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Stochastic Frontier Model 

Abstract
Stochastic frontier analysis is a popular tool to assess firm performance. Almost 
universally it has been applied using maximum likelihood estimation. An alternative 
approach, pseudolikelihood estimation, decouples estimation of the error component 
structure and the production frontier, has been adopted in both the nonparametric and 
panel data settings. To date, no formal comparison has yet to be conducted comparing 
these methods in a standard, parametric cross sectional framework. We produce 
a comparison of these two competing methods using Monte Carlo simulations. Our 
results indicate that pseudolikelihood estimation enjoys almost identical performance 
to maximum likelihood estimation across a range of scenarios and performance 
metrics, and for certain metrics outperforms maximum likelihood estimation when the 
distribution of inefficiency is incorrectly specied.
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1. Introduction

The study of firm performance has a long history in economics. Accounting for the presence

of inefficiency was a vexing econometric issue until a composed error approach was proposed

by Aigner, Lovell & Schmidt (1977) and Meeusen & van den Broeck (1977). This approach,

dubbed stochastic frontier analysis (SFA), treats the error term in a standard regression

model as stemming from two sources, noise/measurement error and firm level inefficiency.

These two separate components can be identified given that inefficiency operates in one

direction; for example, in a production context, it lowers output. SFA is almost universally

implemented using maximum likelihood (ML). However, an alternative method of moments

(MoM) approach was also suggested (e.g. in Aigner et al. 1977, Olson, Schmidt & Waldman

1980) which decouples estimation of the frontier and the unknown parameters of the noise

and inefficiency distribution. To date, several simulation based papers exist which have

compared the relative performance of ML and MoM estimation of the stochastic frontier

model (Olson et al. 1980, Coelli 1995, Behr & Tente 2008).

In this paper we compare an alternative stochastic frontier estimator, based on pseudo-

likelihood (PL) estimation, to both ML and MoM. Similar to MoM, PL estimation proceeds

by decoupling estimation of the frontier and the parameters of the error component. The

PL approach was first suggested by Fan, Li & Weersink (1996) owing to the fact that they

wanted to estimate the production frontier in a nonparametric fashion, but doing this in

a pure ML framework was unknown at the time. By separating estimation of the frontier

and the parameters of the distribution of the composed error term, a range of alternative

estimation techniques became available. Also in this vein, Kuosmanen & Kortelainen (2012)

used the PL estimator for their model of production and efficiency. Since the frontier in their

model needs to be estimated using constrained nonparametric methods, the PL estimator

was an obvious choice.

What is interesting about the PL framework is that while it was introduced in a nonpara-

metric context, it is equally applicable in a parametric setting. Fan et al. (1996, pg. 466)

even acknowledge the applicability of the PL estimator in the parametric context, noting

“. . . if g(xi) is linear then Ê[yi|xi] . . . can be replaced by the least squares prediction of yi

given xi.”, yet it has rarely been used in applied settings. Furthermore, its performance

has never been properly adjudicated against ML. To date, studies that provide Monte Carlo
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simulation evidence regarding the PL estimator are Andor & Hesse (2014), Badunenko, Hen-

derson & Kumbhakar (2012) and Fan et al. (1996), which all focus on the nonparametric

setting.

While the PL estimator has been studied in the nonparametric setting, there are a va-

riety of reasons to use parametric methods. In particular, many nonparametric methods

carry finite sample bias, especially for sample sizes that are common in agricultural or en-

ergy studies. These biases can be further exacerbated by the number of inputs that are

commonly modeled. Another important reason to study the PL estimator is that, recently,

the PL estimator was used in a three step procedure to recover both persistent and time

varying inefficiency in a parametric panel data stochastic frontier model (Kumbhakar, Lien

& Hardaker 2014, Kumbhakar, Wang & Horncastle 2015), which would otherwise require

optimization of a complicated maximum likelihood function. To sum up, the PL estimator

has rarely see empirical adoption and its performance in regard to ML, as well as MoM,

is unknown for the parametric setting, although there are some indications that the PL

estimator might have some comparative advantages.

Theoretically, a key advantage of PL – and analogously MoM – is that when either of

the distributions of the error component are misspecified, consistent estimators of the shape

of the production frontier should still be produced.1 As Kumbhakar & Lovell (2003, pg.

93) note, referencing MoM, two-stage methods “. . . use distributional assumptions only in

the second step, and so the first-step estimators are robust to distributional assumptions on

vi and ui”. Under distributional misspecification, ML estimation may potentially produce

biased and/or inconsistent estimators. Another practical advantage of PL in comparison to

ML is that it potentially lessens the (numerical) maximization complexity due to the fact

that it reduces the number of variables over which to perform the optimization.

A further contribution of the paper is that it sheds more light on the relative comparison of

ML and MoM. To date, papers comparing ML and MoM (Olson et al. 1980, Coelli 1995, Behr

& Tente 2008) have focused on estimation of the parameters of the model (slope coefficients

and variance parameters of the composed error distribution). All three studies show that

both estimators have their strengths and weaknesses. Yet, the three studies come to some-

what diverging conclusions. While Olson et al. (1980, pg.80) reason that “[f]or all sample

sizes below 400 and for λ less than 3.16, [MoM] is preferred. But, even for higher sample

sizes and variance ratios, the additional efficiency of the [ML] may not be worth the extra

1The intercept will still be biased as it depends on the unknown, nonzero mean of the error component.
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trouble required to compute it.”, Coelli (1995, pg. 264) concludes that “[o]verall, these re-

sults suggest the ML estimator should be preferred to the [MoM] estimator . . . ”. Lastly,

based on their simulation results, Behr & Tente (2008, pg. 16) suggest that “. . .method of

moment estimation should be considered an alternative to maximum likelihood estimation

. . . ”. However, it should be noted that all three studies draw their conclusions on a generic

data generation procedure deliberately for cases with no covariates, arguing that covariates

should not matter for relative performance.2 An additional focus of our Monte Carlo simu-

lation is to learn if the presence of covariates has any meaningful effect on the earlier claims

of Olson et al. (1980), Coelli (1995) and Behr & Tente (2008).

Naturally, no Monte Carlo investigation is above reproach and sampling and specification

issues naturally preclude making definitive recommendations. However, ignoring covariates

in the comparison between the one-step ML approach and the two-stage procedures, MoM

and PL, eliminates the key advantage that the latter two methods may possess over ML.

Given that earlier papers comparing ML and MoM did not extensively model the frontier,

we believe that our simulation results here are instructive. Our main results are twofold:

First, when the distribution of the inefficiency term is correctly specified, all three methods

have relatively similar performance when estimating returns to scale, inefficiency levels,

and firm output; second, when the distribution of inefficiency is misspecified, PL appears

to be the dominant method for the majority of sample size/signal-to-noise ratio scenarios

considered. In combination, this may suggest use of the PL estimator in settings where there

is uncertainty regarding the correct distribution of inefficiency, which is the case in most real

world applications.

2. Estimation of the Stochastic Frontier Model

The stochastic production frontier of Aigner et al. (1977) and Meeusen & van den Broeck

(1977), across n firms, is

(1) yi = m(xi;β)− ui + vi = m(xi;β) + εi, i = 1, . . . , n,

where ui captures inefficiency (shortfall from maximal output), vi captures outside influences

beyond the control of the producer and the production frontier is m(xi;β). We assume that

ui and vi are independent of one another as well as the covariates xi. Due to the fact that

2To be precise, the study of Olson et al. (1980) presents one experiment based on real data with four
covariates. However, this experiment is limited from several perspectives (number of replications, maintained
assumptions, etc.).
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inefficiency can only affect output in one direction, we have that E(ui) = μ > 0. In contrast,

vi, which can positively or negatively impact output, is assumed to have E(vi) = 0; thus,

E(εi) �= 0. The most basic formulation of the stochastic frontier model is to assume that

vi ∼ N(0, σ2
v) and ui ∼ N+(0, σ

2
u). In this case, ML estimation proceeds by optimizing

L =
n∏

i=1

f(εi), where εi = yi −m(xi;β), yielding

(2) lnL(β, λ, σ) = −n ln σ +
n∑

i=1

ln Φ(−εiλ/σ)− 1

2σ2

n∑
i=1

ε2i ,

with Φ(·) representing the cumulative distribution function of a standard normal random

variable and the parameterization σ = σu + σv and λ = σu

σv
has been used.

Alternatively, MoM proceeds by estimating the model in (1) using ordinary least squares

(OLS). From there, MoM uses the second and third moment conditions for ε to estimate σ2
v

and σ2
u. With an estimate for σ2

u, the intercept of m(xi;β) can be shifted up to account for

the non-zero mean of the composed error. See Kumbhakar & Lovell (2003) or Greene (2008)

for a more detailed account of the exact moment conditions.

PL estimation of the stochastic frontier model proceeds – analogously to MoM – by esti-

mating the model in (1) using OLS. Then, the variance parameters are estimated by maxi-

mizing3

(3) lnL(λ) = −n ln σ̂ +
n∑

i=1

ln Φ

[−ε̂iλ

σ̂

]
− 1

2σ̂2

n∑
i=1

ε̂2i ,

where ε̂i = ε̂i,OLS −
√
2λσ̂√

π(1+λ2)
and ε̂i,OLS are the residuals from OLS estimation of (1) and

σ̂ =

√√√√√√
1
n

n∑
j=1

ε̂2j,OLS

1− 2λ2

π(1+λ)

.

Subsequently, a consistent estimator for the intercept of the production frontier is given by:

β̂0 = β̂0,OLS + Ê(uj) = β̂0,OLS +

√
2

π
σ̂u.

After shifting the OLS frontier upwards by the expected value of the inefficiency term,

all of the estimators are unbiased and consistent (see Aigner et al. 1977, Kumbhakar &

3Note that this optimization is over the single unknown parameter λ as, from Fan et al. (1996), σ can be
concentrated out with the normal-half normal distributional assumptions.
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Lovell 2003, Greene 2008). For any of the ML, MoM, or PL estimators, an estimator for

expected firm level inefficiency can be obtained through the conditional expectation of u

given ε following the approach of Jondrow et al. (1982). Measurement of technical efficiency

(Battese & Coelli 1988) follows from

(4) T̂Ei = Ê(e−ui |ε̂j) = Φ(μ̂∗j/σ̂∗ − σ̂∗)
Φ(μ̂∗j/σ̂∗)

· e( 1
2
σ̂2∗−μ̂∗j),

where μ̂∗ = −ε̂σ̂2
u/σ̂

2 and σ̂2
∗ = σ̂2

uσ̂
2
v/σ̂

2.

In this paper, we focus on the case of a constant variance for firm level inefficiency, ui,

i.e. we assume homoscedasticity. It is important to understand the consequences of this

assumption because – independent of the first stage estimator – in the setting where the

variance of ui varies across a set of covariates, the ignorance of the error structure can pro-

duce biased and inconsistent estimators of the production frontier parameters (Parmeter

& Kumbhakar 2014). Therefore, standard tests of heteroscedasticity should be applied af-

ter the first stage OLS estimation (Kuosmanen & Fosgerau 2009). If heteroscedasticity is

present, this has to be taken into account. While ML estimation allows direct modeling

of heteroscedasticity, PL and MoM approaches which can handle this level are embryonic.

A first endeavor in this direction can be found in Kuosmanen, Johnson & Saastamoinen

(2015, sect. 7.8). They show that under specific assumptions it is possible to estimate a

heteroscedastic frontier model using PL.

3. Monte Carlo Simulation

3.1. Data generating process and performance criteria. To assess the performance

of the PL approach to ML and MoM, we turn to Monte Carlo experiments. Rather than

generate data from a generic production function, we instead base our simulations around

a real world dataset. Specifically, we use the Philippines rice dataset which has become a

benchmark example in applied efficiency analysis, serving as the dominant heuristic illus-

tration in Coelli et al. (2005) and also appearing recently in Rho & Schmidt (2015). The

data are composed of 43 farmers observed annually for eight years. Even though the data

constitutes a panel, we will ignore this aspect for our purposes. The output variable is tonnes

of freshly threshed rice with the main input variables being area of planted rice (hectares),

total labor used (man-days of family and hired-labor) and fertilizer used (kilograms). There
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is also a fourth input, other inputs, which is measured relative to farm 17 in the data via

the Laspeyres index for 1991.4

Due to its popularity in applied efficiency analysis, we assume a translog production func-

tion in the data generating process. While it is commonly known that the translog functional

form can violate axioms of production, its use in applied efficiency studies is ubiquitous. Fur-

ther, Parmeter et al. (2014) enforce axioms of production on a translog function and find, for

their application, minor differences in estimates of returns to scale between the unrestricted

and restricted models. Additionally, the stochastic frontier methodology has been used in a

variety of contexts outside of the production environment where axioms of production do not

necessarily carry over and so focusing on these axioms limits the scope of what our results

here can be used for. Lastly, as a robustness check, we also consider the assumption of a

Cobb-Douglas production function, the results of which are included in Appendix C.

To allow for various sample sizes, we first estimate the translog production function based

on the actual data and set these estimates as the true parameter values. We then take

smooth samples from the four main inputs following the approach of Silverman (1986). We

vary λ from {0.562, 1.000, 1.778} so that signal to noise is equal to, greater than, and less

than 1. We set σ = 1 across all scenarios given the invariance of the methods as noted

in Olson et al. (1980) (i.e. doubling σ should lead to a quadrupling of the mean square

errors). For the noise term, we assume a normal distribution. As the assumption about

the inefficiency distribution is of special interest, we analyze two cases. First we focus on

the performance of the estimators when the distributional assumption is correctly specified.

Specifically, inefficiency is generated from a half normal distribution and we assume that it

stems from a half normal distribution for the estimators. Alternatively, we assess the three

methods when inefficiency is generated from an exponential distribution but we still assume

that it stems from a half normal distribution. Each case considers 12 (3 values for λ by 4

sample sizes) scenarios for a total of 24 scenarios. Each scenario is replicated R = 10, 000

times.

Due to the fact that productivity and efficiency analysis is generally applied to estimate

returns to scale (RTS) (also referred to as scale elasticity), predict expected firm output

(the estimation of the conditional mean of output) or measure individual technical efficiency

(T̂Ei), we evaluate the performance of the methods based on these measures.5 Furthermore,

4See Coelli et al. (2005, Appendix 2) for a more detailed description of the data.
5The last two measures are very common in Monte Carlo simulations that compare frontier estimation
models, see, for instance, Andor & Hesse (2014) and Kuosmanen & Kortelainen (2012). We choose to
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the methods are constructed so that the mean square error is minimized. Accordingly, for

each measure, our main performance criterion is the mean square error (MSE) between the

estimated and true value of the object of interest:

MSEr =
1

n

n∑
i=1

(M̂i,r −Mi,r)
2,

where Mi,r is the true value of our measure for the ith firm in the rth simulation (M being

RTS, expected output, or technical efficiency) and M̂i,r the estimated value. Given that each

simulation will provide a MSE, to easily distill this information we present the median MSE,

defined as median
r=1,...,R

MSEr, across the R = 10, 000 simulations. The use of the median MSE

is to avoid a small percentage of poor simulations driving the results for a given scenario (by

producing large MSEs), which would appear if we were to instead use the mean MSE.

In order to gain additional insights on the performance of the three estimators, we also

calculate the mean absolute deviation (MAD) for each of the R simulations:

MADr =
1

n

n∑
i=1

∣∣∣M̂i,r −Mi,r

∣∣∣ ,
and the mean deviation (MD)

MDr =
1

n

n∑
i=1

M̂i,r −Mi,r.

Again, we present the median of MAD and MD, defined as median
r=1,...,R

MADr, and median
r=1,...,R

MDr,

respectively, across the 10,000 simulations in Appendices A and B. Lastly, we also present

the mean MSE (R−1
R∑

r=1

MSEr) in the same appendices as a comparison with the median

MSE to determine if any type of tail behavior across the 10,000 simulations that we perform

could be impacting what we learn about the three estimators. The Monte Carlo experiments

are conducted in R (version 3.2.3) and all code is available upon request.

3.2. Correctly Specified Distribution. Table 1 shows the results for the setting where

the distribution of ui is correctly specified. The results show in general that each method

is superior in a particular scenario. PL and MoM perform relatively better than ML when

the sample size is small and/or when λ is low. With increasing λ and increasing sample size

consider additionally the estimation of RTS because many studies investigate scale elasticity to focus on
optimal firm size, in particular in the banking sector, e.g. Henderson et al. (2015).
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the relative performance of ML improves. However, consistent with Olson et al. (1980), even

when ML performs better the gains are not substantial. For the comparison between PL

and MoM, the results suggest that MoM has performance advantages when both the sample

size and λ are small.

Regarding the estimation of RTS, the results show that PL and MoM (note that these

estimates are the first step OLS estimates) estimate RTS more accurately when the sample

size is relatively small (i.e. n=100). For all other scenarios, the estimates of RTS across

all three methods are nearly identical. For the estimation of predicted output, across all

sample sizes, the MoM estimator is the most accurate when λ is small. When λ is 1.778,

MoM is the worst method, regardless of sample size. PL is the best method when the

sample size is small and is as good as ML when the sample size is large (i.e. n=800). With

respect to the estimation of individual efficiency, MoM is the best method, except for one

scenario. However, there is only one scenario (n=100 and λ=0.562) where any noticeable

difference between MoM and PL arises. For larger values of λ or n the results for ML are

also indistinguishable.

Table 1. Performance of PL, ML and MoM for the correctly specified distri-
bution, 10,000 Simulations.

Returns to Scale (MMSE) Production Value (MMSE) Efficiency (MMSE)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.093 0.098 0.235 0.268 0.208 0.066 0.083 0.054
0.562 n = 200 0.041 0.041 0.165 0.173 0.141 0.044 0.050 0.041
0.562 n = 400 0.019 0.019 0.120 0.119 0.102 0.028 0.028 0.026
0.562 n = 800 0.009 0.009 0.067 0.068 0.065 0.016 0.017 0.016
1.000 n = 100 0.075 0.081 0.171 0.252 0.166 0.017 0.042 0.016
1.000 n = 200 0.033 0.033 0.083 0.096 0.081 0.009 0.012 0.008
1.000 n = 400 0.015 0.015 0.041 0.043 0.041 0.004 0.005 0.004
1.000 n = 800 0.008 0.008 0.021 0.021 0.021 0.002 0.002 0.002
1.778 n = 100 0.055 0.061 0.101 0.122 0.105 0.009 0.016 0.010
1.778 n = 200 0.025 0.024 0.048 0.047 0.050 0.004 0.004 0.004
1.778 n = 400 0.012 0.011 0.023 0.022 0.024 0.002 0.002 0.002
1.778 n = 800 0.006 0.005 0.011 0.011 0.012 0.001 0.001 0.001

MMSE: median of the mean square error between the estimated and the true value over all replications. The lowest MMSE

for each scenario and for each performance criterion are indicated in grey.

The additional performance criteria support these results (see Appendix A). Furthermore,

the results suggest that all methods overestimate RTS, the production value and individual

efficiency. In the correctly specified case, ML has the lowest overestimation of the production
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value and individual efficiency on average in all scenarios. Lastly, assuming a Cobb-Douglas

production function in the data generating process has no impact on the main findings

(Appendix C) and thus we conclude that the results are robust to standard variations of the

functional form of the production function.

3.3. Misspecified Distribution. As noted earlier, we expect the PL and MoM first stage

estimators to be less affected by misspecified distributional assumptions pertaining to ineffi-

ciency than ML. To assess this presumption, we conducted the same scenarios as above but

used an incorrect distributional assumption for the inefficiency term to estimate the model.

Table 2 shows the results for the same 12 scenarios discussed above but by generating firm

level inefficiency from an exponential distribution.

Table 2. Performance of PL, ML and MoM for the misspecified distribution,
10,000 Simulations.

Returns to Scale (MMSE) Production Value (MMSE) Efficiency (MMSE)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM
0.562 n = 100 0.110 0.121 0.271 0.345 0.260 0.051 0.081 0.051
0.562 n = 200 0.048 0.048 0.177 0.210 0.179 0.040 0.050 0.043
0.562 n = 400 0.023 0.022 0.120 0.134 0.131 0.035 0.039 0.037
0.562 n = 800 0.011 0.011 0.099 0.105 0.112 0.033 0.035 0.037
1.000 n = 100 0.108 0.121 0.204 0.311 0.233 0.021 0.042 0.026
1.000 n = 200 0.049 0.045 0.143 0.176 0.189 0.022 0.029 0.031
1.000 n = 400 0.023 0.020 0.124 0.138 0.195 0.023 0.027 0.036
1.000 n = 800 0.011 0.010 0.118 0.123 0.207 0.024 0.026 0.040
1.778 n = 100 0.107 0.109 0.173 0.235 0.236 0.015 0.035 0.031
1.778 n = 200 0.048 0.038 0.124 0.140 0.248 0.015 0.019 0.051
1.778 n = 400 0.023 0.016 0.103 0.103 0.282 0.014 0.016 0.056
1.778 n = 800 0.011 0.007 0.094 0.090 0.305 0.014 0.014 0.057

MMSE: median of the mean square error between the estimated and the true value over all replications. The lowest MMSE

for each scenario and for each performance criterion are indicated in grey.

Several key differences with the correctly specified setting emerge. Regarding the estima-

tion of RTS, ML is the superior method except for scenarios with small sample sizes (i.e.

n=100). These results are somewhat surprising as one might expect that the two step esti-

mators would estimate RTS more accurately (due to the fact that the estimated shape of the

production function is unbiased). We have two explanations which might explain this result.

First, RTS does not exactly directly link to the estimation of a single β, but represents an

index of the entire β vector. Second, it could be the case that even when the econometrician

misspecifies the convoluted error term’s distribution, that it is ‘close’ to the convoluted error

term’s true distribution, i.e. while the exponential distribution looks different than the half
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normal, the convoluted densities look nearly identical. Even with this unexpected perfor-

mance of the ML estimator in the misspecified distribution setting, the remaining objects of

interest (predicted output and efficiency), show that the PL estimator is almost always the

dominant method. In addition, in contrast to the correctly specified distribution case, the

performance differences are more distinct.

Again, the additional performance criteria support these results (see Appendix B). Almost

uniformly we see the same performance as with median MSE. However, in contrast to the

correctly specified distribution case, all methods underestimate the production value as well

as individual efficiency and PL show the lowest underestimation on average in almost all

scenarios.

No Monte Carlo investigation can completely cover all realistic settings and it could be

that ML outperforms PL when λ is higher than 1.778 or for an entirely different set of

parameter values or production frontier structures. However, the range of λ from 0.562 to

1.778 covers estimates from many practical settings, and the translog functional form is a

common modeling approach. Hence, we believe our results suggest that the PL estimator

holds practical value for applied researchers.

4. Conclusions

In this paper we investigated the PL estimator’s ability to estimate parameters from

the stochastic frontier model. The PL approach decouples estimation of the production

frontier and the parameters of the error components. A commonly held notion is that

under distributional misspecification this decoupling can provide a consistent estimator of

the production structure. Using a Monte Carlo investigation centered around a publicly

available dataset we compared the performance of ML and PL under correct specification

of the distribution of the inefficiency term, as well as the more practically relevant setting

(because it is unknown in reality) where this distribution is misspecified. For measures of

returns to scale, expected output and firm level technical efficiency, the PL estimator is seen

as holding its ground, or even outperforming ML, across all the scenarios considered.

A limitation of both MoM and PL in current practice is the inability to include so-called z-

variables, also referred to as determinants of inefficiency or inefficiency explanatory variables

(see, for example, Reifschneider & Stevenson (1991)). Such z-variables are any non-standard

inputs or environmental variables that are likely to influence production or cost, but are not

direct inputs into the production process. This includes, for instance, a variable delineating
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if a bank is publicly or privately owned, the age of a farmer, or the gender of a plant

manager. Therefore, z-variables can influence the parameters of the inefficiency distribution.

As the literature has shown, two-step procedures to model the determinants of inefficiency are

generally biased (see, among others, Caudill & Ford (1993), Wang & Schmidt (2002) and the

discussion in Parmeter & Kumbhakar (2014)). Hence, given the optimistic performance of

PL, a potential future avenue for research would include development of approaches enabling

researchers and practitioners to consider z-variables using PL estimation. A useful starting

point in this endeavor is Kuosmanen et al. (2015, sect. 7.8).
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Appendix A. Alternative Performance Metrics With the Correctly

Specified Distribution

Tables A1 - A3 compare ML, PL and MoM using different performance metrics, MAD,

MMD and mean MSE, respectively. Regardless of the performance metric, the same overall

insights as described in the body of the paper hold true. For λ small, MoM outperforms

ML/PL and as λ or n increases, these advantages disappear.

Table A1. Performance of PL, ML and MoM for the correctly specified dis-
tribution, 10,000 Simulations, median of the mean absolute deviation (MAD).

Returns to Scale (MAD) Production Value (MAD) Efficiency (MAD)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.247 0.255 0.402 0.434 0.371 0.221 0.278 0.211
0.562 n = 200 0.164 0.164 0.351 0.361 0.318 0.183 0.193 0.176
0.562 n = 400 0.112 0.112 0.312 0.312 0.283 0.148 0.152 0.144
0.562 n = 800 0.078 0.078 0.234 0.235 0.230 0.115 0.118 0.113
1.000 n = 100 0.222 0.231 0.332 0.431 0.324 0.109 0.173 0.105
1.000 n = 200 0.147 0.148 0.230 0.253 0.226 0.077 0.090 0.074
1.000 n = 400 0.101 0.101 0.161 0.166 0.160 0.054 0.058 0.054
1.000 n = 800 0.071 0.071 0.113 0.115 0.113 0.039 0.040 0.039
1.778 n = 100 0.192 0.202 0.246 0.279 0.251 0.075 0.105 0.080
1.778 n = 200 0.128 0.127 0.166 0.167 0.171 0.049 0.053 0.052
1.778 n = 400 0.088 0.085 0.116 0.114 0.119 0.034 0.034 0.036
1.778 n = 800 0.061 0.059 0.081 0.079 0.083 0.023 0.023 0.025

MAD: median of the mean absolute deviation between the estimated and the true value over all replications. The lowest
median MAD for each scenario and for each performance criterion are indicated in grey.

The results for MMD (Table A2) show that all methods overestimate RTS, the production

value and individual efficiency in the correctly specified distribution case. Thereby, ML has

the lowest overestimation of the production value and individual efficiency on average in all

scenarios.

The results in Table A3 also suggest that few, if any, simulations produces poor estimates,

leading to exorbitant differences between the mean and the median. Overall, both measures

generate almost identical insights across MSE and the three different objects estimated with

the estimates, RTS, predicted output and technical efficiency.
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Table A2. Performance of PL, ML and MoM for the correctly specified dis-
tribution, 10,000 Simulations, median of the mean deviation (MMD).

Returns to Scale (MMD) Production Value (MMD) Efficiency (MMD)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.002 0.003 0.130 0.072 0.098 0.070 0.039 0.049
0.562 n = 200 0.000 0.002 0.057 0.029 0.039 0.025 0.008 0.015
0.562 n = 400 0.000 0.000 0.030 0.017 0.024 0.016 0.008 0.009
0.562 n = 800 0.000 0.000 0.016 0.009 0.012 0.007 0.003 0.004
1.000 n = 100 0.001 0.002 0.116 0.019 0.118 0.051 0.003 0.052
1.000 n = 200 0.000 0.001 0.056 0.013 0.060 0.024 0.004 0.026
1.000 n = 400 0.000 0.000 0.027 0.006 0.031 0.012 0.002 0.012
1.000 n = 800 0.000 0.000 0.014 0.003 0.014 0.006 0.001 0.006
1.778 n = 100 −0.001 −0.002 0.114 −0.018 0.128 0.046 −0.006 0.053
1.778 n = 200 −0.001 0.000 0.054 0.000 0.064 0.021 0.000 0.026
1.778 n = 400 0.000 0.000 0.027 0.001 0.032 0.011 0.000 0.013
1.778 n = 800 0.000 0.000 0.012 0.000 0.015 0.005 0.000 0.006

MMD: median of the mean deviation between the estimated and the true value over all replications. The MMD, which is
closest to zero, for each scenario and for each performance criterion are indicated in grey.

Table A3. Performance of PL, ML and MoM for the correctly specified dis-
tribution, 10,000 Simulations, mean of the mean square error (MSE).

Returns to Scale (MSE) Production Value (MSE) Efficiency (MSE)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.115 0.126 0.248 0.331 0.223 0.056 0.068 0.041
0.562 n = 200 0.050 0.051 0.168 0.182 0.147 0.050 0.051 0.036
0.562 n = 400 0.023 0.024 0.120 0.120 0.102 0.044 0.042 0.032
0.562 n = 800 0.011 0.011 0.089 0.085 0.074 0.038 0.035 0.027
1.000 n = 100 0.092 0.104 0.235 0.282 0.210 0.063 0.069 0.048
1.000 n = 200 0.040 0.041 0.151 0.155 0.134 0.047 0.045 0.036
1.000 n = 400 0.019 0.019 0.091 0.089 0.080 0.030 0.028 0.024
1.000 n = 800 0.009 0.009 0.047 0.046 0.043 0.015 0.014 0.012
1.778 n = 100 0.069 0.081 0.165 0.183 0.157 0.040 0.043 0.034
1.778 n = 200 0.031 0.030 0.071 0.070 0.070 0.014 0.014 0.013
1.778 n = 400 0.014 0.013 0.029 0.027 0.030 0.004 0.004 0.004
1.778 n = 800 0.007 0.007 0.013 0.013 0.014 0.001 0.001 0.002

MSE: mean of the mean square error between the estimated and the true value over all replications. The lowest mean MSE
for each scenario and for each performance criterion are indicated in grey.
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Appendix B. Alternative Performance Metrics With the Misspecified

Distribution

Tables B1 and B2 compare ML, PL and MoM using MAD and MMD, respectively when the

true distribution of inefficiency is exponential, but the econometrician erroneously assumes

that inefficiency stems from a half normal distribution. Regardless of the performance metric,

the same overall insights as described in the body of the paper hold true. PL is the preferred

method for estimating output or technical efficiency, regardless of either the sample size or

λ. Similarly, ML, for n > 100 estimates RTS better than the PL/MoM estimator, across

all levels of λ considered. Again, this is surprising on the surface, but not necessarily when

one considers that the convoluted densities (either for exponential or half normal) are quite

similar.

Table B1. Performance of PL, ML and MoM for the misspecified distribu-
tion, 10,000 Simulations, median of the mean absolute deviation (MAD).

Returns to Scale (MAD) Production Value (MAD) Efficiency (MAD)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.270 0.283 0.430 0.500 0.416 0.196 0.247 0.197
0.562 n = 200 0.178 0.178 0.358 0.401 0.362 0.179 0.198 0.183
0.562 n = 400 0.122 0.122 0.306 0.328 0.322 0.168 0.176 0.174
0.562 n = 800 0.085 0.084 0.290 0.301 0.312 0.165 0.169 0.174
1.000 n = 100 0.267 0.283 0.356 0.474 0.386 0.121 0.174 0.138
1.000 n = 200 0.179 0.173 0.314 0.365 0.375 0.128 0.148 0.152
1.000 n = 400 0.122 0.115 0.312 0.337 0.407 0.135 0.143 0.167
1.000 n = 800 0.085 0.080 0.320 0.331 0.437 0.140 0.143 0.177
1.778 n = 100 0.266 0.269 0.323 0.400 0.391 0.097 0.160 0.147
1.778 n = 200 0.177 0.158 0.288 0.326 0.443 0.100 0.119 0.194
1.778 n = 400 0.122 0.102 0.280 0.291 0.501 0.103 0.109 0.208
1.778 n = 800 0.085 0.069 0.283 0.282 0.537 0.105 0.106 0.213

MAD: median of the mean absolute deviation between the estimated and the true value over all replications. The lowest

median of MAD for each scenario and for each performance criterion are indicated in grey.

In contrast to Appendix A, all methods underestimate the production value and individual

efficiency in the misspecified distribution case (Table B2). Thereby, PL has the lowest

underestimation of the production value and individual efficiency on average in almost all

scenarios.

Similarly to Appendix A, the results in Table B3 suggest that almost none of the sim-

ulations produced poor estimates, leading to the mean and the median results being in
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Table B2. Performance of PL, ML and MoM for the misspecified distribu-
tion, 10,000 Simulations, median of the mean deviation (MMD).

Returns to Scale (MMD) Production Value (MMD) Efficiency (MMD)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 −0.001 0.001 −0.160 −0.291 −0.159 −0.122 −0.170 −0.121
0.562 n = 200 −0.001 0.000 −0.232 −0.288 −0.236 −0.147 −0.167 −0.149
0.562 n = 400 0.000 0.001 −0.258 −0.286 −0.277 −0.158 −0.167 −0.163
0.562 n = 800 −0.001 0.000 −0.280 −0.293 −0.303 −0.164 −0.168 −0.172
1.000 n = 100 −0.001 0.000 −0.188 −0.360 −0.233 −0.103 −0.149 −0.117
1.000 n = 200 0.000 0.001 −0.262 −0.330 −0.337 −0.125 −0.143 −0.147
1.000 n = 400 −0.001 0.000 −0.298 −0.326 −0.400 −0.135 −0.142 −0.164
1.000 n = 800 0.000 0.000 −0.316 −0.328 −0.436 −0.139 −0.143 −0.174
1.778 n = 100 0.000 0.003 −0.158 −0.295 −0.285 −0.073 −0.099 −0.111
1.778 n = 200 −0.001 0.000 −0.230 −0.294 −0.420 −0.092 −0.107 −0.142
1.778 n = 400 0.000 0.001 −0.261 −0.281 −0.497 −0.099 −0.104 −0.165
1.778 n = 800 −0.001 0.000 −0.277 −0.280 −0.536 −0.103 −0.104 −0.178

MMD: median of the mean deviation between the estimated and the true value over all replications. The MMD, which is

closest to zero, for each scenario and for each performance criterion are indicated in grey.

near unison. Overall, both measures generate almost identical insights across MSE and the

three different objects estimated with the estimates, RTS, predicted output and technical

efficiency.
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Table B3. Performance of PL, ML and MoM for the misspecified distribu-
tion, 10,000 Simulations, mean of the mean square error (MSE).

Returns to Scale (MSE) Production Value (MSE) Efficiency (MSE)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.137 0.157 0.294 0.430 0.288 0.054 0.076 0.047
0.562 n = 200 0.059 0.059 0.197 0.232 0.204 0.045 0.051 0.043
0.562 n = 400 0.028 0.028 0.137 0.150 0.152 0.037 0.040 0.039
0.562 n = 800 0.013 0.013 0.107 0.114 0.127 0.033 0.035 0.037
1.000 n = 100 0.136 0.159 0.238 0.372 0.297 0.030 0.052 0.041
1.000 n = 200 0.060 0.056 0.159 0.199 0.238 0.023 0.031 0.040
1.000 n = 400 0.027 0.025 0.130 0.144 0.225 0.023 0.026 0.044
1.000 n = 800 0.013 0.012 0.121 0.126 0.225 0.024 0.026 0.046
1.778 n = 100 0.137 0.144 0.188 0.251 0.313 0.017 0.033 0.041
1.778 n = 200 0.059 0.050 0.131 0.164 0.310 0.015 0.022 0.048
1.778 n = 400 0.028 0.019 0.107 0.108 0.321 0.015 0.016 0.054
1.778 n = 800 0.013 0.009 0.096 0.092 0.328 0.014 0.015 0.057

MSE: mean of the mean square error between the estimated and the true value over all replications. The lowest mean of the

MSE for each scenario and for each performance criterion are indicated in grey.
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Appendix C. Cobb-Douglas Production Function

When we use a Cobb-Douglas production function, as opposed to translog, we see almost

similar performance between the three estimators. The estimator of RTS is identical between

PL/MoM and ML regardless of the sample size and the value of λ. In the Cobb-Douglas

setting RTS is constant across all firms and is only dependent upon the four βs for the

inputs. In this case it would make sense that all three methods are essentially identical as

the estimators of β, excluding the intercept, are all consistent. When it comes to prediction,

MoM dominates for small values of λ, but PL and ML perform at least as well as MOM for

λ = 1.778 across all sample sizes; notice that while there are performance gains, they are

quite small. Finally, for the estimation of firm level inefficiency, all three of the methods are

virtually identical across sample sizes for λ = 1.778, with only minor performance differences

arising. However, for λ = 0.562, MoM, is the dominant estimator of firm level inefficiency

with the relative performance gains, as expected, decreasing as the sample size increased.

In sum, the use of a different production function did not add much additional insight into

which of the three different estimators was preferred.

Table C1. Performance of PL, ML and MoM for a Cobb-Douglas Production
Frontier, 10,000 Simulations

Returns to Scale (MMSE) Production Value (MMSE) Efficiency (MMSE)
λ Sample Size PL/MoM ML PL ML MoM PL ML MoM

0.562 n = 100 0.006 0.006 0.159 0.165 0.127 0.073 0.079 0.055
0.562 n = 200 0.003 0.003 0.126 0.127 0.101 0.044 0.047 0.041
0.562 n = 400 0.001 0.001 0.104 0.103 0.084 0.029 0.030 0.028
0.562 n = 800 0.001 0.001 0.055 0.056 0.054 0.016 0.017 0.016
1.000 n = 100 0.005 0.005 0.096 0.111 0.084 0.015 0.019 0.013
1.000 n = 200 0.002 0.002 0.047 0.049 0.044 0.008 0.009 0.007
1.000 n = 400 0.001 0.001 0.023 0.023 0.022 0.004 0.004 0.004
1.000 n = 800 0.001 0.001 0.011 0.011 0.011 0.002 0.002 0.002
1.778 n = 100 0.004 0.004 0.039 0.041 0.042 0.005 0.005 0.005
1.778 n = 200 0.002 0.002 0.019 0.019 0.020 0.002 0.002 0.003
1.778 n = 400 0.001 0.001 0.009 0.009 0.010 0.001 0.001 0.001
1.778 n = 800 0.000 0.000 0.005 0.004 0.005 0.001 0.001 0.001

MMSE: median of the mean square error between the estimated and the true value over all replications. The lowest median of
the MSE for each scenario and for each performance criterion are indicated in grey.




