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Abstract

This paper presents a new approach to constraining the eigenvalue range of symmetric tensors in numerical advection

schemes based on the flux-corrected transport (FCT) algorithm and a continuous finite element discretization. In the

context of element-based FEM-FCT schemes for scalar conservation laws, the numerical solution is evolved using

local extremum diminishing (LED) antidiffusive corrections of a low order approximation which is assumed to satisfy

the relevant inequality constraints. The application of a limiter to antidiffusive element contributions guarantees that

the corrected solution remains bounded by the local maxima and minima of the low order predictor.

The FCT algorithm to be presented in this paper guarantees the LED property for the largest and smallest eigen-

values of the transported tensor at the low order evolution step. At the antidiffusive correction step, this property is

preserved by limiting the antidiffusive element contributions to all components of the tensor in a synchronized man-

ner. The definition of the element-based correction factors for FCT is based on perturbation bounds for auxiliary

tensors which are constrained to be positive semidefinite to enforce the generalized LED condition. The derivation of

sharp bounds involves calculating the roots of polynomials of degree up to 3. As inexpensive and numerically stable

alternatives, limiting techniques based on appropriate approximations are considered. The ability of the new limiters

to enforce local bounds for the eigenvalue range is confirmed by numerical results for 2D advection problems.

Keywords: tensor quantity, continuous Galerkin method, flux-corrected transport, artificial diffusion, local discrete

maximum principles

1. Introduction

During the last decades, advanced flux-corrected transport (FCT) algorithms have been developed for the numer-

ical solution of scalar hyperbolic partial differential equations. They distinguish themselves from other stabilization

techniques like streamline upwind Petrov-Galerkin (SUPG) by algebraically preserving local maximum principles

while obtaining high order of accuracy in regions where the solution is smooth. This ensures monotonicity of the

solution and robust algorithms.

While the FCT methodology has been successfully extended to various CFD problems like the Euler equations,

one current issue of research is the limiting of (symmetric) tensor quantities, which occur, e.g., in context of orientation

and stress tensors and will be discussed in this paper. In contrast to scalar variables, it is not entirely clarified which

quantity corresponding to tensors should be observed and constrained to satisfy a relevant local maximum principle

for the algorithm. The use of algorithms that limit each tensor component separately is not recommended since such

limiting techniques are frame dependent and may fail to preserve physical properties like the definiteness. Therefore,

Luttwak and Falcovitz [14] proposed a tensor image polyhedron (TIP) approach based on the convex hull idea initially

developed for vectors [13]: The scaled/modified quantity of interest has to be located in the convex hull of neighboring

vectors/tensors. This guarantees that tensor components are constrained in a frame invariant manner and, hence,

preserves the symmetry of numerical solutions. Related and more efficient extensions are proposed in [12], where

bounding boxes (BB) enclosing the convex hull are exploited. Unfortunately, TIP and BB approaches are designed
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to limit tensor entries without taking other properties of tensors into consideration. In context of bounds preserving

reconstruction (remapping), slope limiters for stress tensors were recently developed in [6, 16] treating principal

invariants as quantities of interest: After separating the trace, a scalar approach can be applied to the trace while

limiting the resulting tensor with vanishing trace by observing the second (and third) principal invariant separately.

This allows a conservative restriction of the second invariant of deviatoric stress tensors, which is proportional to the

elastic energy density [6]. In addition, eigenvalues are constrained implicitly because of their relation to principal

invariants.

In this paper, an approach is proposed to limit the eigenvalues of symmetric tensors in a range preserving manner:

The smallest/largest eigenvalue is bounded below/above by the local minimum/maximum of eigenvalues correspond-

ing to a low order approximation. For this reason, physical properties should be preserved (especially in context of

orientation tensors) and the definiteness is maintained. After calculating corresponding bounds, a simplified limiting

procedure can be applied by exploiting polynomials of degree up to 3 without calculating further eigenvalues.

The paper is written as follows: After motivating the limiting of (the range of) eigenvalues (Sec. 2), the (element-

based) low order method originally developed for scalar transport equations is extended to tensorial variables and the

corresponding local extremum diminishing (LED) property is proved for the semidiscrete and fully discrete problem

(Sec. 3). In Sec. 5, criteria are developed to preserve this property when adding scaled antidiffusive element contribu-

tions (defined in Sec. 4). These criteria are based on auxiliary tensors which are desired to be positive semidefinite. To

reach this, eigenvalue calculations are necessary, when using worst case estimates or a theorem by Caron et al. [2]. In-

stead, principal invariants can be considered to ensure the positive semidefiniteness of the auxiliary tensors (Sec. 5.3).

Further restrictions of tensor quantities can be defined by including local maximum principles for the trace (Sec. 6).

Finally, the proposed limiting algorithms are validated and assessed in Sec. 7 using tensorial extensions of familiar

FCT benchmarks.

1.1. Index convention for tensors
Without loss of generality, the (real-valued) eigenvalues of a symmetric tensor A ∈ Rd×d, d = 2, 3, are given in a

sorted manner by λ1(A) ≤ . . . ≤ λd(A). The notation can be shortened by using the abbreviations a1 � λ1(A), . . . , ad �
λd(A) while akl, 1 ≤ k, l ≤ d, are the tensor entries corresponding to A. The eigenvalues and entries of a tensor Ai are

referred to as ai,k and ai,kl, respectively. Furthermore, if A is positive semidefinite, i.e., 0 ≤ a1 ≤ . . . ≤ ad, the notation

A ≥ 0 is used (similar for A ≤ 0, A > 0, and A < 0).

2. Properties of interest

The problem to be considered is given by the linear transport equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tU + div(vU) = 0 in Ω,

U(·, t) = Uin on Γin = {x ∈ ∂Ω : n(x) · v < 0},
U(·, 0) = U0 in Ω,

(1a)

(1b)

(1c)

where Ω ⊂ R
d, d = 2, 3 is a bounded domain, Γin is the inflow part of the boundary ∂Ω, n : ∂Ω → R

d is the unit

outward normal vector, v : Ω×R+
0
→ R

d is the velocity field, and U : Ω×R+
0
→ R

d×d is the unknown symmetric tensor

and variable of interest. The initial and boundary conditions are given by the (symmetric) tensor fields U0 : Ω→ R
d×d

and Uin : Γin × R+0 → R
d×d.

At the continuous level, a scalar solution of the transport equation (1) is positivity preserving and satisfies the

maximum principle if div(v) = 0. When convecting tensorial unknowns with a divergence-free velocity field, each

scalar quantity f : Rd×d → R differentially depending on the tensor entries evolves in the same manner as the solution

of the scalar transport equation

∂t f (U) + div (v f (U)) = (∇U f (U)) : ∂tU + div(v) f (U) + v · grad ( f (U))

= (∇U f (U)) : ∂tU + div(v) f (U) + (∇U f (U)) :
(
v · grad(U)

)
= (∇U f (U)) : ∂tU + (∇U f (U)) : (div(vU)) + div(v) ( f (U) − (∇U f (U)) : U)

= (∇U f (U)) : (∂tU + div(vU)) + div(v) ( f (U) − (∇U f (U)) : U)

= div(v) ( f (U) − (∇U f (U)) : U) .
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In particular, entries, eigenvalues, and principal invariants of tensorial solutions of (1) satisfy local maximum princi-

ples if div(v) = 0. However, enforcing all these properties at the discrete level results in fairly restrictive conditions.

The following Riemann problem with UL for x ≤ 0 and UR for x > 0 defined by

UL =

(
1 0

0 2

)
, UR =

(
2 0

0 1

)

illustrates, why limiting eigenvalues in case of continuous FE approximations can be more appropriate than restricting

principal invariants and more likely to produce physically reasonable results: First of all, a numerical algorithm

(preserving certain local maximum principles) for a tensor quantity must be frame invariant to reproduce existing

symmetries of test problems correctly. Furthermore, in case of continuous FE approximations, discontinuities cannot

be represented exactly. Therefore, artificial diffusion has to be added, which leads to a smooth blending U(x) between

UL and UR. Due to the frame invariance, U(x) remains diagonal. Desired local maximum principles for the range of

eigenvalues lead to the restriction

1 ≤ u1(x) ≤ u2(x) ≤ 2 =⇒ 1 ≤ u11(x), u22(x) ≤ 2,

where the index convention as described in Sec. 1.1 is used for eigenvalues and tensor components. In particular, a

smooth blending U(x) given by a convex combination of UL and UR is admissible while unphysical overshoots/under-

shoots of eigenvalues are prohibited. If (additionally) a local extremum diminishing (LED) property for the principal

invariants should be satisfied, the inequality constraints simplify to the conditions

I1

(
U(x)

)
= u1(x) + u2(x) = 3, I2

(
U(x)

)
= u1(x) · u2(x) = 2. (2)

Using the frame invariance of the algorithm, (2) implies

U(x) ∈ {UL,UR}
and no smooth blending satisfying local maximum principles for the principal invariants is possible between UL and

UR. If the frame invariance of the solution is neglected, a possible (not unique) blending is given by rotations of

UL/UR, i.e.

Uθ =
(

1 + sin2 θ − sin θ cos θ
− sin θ cos θ 1 + cos2 θ

)
0 ≤ θ < 2π,

where U0 = Uπ = UL and Uπ/2 = U3π/2 = UR.

For this reason, further on the local maximum principle for principal invariants, which is satisfied for the exact

solution, is not adopted to the numerical method and the treatment of eigenvalues will be discussed.

3. Low order method

The standard Galerkin discretization of (1) is given by

Ndof∑
j=1

mi j
dui,kl

dt
=

Ndof∑
j=1

ki ju j,kl + bi,kl for all 1 ≤ i, j ≤ Ndof , j � i and 1 ≤ k, l ≤ d,

where mi j �
Nelem∑
e=1

me
i j, ki j �

Nelem∑
e=1

ke
i j,

(3)

where, ui,kl, 1 ≤ k, l ≤ d, are the entries of the tensor Ui ∈ Rd×d corresponding to the degree of freedom i (compare to

Sec. 1.1). In addition, Bi denotes (weak) Dirichlet boundary conditions and me
i j and ke

i j are the entries of the element-

based mass and convection matrix, respectively. This method does not preserve the range of eigenvalues and, hence,

is used to derive a possible low order method, which satisfies local maximum principles for the eigenvalue range of

the tensor quantity.
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Since the tensorial transport equation (and the Galerkin discretization (3)) can be treated as one scalar transport

equation for each entry of the tensorial solution, it is reasonable to use the same low order method for each component

as in the scalar case. Therefore, the semidiscrete low order method given by [7]

mi
dui,kl

dt
=

Ndof∑
j=1

li ju j,kl + bi,kl with mi > 0, li j ≥ 0 for all 1 ≤ i, j ≤ Ndof , j � i and 1 ≤ k, l ≤ d (4)

is considered, where mi and li j are low order approximations to the entries of the mass and convection matrix, re-

spectively. For example, a low order scheme with desired properties can be constructed using mass lumping and

element-based discrete upwinding [9, 11]

mi �
Nelem∑
e=1

me
i �

Nelem∑
e=1

Ndof∑
j=1

me
i j, li j � ki j + di j �

Nelem∑
e=1

ke
i j + de

i j where de
i j �

⎧⎪⎪⎨⎪⎪⎩max{−ke
i j, 0,−ke

ji} : j � i,
−∑k�i de

ik : j = i.

For detailed derivations (for scalar transport equations), readers are referred to [7] and references therein.

In case of scalar variables, the low order method ensures the nonnegativity preservation and eliminates spuri-

ous oscillations at discontinuities. Furthermore, it can be proved that local extrema diminish if the velocity field is

divergence-free. These properties are also satisfied for each entry of the tensor quantity due to missing couplings

between different components. However, single entries have no physical meaning and, hence, their LED property is

just a bonus. As explained above, LED properties for the eigenvalues are more important for tensor quantities. Hence,

the ability of the low order method to preserve the (local) range of eigenvalues is discussed below.

For each symmetric tensor Ui ∈ R
d×d there exists an orthogonal tensor Qi ∈ R

d×d such that Ui = Q	i ŨiQi and

Ũi = QiUiQ	i , where Ũi ∈ R
d×d is a diagonal tensor with the eigenvalues ui,1 ≤ . . . ≤ ui,d of Ui on its diagonal, i.e.

ũi,kk = ui,k, 1 ≤ k ≤ d. Differentiation with respect to time leads to

dŨi

dt
=

d

dt
(QiUiQ	i ) = (dtQi)UiQ	i + Qi(dtUi)Q	i + QiUi(dtQ	i )

= (dtQi)Q	i Ũi + Qi(dtUi)Q	i + ŨiQi(dtQi)
	

= HiŨi + Qi(dtUi)Q	i − ŨiHi,

where

Hi � (dtQi)Q	i = dt(QiQ	i ) − Qi(dtQ	i ) = dt1 − Qi(dtQ	i ) = −Qi(dtQi)
	 = −H	i .

Substituting (4) for dtUi, neglecting boundary conditions Bi, and assuming that ui,1 is a local minimum, i.e., ui,1 ≤
u j,1 ≤ u j,k for all neighboring degrees of freedom j and 1 ≤ k ≤ d, results in

dui,1

dt
=

dũi,11

dt
= hi,11ũi,11 +

(
Qi(dtUi)Q	i

)
11 − ũi,11hi,11 =

(
Qi(dtUi)Q	i

)
11

=
(
Qim−1

i

Ndof∑
j=1

li jU jQ	i
)

11
= m−1

i

Ndof∑
j=1, j�i

li j(QiU jQ	i )11 + m−1
i lii(QiUiQ	i )11

= m−1
i

Ndof∑
j=1, j�i

li j(QiU jQ	i )11 − m−1
i

( Ndof∑
j=1, j�i

li j

)
ui,1(QiQ	i )11 = m−1

i

Ndof∑
j=1, j�i

li j
(
Qi(U j − ui,11)Q	i

)
11 ≥ 0

if
∑Ndof

j=1
li j = 0 for all 1 ≤ j ≤ Ndof , because the diagonal entries of positive semidefinite tensors are nonnegative,

U j − ui,11 is positive semidefinite due to ui,1 ≤ u j,1 (1 ∈ Rd×d is the identity matrix), and li j ≥ 0, i � j. Hence, a local

minimum of (the smallest) eigenvalues cannot decrease and, similarly, a local maximum of (the largest) eigenvalues

cannot increase. This can be interpreted as a local extremum diminishing property for (the eigenvalue range of) tensor

quantities of the semidiscrete problem and justifies the choice of the same low order method as in the case of scalar

transport equations.
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This property carries over to the fully discrete problem after applying a strong stability preserving time integrator

(eventually time step restrictions are required) [3, 4]: Assuming that the system after a two-level time discretization is

given by (boundary conditions are neglected)

Ndof∑
j=1

ai jUn+1
j =

Ndof∑
j=1

bi jUn
j for all 0 ≤ i ≤ Ndof ,

the eigenvalue range is preserved if

Ndof∑
j=1

(ai j − bi j) = 0, aii > 0, bii ≥ 0, ai j ≤ 0, bi j ≥ 0 for all 0 ≤ i � j ≤ Ndof . (5)

This criterion is satisfied for the low order method (4) discretized with the standard θ-scheme under corresponding

CFL-like conditions [9]. Here, Un+1
j and Un

j are the tensors at node j and tn+1 and tn, respectively. If umin
i and umax

i are

lower and upper bounds at node i defined by (compare with [9])

umin
i � min

{
min

1≤ j≤Ndof ,
li j�0

un
j,1, min

1≤ j≤Ndof ,
j�i, li j�0

un+1
j,1

}
, umax

i � max

{
max

1≤ j≤Ndof ,
li j�0

un
j,d, max

1≤ j≤Ndof ,
j�i, li j�0

un+1
j,d

}
for all 1 ≤ i ≤ Ndof ,

then un+1
i,1 ≥ umin

i is satisfied for all 1 ≤ i ≤ Ndof

aiiUn+1
i = biiUn

i −
Ndof∑

j=1, j�i

ai jUn+1
j +

Ndof∑
j=1, j�i

bi jUn
j

⇐⇒ aiiUn+1
i = biiUn

i −
Ndof∑

j=1, j�i

ai jUn+1
j +

Ndof∑
j=1, j�i

bi jUn
j + umin

i 1

Ndof∑
j=1

(ai j − bi j)

⇐⇒ aii(Un+1
i − umin

i 1) = bii(Un
i − umin

i 1)︸�������������︷︷�������������︸
≥0

+

Ndof∑
j=1, j�i

(−ai j)(Un+1
j − umin

i 1)︸��������������������︷︷��������������������︸
≥0

+

Ndof∑
j=1, j�i

bi j(Un
j − umin

i 1)︸�������������︷︷�������������︸
≥0

≥ 0. (6)

Furthermore, no new minimum of minimal eigenvalues can be generated at tn+1 (except for the boundary): Otherwise,

there exists a degree of freedom i, where the new local minimum is attained, which means

un+1
i,1 ≤ min

1≤ j≤Ndof ,
li j�0

un
j,1, un+1

i,1 ≤ min
1≤ j≤Ndof ,
j�i, li j�0

un+1
j,1 =⇒ un+1

i,1 = umin
i .

Then, (6) leads to

0 = aii(un+1
i,1 − umin

i ) ≥ bii(un
i,1 − umin

i ) +

Ndof∑
j=1, j�i

(−ai j)(un+1
j,1 − umin

i ) +

Ndof∑
j=1, j�i

bi j(un
j,1 − umin

i ) ≥ 0 (7)

using (5) and a1 + b1 ≤ λ1(A + B) ≤ λd(A + B) ≤ ad + bd

x	 (A + B − (a1 + b1)1) x = x	(A − a11)x + x	(B − b11)x ≥ 0 for all x ∈ Rd =⇒ λ1(A + B) ≥ a1 + b1,

x	 (A + B − (ad + bd)1) x = x	(A − ad1)x + x	(B − bd1)x ≤ 0 for all x ∈ Rd =⇒ λd(A + B) ≤ ad + bd.
(8)

In particular, (7) results in

un
j,1 = umin

i for all 1 ≤ j ≤ Ndof with bi j � 0 and un+1
j,1 = umin

i for all 1 ≤ j ≤ Ndof with ai j � 0

due to (5). Hence, the minimum is also attained at tn and no new minimum is generated at tn+1. Similar results can be

obtained for the upper bound umax
i and the LED property is valid at the discrete level, too.
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Furthermore, each function f : Rd×d → R linearly depending on Ui, i.e., satisfying f (αA+ B) = α f (A)+ f (B) for

all A, B ∈ Rd×d, α ∈ R, is local extremum diminishing: Assuming f (Ui) is a local minimum, i.e., f (Ui) ≤ f (U j) for

all neighboring nodes j, the time derivative can be written as

d f (Ui)

dt
=

d∑
k,l=1

f (eke	l )
dui,kl

dt
=

d∑
k,l=1

m−1
i f (eke	l )

( Ndof∑
j=1

li ju j,kl

)

= m−1
i

Ndof∑
j=1

li j

d∑
k,l=1

u j,kl f (eke	l ) = m−1
i

Ndof∑
j=1, j�i

li j

(
f (U j) − f (Ui)

)
≥ 0

and similarly for a local maximum. Therefore, the LED property is satisfied for the trace in particular.

Hence, the standard low order method for FCT algorithms yields the LED property for eigenvalues and the trace

without additional limitations or modifications. This property is not valid for principal invariants due to the nonlinear

dependence on the tensor entries. A low order method preserving the LED property for the determinant must be

nonlinear when the tensor itself is the convected variable.

4. Antidiffusive correction

The low order method (4) is derived from the Galerkin method by adding artificial diffusion to guarantee discrete

maximum principles for the local range of eigenvalues. This leads to a stable algorithm, which is fairly diffusive

and, hence, not recommended for a numerical approximation per se. Nevertheless, it provides useful bounds for a

correction procedure, which is based on the addition of antidiffusive components. These components can be designed

to convert the low order method into a given arbitrary high order (stabilized) scheme. In the simplest case, the Galerkin

method is reconstructed by eliminating artificial diffusion using the low order solution: Let the low order method (4)

be discretized in time by the θ-scheme (0 ≤ θ ≤ 1)

mi
UL

i − Un
i

Δt
=

Ndof∑
j=1

li j

(
θUL

j + (1 − θ)Un
j

)
+ θBn+1

i + (1 − θ)Bn
i ,

where UL
i and Un

i are the low order solution and solution at tn, respectively. Then the linearized high order Galerkin

solution UH is given by

miUH
i = miUL

i +

Nelem∑
e=1

Fe
i ,

where Fe
i are element-based antidiffusive components defined by

Fe
i = me

i (UL
i − Un

i ) −
Ndof∑
j=1

me
i j(U

L
j − Un

j ) + Δt
Ndof∑
j=1

de
i jU

n
j =

Ndof∑
j=1

[
me

i j

(
(UL

i − Un
i ) − (UL

j − Un
j )
)
+ Δtde

i jU
n
j

]
, (9)

which do not contain any mass, i.e.,
∑Ndof

i=1
Fe

i = 0 · 1. The reconstructed solution UH has no guarantee that local

maximum principles are satisfied. Therefore, the antidiffusive components are limited by element-based correction

factors 0 ≤ αe ≤ 1, which enforce specific constraints. Then, the monotonicity preserving solution at tn+1 is given by

miUn+1
i = miUL

i +

Nelem∑
e=1

αeFe
i .

Clearly, the crucial part of each FCT algorithm is the way in which the correction factors are defined to prevent the

antidiffusive correction from producing artificial oscillations.
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5. Eigenvalue range limiting

In case of tensor quantities, eigenvalues should not increase or decrease arbitrarily to preserve physically rea-

sonable solutions. Especially orientation tensors have to stay positive semi definite to guarantee a stable numerical

simulation. While the low order method guarantees the LED property for the eigenvalues, the antidiffusive com-

ponents must be scaled by a correction factor for that reason. In general, these correction factors are calculated by

estimating the quantity of interest depending on αe (e.g., related derivations for the Euler equations can be found

in [8]). In the two- and three-dimensional space, there exists an explicit formula for eigenvalue computations just

depending on the principal invariants of the symmetric tensor.

2D
u1 =

1

2

(
I1 −

√
I2
1 − 4I2

)
, u2 =

1

2

(
I1 +

√
I2
1 − 4I2

)
,

I1(U) = u1 + u2 = tr(U) = u11 + u22, I2(U) = u1u2 = det(U) = u11u22 − u2
12,

(10a)

(10b)

3D [5, 17] ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u1 =

I1

3
− 2
√

v cos( π
3
− φ),

u2 =
I1

3
− 2
√

v cos( π
3
+ φ),

u3 =
I1

3
+ 2
√

v cos(φ),

v =
( I1

3

)2 − I2

3
,

s =
( I1

3

)3 − I1·I2

6
+

I3

2
,

φ = 1
3

arccos
(
s
√

v−3
)
,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I1(U) = u1 + u2 + u3 = tr(U) = u11 + u22 + u33,

I2(U) = u1u2 + u1u3 + u2u3 =
1

2

(
(trU)2 − tr(U2)

)
= u11u22 + u11u33 + u22u33 − u2

12 − u2
13 − u2

23,

I3(U) = u1u2u3 = det(U) = u11u22u33 + 2u12u13u23 − u22u2
13 − u33u2

12−u11u2
23.

(10c)

(10d)

However, due to their complexity, these relations are not recommended for estimation of correction factors. Instead

of that, auxiliary tensors are defined by

Umin
i � UL

i − umin
i 1 + α−i m−1

i

Nelem∑
e=1

(Fe
i )−, Umax

i � umax
i 1 − UL

i − α+i m−1
i

Nelem∑
e=1

(Fe
i )+, (11)

where umin
i , u

max
i ∈ R are lower and upper bounds for the eigenvalues [1, 7], (Fe

i )− and (Fe
i )+ are negative and positive

parts of the eigenvalue decomposition of Fe
i = (Fe

i )− + (Fe
i )+, and 0 ≤ α−i , α+i ≤ 1 are nodal-based correction factors.

If Umin
i and Umax

i are positive semidefinite and αe ≤ min{α−i , α+i } for all nodes i corresponding to element e, then

Un+1
i − umin

i 1 and umax
i 1 − Un+1

i are also positive semidefinite

Umin
i ≤ UL

i − umin
i 1 + m−1

i

Nelem∑
e=1

αe(Fe
i )− ≤ UL

i − umin
i 1 + m−1

i

Nelem∑
e=1

αeFe
i = Un+1

i − umin
i 1,

Umax
i ≤ umax

i 1 − UL
i − m−1

i

Nelem∑
e=1

αe(Fe
i )+ ≤ umax

i 1 − UL
i − m−1

i

Nelem∑
e=1

αeFe
i = umax

i 1 − Un+1
i

and all eigenvalues of Un+1
i are bounded by umin

i and umax
i , i.e., umin

i ≤ un+1
i,k ≤ umax

i for all 1 ≤ k ≤ d. A limiter

based on these estimates involves the computation of (global) sums of negative and positive fluxes
∑Ndof

e=1
(Fe

i )− and∑Ndof

e=1
(Fe

i )+ as in Zalesak’s FCT algorithm [19] and, hence, the eigenvalue decomposition of Fe
i is required. To re-

duce the computational effort and localize the auxiliary tensors, the following inequality for the eigenvalues can be

considered

︸����������︷︷����������︸
=1

m−1
i

( Nelem∑
e=1

me
i

)
umin

i = umin
i

!≤ λk(Un+1
i ) = λk(UL

i + m−1
i

Nelem∑
e=1

αeFe
i ) = λk

((
m−1

i

Nelem∑
e=1

me
i
)
UL

i + m−1
i

Nelem∑
e=1

αeFe
i

)

= m−1
i λk

( Nelem∑
e=1

(
me

i UL
i + α

eFe
i
)) !≤ umax

i = m−1
i

( Nelem∑
e=1

me
i

)
umax

i .
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Due to (8), this condition is satisfied if the following relation holds

me
i umin

i ≤ λk

(
me

i UL
i + α

eFe
i

)
≤ me

i umax
i for all 1 ≤ e ≤ Nelem and 1 ≤ k ≤ d.

Therefore, the element-based auxiliary tensors

Umin,e
i � me

i (UL
i − umin

i 1) + αe,−
i Fe

i , Umax,e
i � me

i (umax
i 1 − UL

i ) − αe,+
i Fe

i (12)

must be positive semidefinite. Then, αe ≤ mini{αe,−
i , α

e,+
i } guarantees the boundedness of eigenvalues for all nodes i

corresponding to element e.

In what follows, algorithms are presented that ensure the positive semidefiniteness of A + αB, A, B ∈ R
d×d,

depending on a correction factor 0 ≤ α ≤ 1. More precisely, we are interested in finding the largest α ∈ [0, 1], which

satisfies the condition

A + βB is positive semidefinite for all 0 ≤ β ≤ α, where A is positive semidefinite. (13)

The proposed methods can be used to enforce local maximum principles for the eigenvalues of tensor quantities based

on the global or element-based approach (11) or (12), respectively.

5.1. min-min criterion
The most obvious way for defining 0 ≤ α ≤ 1 is by considering the smallest eigenvalues of A and B independently

and exploiting (8), which yields

0
!≤ a1 + βb1 ≤ λ1(A + βB) for all 0 ≤ β ≤ α =⇒ α �

⎧⎪⎪⎨⎪⎪⎩−a1b−1
1 : b1 < −a1,

1 : b1 ≥ −a1.
(14)

This approach can be implemented quite easily but needs the computation of the eigenvalues of two tensors. Due to

the separated treatment of A and B, the resulting α is not optimal when the system is ill conditioned. For example,

(
1 0

0 0

)
+ β

(−3 0

0 0

)
=

(
1 − 3β 0

0 0

)
(15)

is positive semidefinite for all 0 ≤ β ≤ 1
3
. However, algorithm (14) results in α = 0.

5.2. Regularized criterion
Assuming A is positive definite, Caron et al. [2] have shown that A + βB is positive semidefinite if and only if

β ∈ [β, β̄], where β < β̄ ∈ R̄ are defined by

β �

⎧⎪⎪⎨⎪⎪⎩−
(
λd(A−1B)

)−1
: λd(A−1B) > 0,

−∞ : λd(A−1B) ≤ 0,
β̄ �

⎧⎪⎪⎨⎪⎪⎩−
(
λ1(A−1B)

)−1
: λ1(A−1B) < 0,

+∞ : λ1(A−1B) ≥ 0.

This leads to the following definition of the correction factor 0 ≤ α ≤ 1

α �

⎧⎪⎪⎨⎪⎪⎩−
(
λ1(A−1B)

)−1
: λ1(A−1B) < −1,

1 : λ1(A−1B) ≥ −1.
(16)

In the context of FCT algorithms as described above, A is often nearly singular and the computation of A−1B is ill

conditioned, due to the definition of local bounds. Especially at a local extremum, A is singular and (16) is not

suitable. To rectify this, a stabilized version can be constructed by introducing a small regularization parameter ε > 0

and adding ε1 to A. Then the smallest eigenvalue of (A + ε1)−1B can be expressed by

λ1

(
(A + ε1)−1B

)
= λ1

(
(Q	ÃQ)−1B

)
= λ1

(
Ã−1(QBQ	)

)
= λ1

(
Ã−1/2(QBQ	)Ã−1/2

)
(17)
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using the eigenvalue decomposition A + ε1 = Q	ÃQ, where Q and Ã are orthogonal and diagonal matrices. The

resulting α guarantees the positive semidefiniteness of A + ε1 + αB and, hence, eigenvalues can violate local bounds

by ε. Therefore, local maximum principles of the FCT solution are not preserved exactly.

To see this, applying (16) with regularization parameter ε to example (15) yields

(A + ε1)−1B =
(
1 + ε 0

0 ε

)−1 (−3 0

0 0

)
=

(−3(1 + ε)−1 0

0 0

)
=⇒ α � 1

3
(1 + ε).

Of course, it is sufficient to add the regularization parameter ε just to the vanishing eigenvalues, which results in the

exact solution α = 1
3
.

This more accurate, but not strictly eigenvalue range preserving, algorithm needs the eigenvalue decomposition

of A (if (17) is used) and one additional computation of the smallest eigenvalue of A−1B. Therefore, it is significantly

more expensive than the min-min criterion.

5.3. Invariant criterion
While the first algorithm proposed so far seems to be too restrictive for general tensors A and B, FCT solutions

depending on the second one tend to violate the bounds for the eigenvalue range. A third approach depends on

principal invariants and exploits the fact that a matrix is positive semidefinite if and only if all principal invariants

I1, . . . , Id are nonnegative. Therefore, α has to be defined as

α � min{α1, . . . , αd}, where αk = inf ({β ≥ 0 : Ik(A + βB) < 0} ∪ {1}) for all 1 ≤ k ≤ d. (18)

Here, αk corresponds to the first root of the polynomial ik(β) � Ik(A + βB) in [0, 1], where ik changes its sign from

positive to negative. For regular/positive definite matrices A, the minimum of α is reached at αd, the smallest positive

value, for which A + βB becomes singular (by definition of the determinant Id). Furthermore, this value coincides

with the correction factor of the Regularized criterion when using ε = 0. In contrast, no additional regularization is

necessary if A is singular.

While there exist stable and direct algorithms for calculating α1 and α2 [15], roots of a cubic polynomial can be

determined accurately and efficiently using polynomial fitting [18]. However, to avoid the computation of all roots of

the cubic polynomial i3(β), the following pseudo algorithm can be used:

0. At steps 1, 2, and 3 below, we are searching for an interval [β, β̄], which contains the desired root α3 of i3(β),

where the sign changes from positive to negative (if existing). This interval is initialized by [β, β̄] � [0, 1].

1. To estimate α3, we calculate critical points of i3(β), i.e. the roots of i3
′(β). Due to the above sign change

assumption, there is at most one root of i3(β) between two neighboring extrema.

2. Starting with the smallest root of i3
′(β), iterate over all roots β̃ ∈ [0, 1].

• If i3(β̃) ≥ 0, update β � β̃ (the desired root of i3 cannot be in [β, β̃]).

• Otherwise, we have α3 ∈ [β, β̄], where β̄ � β̃. → Go to 4.

3. If no interval [β, β̄] so far contains α3, check if i3(1) ≥ 0. If this is the case, there is no desired root in [0, 1] and

α3 � 1. Otherwise, we have α3 ∈ [β, β̄] with β̄ = 1. → Go to 4.

4. α3 ∈ [β, β̄] can be calculated iteratively by an algorithm, which yields guaranteed bounds after each iteration

(e.g., bisection method).

Of course, this algorithm can also be used to find the desired root α2 of the quadratic polynomial i2(β).
Due to involved methods for calculating the required roots α1, . . . , αd, this criterion can be most expensive (de-

pending on the used root-finding algorithm). On the other hand, it calculates the most accurate correction factors

while preserving the eigenvalue range.

The approach of using the principal invariants to define α such that (13) is satisfied can also be exploited to define

an approximate Invariant criterion based on the inequality

0 ≤ β ≤ 1 =⇒ Cβk+1 ≤ Cβk for all C ≥ 0 and k ∈ N. (19)
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To describe the corresponding method, let the polynomial ik(β) be given by

ik(β) = Ik(A + βB) = c(k)
k β

k + c(k)
k−1
βk−1 + . . . + c(k)

1
β + c(k)

0
,

which should be nonnegative for all 0 ≤ β ≤ αk due to (18). The easiest way is to estimate ik(β) by a linear polynomial

ik(β) = c(k)
k β

k + c(k)
k−1
βk−1 + . . . c(k)

1
β + c(k)

0

≥ (min{0, c(k)
k } + c(k)

k−1

)
βk−1 + . . . c(k)

1
β + c(k)

0

≥ . . .
≥
(

min
{
0, . . . ,min

{
0,min{0, c(k)

k } + c(k)
k−1

}
+ . . . + c(k)

2

}
+ c(k)

1

)
β + c(k)

0

!≥ 0

(20)

due to (19). If c(k)
1
≥ 0, this estimate can be improved by using a quadratic approximation

ik(β) = c(k)
k β

k + c(k)
k−1
βk−1 + . . . + c(k)

1
β + c(k)

0

≥ c(k)
k β

k + c(k)
k−1
βk−1 + . . . + c(k)

3
β3 + (c(k)

2
+ c(k)

1
)β2 + c(k)

0

≥ (min{0, c(k)
k } + c(k)

k−1

)
βk−1 + . . . + c(k)

3
β3 + (c(k)

2
+ c(k)

1
)β2 + c(k)

0

≥ . . .
≥
(

min
{
0, . . .min

{
0,min{0, c(k)

k } + c(k)
k−1

}
+ . . . + c(k)

3

}
+ (c(k)

2
+ c(k)

1
)
)
β2 + c(k)

0

!≥ 0.

In general, the above approach leads to estimates of the form

ik(β) = c(k)
k β

k + c(k)
k−1
βk−1 + . . . + c(k)

1
β + c(k)

0

≥ c(k)
k β

k + c(k)
k−1
βk−1 + . . . +

( r∑
s=1

c(k)
s

)
βr + c(k)

0

≥
(

min
{
{0, . . .min

{
0,min{0, c(k)

k
}
+ c(k)

k−1
} + . . . + c(k)

r+1

}
+

r∑
s=1

c(k)
s

)
βr + c(k)

0
� c(k)βr + c(k)

0

!≥ 0,

(21)

where r = min{1 ≤ s ≤ d :
∑s

i=1 c(k)
i < 0}. Then, the correction factor αk is defined by

αk �

⎧⎪⎪⎨⎪⎪⎩
(
−c(k)

0
(c(k))−1

)1/r
: c(k) < −c(k)

0
,

1 : c(k) ≥ −c(k)
0
.

Furthermore, this approach can be improved by exploiting (18) and already known quantities α1, . . . , αk−1 when

calculating αk: If the fluxes are prelimited by defining Fe
i � α

eFe
i , i.e., B � αeB, then the estimates of (20) and (21)

are less restrictive and more accurate results can be expected.

In case of example (15), both approaches based on the Invariant criterion (exact and approximate) yield the optimal

correction factor α = 1
3

(note that I2(A + βB) = 0 for all 0 ≤ β ≤ 1). However, the modified tensor of example (15)

given by (
1 0

0 1

)
+ β

(−3 0

0 −3

)
=

(
1 − 3β 0

0 1 − 3β

)

is still positive semidefinite for all 0 ≤ β ≤ 1
3
. While the min-min criterion leads to the optimal value α = 1

3
, the

approximate Invariant criterion using (20) or (21) yields

i3(β) = (1 − 2β)2 = 1 − 6β + 9β2 ≥ 1 − 6β
!≥ 0 =⇒ α3 � 1

6
,

which is more restrictive. On the other hand, the approximate Invariant criterion does not involve any computation of

eigenvalues and is therefore the most efficient algorithm for calculating the correction factor α.
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All proposed approaches are frame invariant, i.e., they do not yield different correction factors α if a similarity

transformation is applied to A+ βB. In case of the min-min criterion or Regularized criterion this can be seen directly

because of the frame invariance of eigenvalues. In case of the Invariant criterion, consider an arbitrary orthogonal

tensor Q ∈ Rd×d. Then the principal invariant Ik satisfies

c(k)
k β

k + c(k)
k−1
βk−1 + . . . + c(k)

0
= Ik(A + βB) = Ik

(
Q	(A + βB)Q

)
� c̃(k)

k β
k + c̃(k)

k−1
βk−1 + . . . + c̃(k)

0

for all 0 ≤ β ≤ 1 and 1 ≤ k ≤ d. This can be rewritten as

0 = (c(k)
k − c̃(k)

k )βk + (c(k)
k−1
− c̃(k)

k−1
)βk−1 + . . . + (c(k)

0
− c̃(k)

0
) for all 0 ≤ β ≤ 1 and 1 ≤ k ≤ d.

Therefore, c(k)
k = c̃(k)

k for all 1 ≤ k ≤ d must be valid and limiters just depending on c(0)
0
, . . . , c(d)

d are frame invariant,

which is particularly the case for the (approximate) Invariant criterion.

6. Trace limiter

In the last section, algorithms are proposed for limiting antidiffusive fluxes such that local minima/maxima of the

smallest/largest eigenvalue cannot decrease/increase. The admissible eigenvalue range is determined using the low

order method presented in Sec. 3, which was shown to preserve the eigenvalue range. In particular, the so-defined LED

property for tensor quantities guarantees that the eigenvalues satisfy global bounds. Furthermore, the FCT correction

step implicitly constrains the magnitude of principal invariants due to

|Ik(U)| =
∣∣∣∣ ∑

1≤i1<...<ik≤d

ui1 · . . . · uik

∣∣∣∣ ≤ (d − k + 1)
(

max
1≤l≤d
|ul|
)k

for all 1 ≤ k ≤ d.

However, the principal invariants of the low order solution are not local extremum diminishing and possibly violate

local bounds. Clearly the correction step of the FCT algorithm cannot rectify this drawback of the low order method.

Therefore, constraining principal invariants in context of continuous FEM-FCT algorithms is not recommended and

just results in stronger limiting.

Nevertheless, as described on page 6, the low order method possesses the LED property for the trace. So, it is

worthwhile to preserve this benefit when it comes to adding antidiffusive fluxes. This can be done in the same Zalesak-

like manner as for scalar quantities, due to the linear dependence of the trace on tensor entries. In the localized version

of element-based FCT, this method is given by

αtr,e � min
1≤ j≤Ndof ,

li j�0

Rtr,e
i , Rtr,e

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
{
1,

me
i (trmax

i −trL
i )

tr(Fe
i )

}
: tr(Fe

i ) > 0,

1 : tr(Fe
i ) = 0,

min
{
1,

me
i (trmin

i −trL
i )

tr(Fe
i )

}
: tr(Fe

i ) < 0,

where trmin
i and trmax

i are local bounds for the trace [1, 7] and trL
i is the trace of the low order solution in node i. Then,

the element-based correction factor can be defined by αe � min{αe, αtr,e}. If the approximate Invariant criterion is

used or global sums of positive and negative antidiffusive element contributions are calculated, it is recommended to

limit the trace first and scale the element contributions Fe with αtr,e before applying the eigenvalue range limiter. This

results in more accurate solutions than the reverse approach, because estimates for correction factors of eigenvalues

are based on smaller absolute fluxes.

6.1. Special case: Orientation tensors

The trace of general tensors is the only principal invariant which depends linearly on tensor entries and, hence, is

worthwhile to be limited. While bounding eigenvalues is quite complicated due to nonlinear dependencies, methods

for the trace can be adopted directly from scalar FCT algorithms. However, in case of orientation tensors, which

possess a unit trace property, this application is redundant as shown below.
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Orientation tensors are defined by their positive semidefiniteness combined with a unit trace property. While the

positive semidefiniteness is preserved by the eigenvalue range limiter of Sec. 5, an arbitrary space discretization of the

form
∑Ndof

j=1
(mi jdtU j − ki jU j) = 0 leads to

Ndof∑
j=1

mi j
dtr(U j)

dt
=

Ndof∑
j=1

mi j

d∑
k=1

du j,kk

dt
=

d∑
k=1

Ndof∑
j=1

ki ju j,kk =

Ndof∑
j=1

ki jtr(U j) =

Ndof∑
j=1

ki j for all 1 ≤ i ≤ Ndof .

Therefore, the first principal invariant stays constant if the mass matrix is regular and the convection matrix has

vanishing row sums, i.e.,
∑Ndof

j=1
ki j = 0. Clearly, this is particularly true for the high order Galerkin method (3) and

the corresponding low order counterpart (4) if div(v) = 0 and, therefore, the zero-sum condition holds at the discrete

level. Finally, high order corrections depending on antidiffusive element contributions (9) do not change the trace due

to the definition of de
i j and

tr(Fe
i ) =

d∑
k=1

f e
i,kk =

Ndof∑
j=1

[
me

i j

( d∑
k=1

uL
i,kk −

d∑
k=1

un
i,kk −

d∑
k=1

uL
j,kk +

d∑
k=1

un
j,kk

)
+ Δtde

i j

d∑
k=1

un
j,kk

]
= Δt

Ndof∑
j=1

de
i j = 0

=⇒ tr(Un+1
i ) = tr(UL

i ) + m−1
i

Nelem∑
e=1

αetr(Fe
i ) = tr(UL

i ) ≡ const.

Therefore, convecting all diagonal entries of orientation tensors is redundant in numerical applications and an arbitrary

diagonal entry can be neglected and determined when required using the definition of the trace.

7. Numerical experiments

In Secs. 5 and 6, FCT algorithms for symmetric tensors are proposed to preserve the monotonicity of eigenvalues

and the trace. While standard approaches for scalar quantities can be easily adopted to restrict antidiffusive ele-

ment contributions with respect to the trace, methods for constraining eigenvalues require more advanced techniques.

Therefore, different criteria were developed exploiting the desired positive semidefiniteness of auxiliary tensors of the

form A + αB.

In this section, the different criteria are compared with each other using tensorial extensions of generally accepted

benchmarks in the context of monotonicity preserving methods. Solutions of componentwise limiters are observed to

justify the necessity of eigenvalue limiting. Furthermore, the influence of first bounding the trace is discussed briefly.

The results are presented by plotting minimal and maximal eigenvalues (color bar is restricted to interval [0, 1];

overshoots/undershoots are plotted in magenta; contour lines exist for values 0.0, 0.1, . . . , 1.0) and measure the L2-

and L1-errors of the Frobenius and spectral norm ‖ · ‖F and ‖ · ‖2, respectively. To identify different FCT algorithms,

limiters for the eigenvalue range are abbreviated in the following manner

ERcr-FCT where cr ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : min-min criterion,

reg : Regularized criterion,

inv : Invariant criterion,

app : approximate Invariant criterion.

Furthermore, the following synonyms

tr-FCT, TEsep-FCT, TEsyn-FCT

are used for the trace and separated/synchronized tensor entry limiters, respectively. If the trace is handled before

applying another limiter like the ‘invariant based eigenvalue limiter’ ERinv-FCT, the shortened notation tr-ERinv-

FCT is used.

In all numerical examples, the Crank-Nicolson method is used as the time integrator of the low order method

(θ = 1
2
). If not mentioned otherwise, the spatial domain Ω = (0, 1)2 is discretized uniformly using 128 · 128 = 16384
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quadrilaterals with (128+1)2 = 16641 degrees of freedom (bilinear finite elements). By choosing Δt = 10−3, the CFL

condition

CFL =
‖v‖Δt
Δx

=
‖v‖10−3

(128)−1
≤ 0.2

is satisfied in each benchmark.

7.1. Solid body rotation
The first test problem is given by a customization of the solid body rotation benchmark first introduced by Zale-

sak [19] and extended by LeVeque [10]. In the scalar case three solid bodies, a slotted cylinder, a sharp cone, and a

smooth hump, are rotated around the center of the two-dimensional domain Ω = (0, 1)2 using the time-independent

and divergence-free velocity field

v(x, y) �
(1
2
− y, x − 1

2

)	
.

At T = 2π the exact solution coincides with the initial condition and corresponding errors are calculated.

In this case, the unknown solution is given by a three-dimensional tensor still convected in the two-dimensional

domain. Similarly to the scalar benchmark, the initial condition is defined piecewise by four solid bodies

U0(x, y) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(1)
(

x−0.25
0.15
, y−0.5

0.15

)
:
√

(x − 0.25)2 + (y − 0.5)2 ≤ 0.15, ‘hump’

U(2)
(

x−0.5
0.15
, y−0.25

0.15

)
:
√

(x − 0.5)2 + (y − 0.25)2 ≤ 0.15, ‘cone’

U(3)
(

x−0.75
0.15
, y−0.5

0.15

)
:
√

(x − 0.75)2 + (y − 0.5)2 ≤ 0.15, ‘semi-ellipse’

U(4)
(

x−0.5
0.15
, y−0.75

0.15

)
:
√

(x − 0.5)2 + (y − 0.75)2 ≤ 0.15, ‘slotted cylinder’

0 · 1 : otherwise,

(22)

where the positive semidefinite tensors U(1), U(2), U(3), and U(4) are described by their eigenvalue decomposition as

follows

U(1)(x, y) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 cos φ sin φ
0 sin φ − cos φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x y 0

y −x 0

0 0 r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u(1)

1
0 0

0 u(1)
2

0

0 0 u(1)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x y 0

y −x 0

0 0 r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 cos φ sin φ
0 sin φ − cos φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where u(1)

1
=
(

1
2

(1 + cos(πr))
)3
, u(1)

2
=
(

1
2

(1 + cos(πr))
)2
, u(1)

3
= 1

2
(1 + cos(πr)) , φ = 1

2
arctan2(x, y),

U(2)(x, y) �
1

10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
10 0 0

0 8 6

0 6 −8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x y 0

y −x 0

0 0 r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u(2)

1
0 0

0 u(2)
a 0

0 0 u(2)
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x y 0

y −x 0

0 0 r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
10 0 0

0 8 6

0 6 −8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where u(2)

1
= 1

2
− 1

2
r, u(2)

a =
1
2
− 1

2
|x|, u(2)

b = 1 − r,

U(3)(x, y) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u(3)
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0 0

0 u(3)
1
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0 0 u(3)
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1
= u(3)

2
= u(3)
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)
∧ (x < 0),

0 · 1 : otherwhere,

where u(4)
1
= 0.1, u(4)

2
= 0.45, u(4)

3
= 1,
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(a) Minimal eigenvalue uh,1. (b) Maximal eigenvalue uh,3.
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Figure 1: Solid body rotation and swirling flow: Range of eigenvalues of exact solution at initial and final time.

using the radius r �
√

x2 + y2. The intermediate and largest eigenvalue of U(2) are given by

u(2)
2
=

⎧⎪⎪⎨⎪⎪⎩u(2)
a : |x| ≥ 2r − 1,

u(2)
b : |x| < 2r − 1,

u(2)
3
=

⎧⎪⎪⎨⎪⎪⎩u(2)
b : |x| ≥ 2r − 1,

u(2)
a : |x| < 2r − 1

while 0 and 1 are the (globally) smallest and largest eigenvalue of U0.

The descriptions ‘hump’, ‘cone’, ‘semiellipse’, and ‘slotted cylinder’ of (22) are based on the design of corre-

sponding minimal/maximal eigenvalues (Fig. 1) and their similarities to counterparts of the scalar benchmark. For

this reason, the structure of the exact solution is well suited for studying the behavior of the monotonicity preserving

methods near ‘discontinuities’ (slotted cylinder and semiellipse) and in regions of smooth and sharp peaks (hump and

cone).

Using the low order method (Figs. 2a and 2b), details of the initial condition are completely smoothed out by

adding artificial diffusion in such a way that local maximum principles are preserved algebraically. Initially separated

bodies merge and produce a single monotone and smooth body satisfying global bounds for the range of eigenvalues

as well as tensor entries as proved in Sec. 3.

If linearized antidiffusive element contributions are added without corrections (Sec. 4), the accuracy of the nu-

merical solution improves and contours of each body become visible (Figs. 2c and 2d). However, local maximum

principles for the eigenvalues and tensor components do not hold and spurious oscillations with overshoots/under-

shoots occur. As shown in Table 1, global maximum principles are still violated if FCT algorithms for the tensor

entries are applied, i.e., TEsep-FCT and TEsyn-FCT. Even though TEsep-FCT produces the most accurate result of all

considered methods, the LED property for the eigenvalue range is violated and, in particular, tensors do not stay

positive semidefinite (Figs. 3a and 3b).

In contrast to this method, the synchronized counterpart TEsyn-FCT produces diffusive results with excessive

distortions (Figs. 3c and 3d). This behavior can be explained by the drawback of any synchronized FCT algorithm:

If a quantity of interest is almost constant (but not exactly), the upper and lower bounds are close to each other.

Then, small changes in antidiffusive element contributions lead to highly varying correction factors. Moreover, the

absolute value of corresponding antidiffusive element contributions is small (due to almost constant function values)

and scaling with an arbitrary correction factor has no meaningful influence. If correction factors are synchronized

instead, large element contributions have to be scaled with such oscillating correction factors and, hence, produce

inaccurate results with remarkable ripples even if local maximum principles are preserved.

So far, only the low order method was found to preserve the definiteness of the tensorial solution. In particular,

local maximum principles for the range of eigenvalues are not satisfied if limited antidiffusive element contributions

are added by taking the LED property for each tensor entry into account. These violations can be avoided by applying
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(a) uh,1 of low order method (αe ≡ 0). (b) uh,3 of low order method (αe ≡ 0).
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(c) uh,1 of uncorrected method (αe ≡ 1). (d) uh,3 of uncorrected method (αe ≡ 1).
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Figure 2: Solid body rotation: T = 2π, Δt ≈ 10−3, Ndof = (128 + 1)2, range of eigenvalues of low order method and FCT algorithm with αe ≡ 1.
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(a) uh,1 of TEsep-FCT. (b) uh,3 of TEsep-FCT.
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(c) uh,1 of TEsyn-FCT. (d) uh,3 of TEsyn-FCT.
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Figure 3: Solid body rotation: T = 2π, Δt ≈ 10−3, Ndof = (128 + 1)2, range of eigenvalues of component-based FCT algorithms.
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method L1 − ‖ · ‖F L2 − ‖ · ‖F L1 − ‖ · ‖2 L2 − ‖ · ‖2 uh,1 uh,3

αe ≡ 0 1.984E−1 3.080E−1 1.487E−1 2.385E−1 −7.088E−13 0.558

αe ≡ 1 4.058E−2 1.015E−1 3.382E−2 8.860E−2 −6.907E−2 1.118

tr-FCT 3.674E−2 1.016E−1 3.057E−2 8.861E−2 −7.418E−3 1.006

ERmin-FCT 4.867E−2 1.177E−1 4.128E−2 1.020E−1 −3.088E−17 0.998

ERapp-FCT 4.386E−2 1.104E−1 3.713E−2 9.616E−2 −1.636E−11 1.000

ERinv-FCT 4.378E−2 1.104E−1 3.708E−2 9.622E−2 −2.624E−10 1.000

ERreg-FCT 4.378E−2 1.104E−1 3.708E−2 9.622E−2 −4.108E−10 1.000

TEsep-FCT 3.646E−2 1.011E−1 3.036E−2 8.821E−2 −2.760E−2 1.003

TEsyn-FCT 1.208E−1 2.209E−1 9.294E−2 1.775E−1 −3.821E−3 0.776

tr-ERmin-FCT 4.941E−2 1.186E−1 4.185E−2 1.025E−1 −3.678E−17 0.994

tr-ERapp-FCT 4.494E−2 1.116E−1 3.798E−2 9.691E−2 −2.572E−11 1.000

tr-ERinv-FCT 4.483E−2 1.115E−1 3.789E−2 9.682E−2 −2.017E−9 1.000

tr-ERreg-FCT 4.483E−2 1.115E−1 3.789E−2 9.682E−2 −2.370E−9 1.000

tr-TEsep-FCT 3.668E−2 1.017E−1 3.053E−2 8.866E−2 −1.074E−2 1.000

tr-TEsyn-FCT 1.206E−1 2.206E−1 9.280E−2 1.772E−1 −3.761E−3 0.787

Table 1: Solid body rotation: T = 2π, Δt ≈ 10−3, Ndof = (128 + 1)2, errors and range of eigenvalues of different numerical methods.

limiters for the range of eigenvalues as proposed in Sec. 5. As can be seen from Table 1, global maximum principles for

the eigenvalues are satisfied even if L1- and L2-errors increase compared to TEsep-FCT. However, this error behavior

is not surprising, because TEsep-FCT is the only algorithm that allows using individually chosen correction factors for

each tensor entry and, hence, is most flexible.

In the following study, the different limiters for the range of eigenvalues are examined in detail.

7.2. Swirling flow

A more complex benchmark is given by the ‘swirling deformation flow’ as proposed by LeVeque [10]: The time-

independent velocity field of the solid body rotation is replaced by

v(x, y, t) �
(
sin2(πx) sin(2πy)g(t),− sin2(πy) sin(2πx)g(t)

)	
, div (v(x, y)) = 0,

where g(t) = cos(πt/T ) describes the time dependency on the interval 0 ≤ t ≤ T � 3
2
. In this case, the velocity

increases in a smooth manner and deforms the initial solution. After slowing down and changing its sign at T
2

,

when the maximal deformation is reached, the velocity field reverses such that the initial solution is recovered at the

final time T . As seen in Fig. 4, the choice of the final time T = 3
2

guarantees a reasonable amount of deformation

taking the mesh size into account. Due to the complexity of the velocity field, which still yields the exact solution

analytically, this benchmark is recommended to evaluate different limiting techniques. Furthermore, no (inflow)

boundary condition has to be applied, because v vanishes on the boundary of the spatial domain ∂Ω.

Fig. (5) shows the smallest and largest eigenvalue of the final solution using different limiting techniques for the

range of eigenvalues. Results of ERreg-FCT nearly coincide with the ones produced by ERinv-FCT (see Tab. 1 and 2)

and, hence, are omitted. The FCT algorithm ERmin-FCT calculates the correction factors by treating each term of the

sum in (14) separately. This produces the most diffusive approximation, including peak clipping at the slotted cylinder

for uh,3. Nevertheless, the minimal eigenvalue uh,1 (Fig. 5a) is comparable to the one of the other eigenvalue range

limiters (Figs. 5c and 5e).

Optically, there is hardly any difference between ERapp-FCT and ERinv-FCT for uh,1 and uh,3. Table 2 indicates

that errors of ERapp-FCT grow and the global maximum of uh,3 decreases. However, even in this benchmark, the

differences are marginal and the increased computational cost of ERinv-FCT seems to be not worthwhile. Additional

numerical experiments have shown that even the FCT algorithm using linearization (20) produces no remarkable
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(a) uh,1 of ERinv-FCT. (b) uh,3 of ERinv-FCT.
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Figure 4: Swirling flow: T = 3
4 , Δt = 10−3, Ndof = (128 + 1)2, range of eigenvalues of ERinv-FCT.

differences compared to ERapp-FCT. However, eigenvalue range limiters using the Invariant criterion are less diffusive

than adding antidiffusive element contributions after applying the min-min criterion.

If the trace limiter is applied before handling the range of eigenvalues, additional restrictions have to be taken into

account and less antidiffusive element contributions can be added. Fig. 6 shows the solution using ERinv-FCT and

the counterpart tr-ERinv-FCT. Once again, changes can be seen at the peaks of uh,3 at the slotted cylinder and cone.

Table 1 and 2 confirm the statement that each FCT algorithm gets more diffusive if the trace is constrained, too.

The proposed FCT algorithms for tensor quantities are at most first order accurate in the L1 − ‖ · ‖F norm (see

Table 3). Here, the experimental order of convergence (EOC) is computed using the formula [10]

EOC = log
(E(h2)

E(h1)

)
log
(h2

h1

)−1
,

where E(h2) and E(h1) are numerical errors corresponding to the mesh sizes h2 and h1. If the tensorial solution is

diagonal, the Invariant criterion coincides with the synchronized FCT algorithm for each tensor entry, i.e., TEsyn-FCT,

and the same effective order of convergence is attained.

7.3. Drawback of eigenvalue range limiters

As mentioned in Sec. 7.1, synchronized FCT algorithms produce inaccurate solutions if one quantity of interest

is nearly constant. The proposed eigenvalue range limiters restrict the minimal and maximal eigenvalue separately

and, hence, synchronize correction factors, too (to enforce positive semidefiniteness of Umin,e
i and Umax,e

i ). Therefore,

if for instance the minimal eigenvalue is almost constant, eigenvalue range limiters scale antidiffusive element con-

tributions in an unnatural manner and the maximal eigenvalue of the solution exhibits artificial ripples. Fig. 7 shows

the eigenvalues of the swirling flow solution using ERinv-FCT with a modified initial solution: One eigenvalue of the

slotted cylinder is set to zero, i.e., u(4)
2
= 0, which becomes the new (constant) minimal eigenvalue. Small variations

occur numerically due to larger minimal eigenvalues at the other bodies of the profile. This produces artifacts such

that the maximal eigenvalue of the slotted cylinder at the final time is comparable to the one of TEsyn-FCT while uh,1

remains constant (compare Figs. 3d and 7b).

8. Conclusions

Preserving the definiteness of tensor quantities is mandatory in various applications of computational fluid dynam-

ics. A natural way of guaranteeing this property is given by constraining the eigenvalues. As shown in Sec. 3, the low

order method originally developed for scalar transport equations can be extended to tensorial variables in such a way
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(a) uh,1 of ERmin-FCT. (b) uh,3 of ERmin-FCT.
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(c) uh,1 of ERapp-FCT. (d) uh,3 of ERapp-FCT.
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(e) uh,1 of ERinv-FCT. (f) uh,3 of ERinv-FCT.
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Figure 5: Swirling flow: T = 3
2 , Δt = 10−3, Ndof = (128 + 1)2, range of eigenvalues of different eigenvalue range limiters.
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(a) uh,1 of tr-ERinv-FCT. (b) uh,3 of tr-ERinv-FCT.
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Figure 6: Swirling flow: T = 3
2 , Δt = 10−3, Ndof = (128+1)2, range of eigenvalues of ERinv-FCT with preceding trace limiting, i.e., tr-ERinv-FCT.

method L1 − ‖ · ‖F L2 − ‖ · ‖F L1 − ‖ · ‖2 L2 − ‖ · ‖2 uh,1 uh,3

αe ≡ 0 1.742E−1 2.816E−1 1.322E−1 2.196E−1 3.497E−46 0.627

αe ≡ 1 4.363E−2 1.063E−1 3.585E−2 9.120E−2 −6.919E−2 1.108

tr-FCT 4.324E−2 1.116E−1 3.563E−2 9.551E−2 −1.622E−2 0.997

ERmin-FCT 5.896E−2 1.351E−1 4.972E−2 1.156E−1 1.027E−53 0.983

ERapp-FCT 4.882E−2 1.173E−1 4.073E−2 1.002E−1 2.234E−52 0.974

ERinv-FCT 4.828E−2 1.167E−1 4.031E−2 9.981E−2 4.938E−54 0.983

ERreg-FCT 4.828E−2 1.167E−1 4.031E−2 9.981E−2 −1.047E−13 0.983

TEsep-FCT 4.181E−2 1.090E−1 3.435E−2 9.324E−2 −3.413E−2 0.999

TEsyn-FCT 1.155E−1 2.162E−1 8.945E−2 1.738E−1 −4.620E−3 0.798

tr-ERmin-FCT 5.977E−2 1.365E−1 5.032E−2 1.166E−1 1.837E−53 0.983

tr-ERapp-FCT 4.988E−2 1.194E−1 4.156E−2 1.018E−1 2.957E−52 0.974

tr-ERinv-FCT 4.912E−2 1.183E−1 4.099E−2 1.010E−1 9.848E−54 0.983

tr-ERreg-FCT 4.912E−2 1.183E−1 4.099E−2 1.010E−1 −7.173E−14 0.983

tr-TEsep-FCT 4.305E−2 1.116E−1 3.551E−2 9.552E−2 −2.033E−2 0.983

tr-TEsyn-FCT 1.155E−1 2.162E−1 8.955E−2 1.741E−1 −4.517E−3 0.800

Table 2: Swirling flow: T = 1.5, Δt = 10−3, Ndof = (128 + 1)2, errors and range of eigenvalues of different numerical methods.

Ndof L1 − ‖ · ‖F L2 − ‖ · ‖F L1 − ‖ · ‖2 L2 − ‖ · ‖2
error EOC error EOC error EOC error EOC

(25 + 1)2 1.553E−1 2.607E−1 1.214E−1 2.093E−1

(26 + 1)2 8.843E−2 0.812 1.741E−1 0.582 7.221E−2 0.749 1.449E−1 0.531

(27 + 1)2 4.828E−2 0.873 1.167E−1 0.577 4.031E−2 0.841 9.981E−2 0.537

(28 + 1)2 2.550E−2 0.921 8.346E−2 0.484 2.185E−2 0.884 7.347E−2 0.442

(29 + 1)2 1.294E−2 0.978 5.922E−2 0.495 1.125E−2 0.958 5.287E−2 0.475

(210 + 1)2 7.236E−3 0.839 4.524E−2 0.389 6.336E−3 0.828 4.054E−2 0.383

Table 3: Swirling flow: T = 3
2 , Δt = 10−32l−7, Ndof = (2l + 1)2, errors and range of eigenvalues of ERinv-FCT on different mesh levels l.
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(a) uh,1 of ERinv-FCT. (b) uh,3 of ERinv-FCT.
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Figure 7: Swirling flow: T = 3
2 , Δt = 10−3, Ndof = (128 + 1)2, range of eigenvalues of ERinv-FCT with modified initial condition u(4)

2
= 0.

that LED properties for the range of eigenvalues are satisfied. This makes it possible to limit antidiffusive element

contributions such that local maximum principles are valid for the entire FCT algorithm.

Corresponding limiting criteria are defined in Sec. 5 taking advantage of auxiliary tensors: If Umin,e
i and Umax,e

i are

positive semidefinite, inequality constraints for the minimal and maximal eigenvalue are satisfied and the solution stays

bounded. For this purpose, different frame invariant approaches are presented using simple estimates, regularization

techniques, or by observing principal invariants.

The proposed treatments are validated by considering tensorial extensions of standard benchmarks for the linear

transport equation (Sec. 7). In this study, frame dependent scalar FCT algorithms (TEsyn-FCT and TEsep-FCT) pro-

duce overshoots/undershoots and, especially, fail to preserve the definiteness of the exact solution. Eigenvalue range

limiters enforce local maximum principles for the (range of) eigenvalues, but tend to produce rather diffusive results in

specific benchmarks due to synchronizing correction factors (Sec. 7.3). However, reasonable accuracy is achieved by

using ERapp-FCT, while more expensive algorithms like ERinv-FCT and ERreg-FCT produce the most accurate results.

The peak clipping effect is more pronounced if ERmin-FCT is used instead or if additional limiting is performed to

enforce the maximum principle for the trace.

In summary, the eigenvalue range criterion represents a useful tool for constraining tensor quantities in FCT

algorithms. The accuracy of limiting techniques can be improved by using sharper estimates or less restrictive bounds.
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