertices py, ..., pg+1 we can find an affine linear function 1/){ on T such
that ¢y, < wg < uy, holds on T" and such that

Vd
0 < 9p (k) — tn(pr) < T4 P1+7h1+7|¢h|cl,v(m Vk=1,.,d+1.

This yields that v, satisfies

on(pr) = min(un (pr), gn(pr) + C) = min(Yy (pr), ¥u(pr) + C) = ¥ (pr)

for all k = 1,...,d + 1. From the affine linearity of v;, and ¥} on T, it now follows
vy, > z/;,? > 1)y, which implies vy, > vy, on €2, as claimed. From the second property in
Definition 3.1 and the variational inequality (2.4), we may now deduce:

a(gp,vn —un) < (frnovn —up)  and  a(up, up —vp) < (fn, un — vp).

If we add these inequalities and define y; := uy(z;) — g}, (x;) for all nodes z;, we obtain
(using the properties of vy,)

0> a(up — gj,, un — vn)

=Y yimax(0,yi)a(eh, @) + > yimax(0,y;)al¢}, )

=" max(0,y,)%a(p}, ) + > yimax(0,y;)a(h, 1), (34)
x; ziF#x; and x;€0Qy,

where {¢} } again denotes the nodal basis of V},. Because of the condition (Z), how-
ever, we also know that for all ¢, j with z; # z; and x; ¢ 9, it holds

yi max(0,y;)a(g), ¢},) > max(0, y;) max(0,y;)a(e}, ¢5)-

Thus, (3.4) implies

0> Z Zmax(o,yi) max(0,y;)a(eh, 1) = alup — vn, up —vy) >0
Ty T
and consequently

up(x;) — vp(x;) = max(0,up(z;) — g5, (2:)) =0 V.

Using again the piecewise linearity of the involved functions, we may deduce

Vid
up, < g, =gn+C=gn+ —p%ﬂhl*” ma

T+ T€72§|¢h‘017(T) in Q

This completes the proof. 0

Theorem 3.4 allows to analyze the sensitivity of the solution w;, with respect to per-
turbations of the obstacle v, and the force fj:

7



THrEOREM 3.5. Consider two discrete obstacle problems of the form
1
min = a(vp, vn) = ([, Vn)

(Ph,i) 2 ) 1= 1727
s.t. vy, € K i={zp € V,? tzp >, ae. in Q)

and assume that:

- fh,lvfh,? € H_l(Q))
- the underlying triangulation Ty, satisfies (Z),

- Y1, ne € C(Q) and Kpq # 0, Ko # 0,
- there exist 1,72 € (0,1] such that Yy, ;|7 € CYi(T) for all T € Ty, , i = 1,2.

Let p1 be the constant in (2.3). Then (Py1) and (Ph2) admit unique solutions up 1
and up2 and there exists a constant C > 0 independent of h such that
[(un,1 = un2) ™[l
< 1 @na = ¥n2) e + Cr(h)l fan — fr2llz—

+ H\/;lw (prh) max [¥n,1lctmn oy (3.5)
and
[(un,1 = un2)” [l
< ||(¥h1 — VYn2) " lLee + Cr(h)|| fo1 — frollg-1
T flw (prh)' max [1hn2|c1a (1)- (3.6)
Here, v™ := max(0,v) and v~ := min(0,v) denote the positive and the negative part

of a function, respectively, and r(h) is defined by:

1 ifd=1
r(h) == < (14 |logh)'/?  ifd=2. (3.7)
pl—d/2 ifd>3

Proof. The unique solvability of the problems (P 1) and (P 2) is a straightforward
consequence of Theorem 2.4. It remains to prove the estimates (3.5) and (3.6). If we
assume first that f,1 = fh2 and define g5 1 := up2 + ||(¥n1 — Yn2) ||, then it
certainly holds g51 € Vi, gn,1 > 0 on 0, and

Gh1 = U2 +Yn1 — Un2 > Yp1 in Q.

From the variational inequality associated with (P, 2) and the definition of a(.,.), it
follows further that g, ; satisfies

a(gn,1,vn) = alup2,vn) = a(un2, un2 — (U2 — 1)) < (fn2,0n) = (fa1,vn)

for every vy, € V}? with v, <0 in Qp. Thus, gp 1 is a supersolution for (P 1) and we
may deduce from our last theorem that

)1+71

up1 < gra + (p1h max [Ynalcrs @y  inQn,

1+m
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which implies

[(uny — un2) "l < 1 (Wna — ¥n2) e + (prh)"7 max [vhn1] o1 (1)-
TeTh (T)

1+

This is exactly (3.5) for f5,1 = fn2. The inequality (3.6) is obtained analogously if
we interchange the roles of w1 and wuy 2. This proves the claim for discrete obstacle
problems with identical forces. Assume now that fj, 1 # fr,2 and denote with wuy ; ;
the solution of the discrete obstacle problem with obstacle 4y, ; and force fj, j, then
it follows from the triangle inequality, the Lipschitz property in Theorem 2.4 and
well-known inverse estimates (see, e.g., [3, Section 4.5, 4.9]) that

[(un,1 = un2)™ [l
< (una1 = wn2,) o 4 lun2 — un22l L
< (un11 — un2,1) L + Crr(h)|Jun2y — un 2.2l o
<N (Wn1 = Vn2) L 4+ Cor(R) | fra — fr2llu—

\/g 1+v1
—_— A max .
P1 TET [Yn1lorm (T)>

14+m
where Cy,Cy are constants independent of h. This proves (3.5) in the general case.
The estimate (3.6) is again obtained by interchanging roles. O

As the above result shows, for fixed f; the solution operator v +— uy of the problem
(Py) is not Lipschitz continuous as a function from (a subset of) L>®(Q) to L>=(Q).
We only obtain a Lipschitz-like estimate with an error that again depends on the
mesh width A and the curvature of the involved obstacles. This is a major difference
to the continuous setting where it can be shown easily that the solutions u; and ws
of two obstacle problems with L°°-obstacles i1 and 1y and identical forces satisfy
llur — usllpe < Clltb1 — 2|l p~ (cf. |12, Theorem IV8.5]). It should be noted that
neither the continuous solution w nor the obstacle ¥ or the domain 2 have been
relevant for the derivation of (3.5) and (3.6). Up to now, we have solely worked with
the discrete problems.

4. L*>*-Error Estimates. A priori estimates for the error ||u — up||L~ can be
derived straightforwardly from Theorem 3.5. We just have to observe the following:
LEMMA 4.1. If u € H}(Q) is the solution to the obstacle problem (P) and Rpu the
Ritz projection of u, i.e., the unique element of V¥ satisfying

a(Rpu,vp) = a(u,vy) Yo, € V2, (4.1)

then Rpu is also the unique solution to the discrete obstacle problem

Q) min %a(vh,vh) —(f,vn)

s.t. vp € Vho and vy, > Y+ Rpu —u a.e. in Qp

Recall that we have assumed Qj, C Q (see Assumption 2.3). This ensures that u and
1 are defined everywhere in 0, and that the constraint in (@) makes sense.

Proof of Lemma 4.1. The Ritz projection Rju is obviously admissible for (@) and
because of (4.1) and the variational inequality (2.1), it holds

a(Rpu, Rpu —vp) = a(u, Rpu —vp,) = a(u,u — (u — Rpyu—+vy)) < (f, Rpu — vp,)
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for all vy, € V,? with vy, > ¥ + Rpu — u, i.e., u — Rpu + v, > 2. This shows that Rpu
is indeed the solution to (@) and completes the proof (cf. Theorem 2.4). O

Note that Lemma 4.1 holds without any further assumptions on the regularity of the
functions v and ¢ and that the obstacle ) + Rpu — u appearing in (@) is typically
not piecewise linear. By applying Theorem 3.5 to (Q},) and the problem (P,) used
for the finite element approximation, we obtain:

THEOREM 4.2. Assume that (P) admits a solution u and denote with Rpu the Ritz
projection of u as defined in (4.1). Suppose further that the following is satisfied:
- U,¢ € 0(5)7 ¢h € C(Qih) and Kh 7£ mi
- 31,72 € (0,1] with Yp|r € CY(T) and u|r,y|r € CY2(T) for all T € Ty,
- the triangulation Ty, satisfies (Z).

Then (Pp,) admits a unique solution uy, and there exists a constant C' > 0 independent
of h such that

[ (w = un) ™ ||Loe ()
< [(u = Ryu) ™[ oo @) + 1(@n — ¥ + u — Rau) [ L (ay)

+ Cr(W)f = fullm-10) + (prh)' max U]t (1) (4.2)

1+

and

[[(w = un) ¥l Lo )
< w = Rpu) | oo ) + 1(0n — ¥ + 1 — Rpu) ™ || Lo ()

+Cr(W)|f = falla-1) +

1472 _
T (prh) ™% max | — uloroaery. (43)

Here, r(h) is again defined by (3.7).

With the above theorem we have reduced the problem of finding an a priori estimate
for the error ||u — up || to that of estimating the L>-error between u and the Ritz
projection Rpu. The approximation properties of Rju, however, have been studied
by numerous authors and estimates for the quantity ||u— Rpu| = (q,) are well-known.
The following result can be found, for example, in [17]:

LEMMA 4.3. Assume that 0S) is smooth, that u € H}(Q)NC(Q) and that there exists
a constant § > 0 independent of h such that

max dist(x, 9Q) < 5h2.

€Iy,

Then there exists a constant C > 0 independent of h such that
Hu — RhuHLoo(Qh) < C‘ log h‘a inf ||u — UhHLoc(Qh)
v, eV0

with « =0 ford=1 and o =1 for d > 1.

Combining Theorem 4.2 and Lemma 4.3 yields:
10



COROLLARY 4.4. Let the assumptions of Theorem /.2 and Lemma 4.3 hold. Then
there exists a constant C' > 0 independent of h such that

[(w —un) ™ [| Lo (@)

<@ — )" ||z 1+m
< (W = ¥n) " L (n) + 15, (p1h) max [V |cron (1)

+Cr(WIf = fullm-r @) + Cllogh|* inf Jlu —vh]|L(a,) (4.4)
vp VY
and
1w = un) "l Lo @)

< —n) T pee
<N —vn)" L (Qh)+1+')/2

+ CT‘(h)Hf — fh”H—l(Q) + C| log h|a igf‘/o ||u — UhHLoo(Qh), (4.5)
vy €V

1+
(prh) ™7 max [Y — ulcrve (1)

where « and r(h) are defined as before.
As a consequence of Corollary 4.4, we obtain in particular:
COROLLARY 4.5. Assume that:

- 09 is smooth,

- f€LYQ) and ¢ € W2(Q) for some max(d,?2) < q < oo,
- try <0 a.e. on 09,

- there exists a constant § > 0 independent of h such that

max dist(z,0Q) < 6h?,
€N,

- the triangulation Ty, satisfies (Z).
Suppose further that one of the following holds:

a) vy, is equal to the Lagrange interpolant Iny € Vi, of ¢ and Ky, # 0.
b) Uy is equal to the restriction |q, and Ky # 0.

Then (P) and (Py) admit unique solutions u and uy, it holds u € H () N W?24(Q)
and there exists a constant C > 0 independent of h such that

lu — unl L)
< C|log h[*h*=Y9(|| fll Lacey + ¥ llw2a()) + Cr(R)|f = full -1 (4.6)

where « and r(h) are defined as before.

Proof. The unique solvability of the problems (P) and (P,) and the W2 %-regularity
of the solution u are direct consequences of Theorem 2.1 and Theorem 2.4. The error
estimate (4.6) follows straightforwardly from (4.4) and (4.5). We just have to employ
standard results about the accuracy of the Lagrange interpolant (as found, e.g., in
[3, Theorem 4.4.20]) and the embedding W24(Q) « C11-4/4(Q). 0

Note that in case a), (4.6) is the ’standard’ L>°-error estimate for the obstacle problem
that is usually found in the literature (cf. [2,13,15]).
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5. Concluding Remarks. The method that we have employed in the last two
sections to derive a priori error estimates for the obstacle problem (P) has some
advantages that we would like to point out here:

First of all, our approach is more flexible than the traditional one since we do not
require vy, to be the Lagrange interpolant I of the continuous obstacle ¢ (or an
element of the finite element space at all, cf. Theorem 4.2). Moreover, we can treat the
case (2, C Q) with ease since the relation between the domains €2 and €2, is completely
irrelevant for the stability analysis that our proofs are based on (cf. Theorem 3.5).

Second, our results provide slightly more information about the behavior of the ap-
proximation error than those found in the literature. We obtain, for example, in a
natural way separate estimates for the quantities (v —wu,)" and (u —uy)™~ that allow
to study in greater detail how the accuracy of the finite element method is affected
by the choice of ¢, (cf. (4.2) and (4.3)).

Lastly, our approach demonstrates that the problem of estimating the error between
the continuous solution u and the finite element approximation wu, can be identified
with a problem of sensitivity analysis: If we know how the solution of the discrete
obstacle problem (@) changes when the obstacle ¥ + Rpu — u is replaced with 1,
then we also know how the quantities v — uj, and u — Rpu, i.e., the errors associated
with the constraint and the unconstraint setting, are related to each other and vice
versa. Note that this interpretation is only possible when the obstacles in the discrete
problems are allowed to be arbitrary measurable functions (cf. the definition of (Qp,)).

The above perspective on the a priori error analysis turns out to be very advantageous
when error estimates in lower LP-norms are considered. In [4], for example, it was
used to construct two counterexamples which demonstrate (among other things) that
the estimate (4.6) is optimal in the one-dimensional case in the sense that there exist
situations where the assumptions of Corollary 4.5 are satisfied and where it holds
|lu = unllrr(,) = ord(h?>~1/7) for all 1 < p < co. Interestingly, the latter is true
regardless of whether the Lagrange interpolant Ij,1) or the restriction v|q, is chosen
as 1y, in (Py,). We refer to [4] for a detailed discussion of this topic.

It should be noted that the situation is much less clear in higher dimensions and
that it is (at least to the author’s best knowledge) presently unknown if an LP-error
estimate of the form ||u — uul/r(q,) = O(hY) with v > 2 —d/q and v > 1 can be
obtained for an obstacle problem with u, v € W%4(Q) if the dimension is greater than
one. A further open question is whether the condition (Z) can be weakened. The
results found in [6] indicate that the latter might be the case and that it might be
sufficient to assume that (3.1) holds in an appropriately chosen subset of Qj, to derive
Theorem 3.4 (cf. also the results in [16]). A proof of this conjecture, however, is still
pending.

Appendix A. Finite Element Approximation under Inequality Constraints.

In this section, we prove the approximation results that we have used in the proof of
Theorem 3.4. We will be mainly concerned with the following task:

Assume that T is a closed d-dimensional simplez with vertices pq, ..., pg+1
and let z be a function satisfying 0 < z € CY(T) for some 0 < v < 1.
Find an affine linear function zr such that 0 < zp < z holds in T
and such that zp approximates z as accurately as possible.
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The above approximation problem has already been studied by Mosco in [14] and
Strang in [18] for one- and two-dimensional H>2-functions. The method of proof that
we will employ in this section is closely related to the approach of these two authors.
Our analysis, however, also covers the higher-dimensional case.

To construct an approximation zp with the desired properties, we introduce a partial
order on the set of affine linear functions on 7' (analogously to [14]) and define:

DEFINITION A.1. Let T CR? and 0 < z € C(T), 0 < v < 1, be as above and let
Vi={v:T — R:v affine linear with 0 <v < z in T}.

Then a function v € V is called a mazimal element of V if for every affine linear

function w with w Z 0 and w > 0 in T it holds v+w ¢ V.

Using standard arguments, it is easy to prove:

LEMMA A.2. The set V always admits at least one mazimal element.

Proof. If we denote with py, ..., pg11 the vertices of T and define

d+1 d+1 d+1
U= {v ERM 0D A <z (ZM%) for all \; > 0 with »_\; = 1},
i=1 i=1 i=1
then U is closed, non-empty and bounded. Thus, the function f(v) := Zfill v; attains
its supremum in U in some v. Because of its maximality, this v has to satisfy v+w ¢ U
for all w € R¥1\ {0} with w > 0 (componentwise). This, however, implies that the
affine linear map

d+1 d+1

i=1 i=1

defined in the barycentric coordinates w.r.t. the vertices p; of the simplex T is a
maximal element of V. O

To estimate the difference between z and a maximal element of V', we observe the
following:

LEMMA A.3. Let T CR% and 0 < z € CY(T), 0 < v < 1, be as above and denote
with p1,...,pa+1 the vertices of T. Let v be a mazimal element of V and define

E(v) :={CeT:2() =v()}-

Then E(v) is not empty and if it holds E(v) C conv(pi, ..., Dk—1, Pk+1, ---, Pd+1), where
conv(...) denotes the conver hull, then there exists a ¢ € E(v) such that

V(z=v)(C) - (P =€) = 0. (A1)

Proof. The non-emptiness of E(v) follows trivially from the maximality of v. To prove
the second part of the lemma, we assume w.l.o.g. that k = d+1, that conv(py, ..., pa) C
R~ x {0}, and that pg1 € R x (0,00). Since all ¢ € E(v) are global minima of
the function z — v € C1(T), it necessarily holds

D(C) = V(z = 0)(Q) - (pas1 — ) = 0 ¥C € E(v). (A2)
13



From the compactness of F(v) and the continuity of the function D : T — R, we
obtain that there exists a (' € E(v) with

D(¢') = min D(C) =m0, (A.3)

If the minimum m is zero, then the claim is obviously true. If m > 0, then there
exists an open ball B(() around each ( € E(v) such that D(z) > m/2 holds for all
x € TN B(¢) and we may define
B'(¢)
=B()N{Az+ (1 —A)pas1: 2 € B)NTN (R x {0}) and X € (0,1]}

and

E'w = |J B©.

CeE(v)
Note that it follows from our construction that E(v) C E'(v) C T (cf. Figure A.1).
Moreover, E’(v) is relatively open in 7' and it holds

V(z=v)(z): (paty1 — x) > %m Vi € E'(v).

Suppose now that ¢ is a constant satisfying 0 < ¢ < ¢ := m/(4x4(pa+1)), where
2q(pa+1) > 0 denotes the d-th coordinate of the point pgy1, and consider the function
ve(x) :=v(x) + cxq. Then v, is obviously affine and it holds

1 1
V(z —ve)(2) - (pay1 — ) > 3m= cxy(pas) > m Vo € E'(v).

From z — v, = z —v > 0 on T N (R?! x {0}), the mean value theorem, and the
fact that for every x € E’(v) the line between x and the unique 2’ = 2/(z) with
' € TN (R x {0}) and = € conv(2’, pgr1) is contained in E’(v) (cf. Figure A.1)
it follows further

(z = ve)(x) > (2 = ve) () — (2 — ve) (')

:/0 V(z—wve) (@ +t(x—2")) - (x—2)dt

P el Co et R
= [ Ve e =) P o — o

Sy QT
-m

— 4 o lpatr — (@ +t(z — ')
>0 VzeE(v).

To avoid a contradiction with the maximality of v, it now has to hold that for every
0 < ¢ < ¢ there exists at least one 2. € T\ E'(v) with (z — v.)(z.) < 0. The set
T\ E'(v), however, is compact. This implies that we can find a sequence ¢,, — 0 such
that x., converges to an 29 € T'\ E’(v) and such a limit 2 has to satisfy

0> lim (2 — v, )(z¢,) = lim (z —v)(z.,) = (z —v)(z0) > 0,

cn—0 cn—0
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i.e., zp € E(v) C E’(v). This is a contradiction to xg € T'\ E’(v) and shows that the

minimum m in (A.3) cannot be positive. 0
R
Pd+1
S E'(v)
2224 LT
pl \\—bj<(') ’, pd ]Rd_l ‘S~

Fia. A.1. The geomelric situation in the proof of Lemma A.3.

The intuition behind the proof of Lemma A.3 is clear: If v € V is a function with
E(v) C conv(p1, ..., Dk—1, Pk+1, -, Pa+1) such that there is no ¢ € E(v) with (A.1),
then we can increase the value v(py) without violating the constraint 0 < v < z and
v cannot be a maximal element. Using Lemma A.3, we obtain:

THEOREM A.4. Let T C R%, py,...,pay1 and 0 < z € CYV(T) be as before. Then
there exists an affine linear function v:T — R such that 0 < v < z and

d
diam(T)1+“’|z|cl,w(T) Vk=1,..,d+ 1.

z(pk) — v(pk) < T+

Proof. If v is an arbitrary maximal element of V and pj a vertex of 7', then there are
three possibilities: If p, € E(v), then it holds v(px) = z(px) and the claim is certainly
true. If, on the other hand, p; ¢ E(v) and there exist ¢ € E(v) and € > 0 such that
C+elpr — (), ¢ —e(pr — ) € T, then (A.2) implies

V(z=0v)(Q)- (Pt =) =0

and we may compute
(z = v)(pr) = (z = 0)(px) — (2 = )(C)
= [ [P =0+ o= 0) = 96 =)0 - (=

_ /01 [vz(C +tpr — Q) — Vz(g)] (o — O)dt

/1 [V2(¢ + tpr — ) — V2(C)
0 t(px — O

1
< Jelonra Vi [l = P17
0

< L = clrer ae

=1 +d7 diam(T)" 7 [z] e 7). (A4)
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This proves the claim in the second case. If, lastly, p, ¢ E(v) and there are no
¢ € E(v) and € > 0 such that (+e(pr — (), —€(pr — () € T, then it necessarily holds
E(v) C conv(p1y ..oy Dk—1; Pk+1---s Pnt+1) and we may employ Lemma A.3 to obtain that
there is some ¢ € E(v) with

V(z=0)(¢) - (pr — ) = 0.
A calculation analogous to (A.4) now yields the claim. This completes the proof. 0O

It should be noted that there is no straightforward way to construct the approximation
v appearing in the last theorem from the Lagrange interpolant of the function z since
it is in general unclear how the interpolant has to be modified such that both the
constraints v < z and v > 0 are satisfied. We conclude our investigation with the
following result about global approximations:

COROLLARY A.5. Let Q C R? be a bounded polyhedric domain with a quasi-uniform
family of triangulations {Tp} and let p1 and py be defined as in Definition 2.2. Assume
that z € W24(Q) N HE(Q) for some d < q < 0o and suppose that a family of functions
{wy,} is given such that

z <wp a.e in ) and thV,? Vh >0,

where V) = {v € C(Q) : v|r is affine for all T € T;, and v|pq = 0}. Then there
exists a family of approzimations {z} satisfying

z <z, <wy a.e in ) and thV,?
for all h such that
Iz = znllz < CR*=Y9||2]l w20

holds with a constant C' independent of h.
Proof. Let h be arbitrary but fixed, then it follows from W?24(Q) — C*'=4/4(Q) and
Theorem A.4 that for every T € Ty, there exists an affine linear vy : T'— R such that
0 <wvpr <wp — z and

Vd
2-d/q

holds for all vertices py, of T. We now define vy, to be the unique element of V) with

0 < (wp — 2)(pk) — vr(pk) <

diam(T)Q_d/q|Z\Cl,1_d/q(T)

vp () = vr ()

min
TeETh:x; €T

for all mesh nodes x;. This vy, certainly satisfies 0 < v, < vy < wp — 2 on every mesh
cell T and

0< (wn — 2)(as) — vnles) <

i

max diam(T)2d/q|z|C1,1d/q(T)>

2 — d/q TeETh:x, €T
Vd  alajg, 0
< mpl /45,2 d/qﬁ%‘zblylqu(n

for all nodes z; of the mesh. Defining z;, := w;, — v, we now obtain a function with
zp € VP, 2 <z, <wy, and

Mz = 2nlliee < max [2(a:) = 2 (20)| < O~ 2] cai ey
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for some C' = C(d, q,p1) > 0. The claim now follows from the triangle inequality, the

Sobolev embedding W24(Q) < C11=%/4(Q)) and well-known error estimates for the

L*>-error of the Lagrange interpolant ([3, Theorem 4.4.20]). o0
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