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Abstract: The aim of this paper is to present a boundary-layer analysis of two-phase
dusty non-Newtonian fluid flow along a vertical surface by using a modified power-law vis-
cosity model. This investigation particularly reports the flow behavior of spherical particles
suspended in the non-Newtonian fluid. The governing equations are transformed into non-
conserved form and then solved straightforwardly by implicit finite difference method. The
numerical results of rate of heat transfer, rate of shear stress, velocity and temperature
profiles and streamlines and isotherms are presented for wide range of Prandtl number, i.e,
(0.7 < Pr < 1000.0), with the representative values of the power-law index n. A good
agreement is found between the present and the previous results when compared with some
special cases. The key observation from the present study is that the power-law fluids with
(n > 1) are more likely to promote the rate of heat transfer near the leading edge.

Keywords: Natural Convection, Dusty Fluid, Two-Phase, Non-Newtonian Fluids, Mod-
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Nomenclature

Cy  Skin friction coefficient

Cp Specific heat at constant pressure for fluid-phase

Cs Specific heat at constant pressure for particle-phase
D, Mass concentration parameter

g Acceleration due to gravity

Gr  Generalized Grashof number

K Dimensional empirical constant appeared in power-law
L Characteristic length

n Power-law index

Nu  Nusselt number coefficient

D Dimensional pressure of carrier phase

pp  Dimensional pressure of particle phase

D Dimensionless pressure of the carrier phase

pp  Dimensionless pressure of the particle phase

Pr  Prandtl number
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Q Rate of heat transfer at the surface

T Dimensional temperature of fluid-phase

T,  Surface temperature

Tso Ambient fluid temperature

T,  Dimensional temperature of particle-phase

AT Difference between surface temperature and ambient fluid temperature
,v Dimensional fluid-phase velocity components

1y, U, Dimensional particle-phase velocity components
u,v Dimensionless fluid-phase velocity components
up, vp Dimensionless particle-phase velocity components
Z,y Dimensional cartesian coordinates

x,y Dimensionless coordinate system

U. Reference velocity

Greek letters

Thermal diffusivity

Dusty fluid parameter

Volumetric expansion coefficient

Ratio of ¢, to ¢

Thermal conductivity

Dimensionless fluid-phase temperature
Dimensionless particle-phase temperature
Density of fluid-phase

Density of particle-phase

Dynamic viscosity of fluid

Tt§bﬁ%%3QﬁgQ

Kinematic viscosity of fluid

Tm  Velocity relaxation time of the particles
7r  Thermal relaxation time of the particles
Tw  Shear stress at the surface

Subscripts

w surface condition
oo ambient condition
P particle phase

Superscripts
— dimensional system
(,7) nodal positions

1 Introduction

The interest in studying the dynamics of heat transfer problems involving non-Newtonian
power-law fluids has been widely increased in the past half century, because of their wide
range of usage in processing and manufacturing industries. For instance, most of the par-



ticulate slurries such as coal in water, synthetic lubricants, polymers, paints, emulsions,
biological fluids such as blood, food stuffs such as jams, jellies and marmalades are few
examples of fluids exhibit the non-Newtonian behavior. Although, several number of con-
stitutive laws have been established to describe the behavior of non-Newtonian fluids, but
the most deliberately used model in non-Newtonian fluid mechanics is the Ostwald-de Waele
type power-law model (implied by [1]). Numerous researchers studied heat and mass trans-
fer by taking taking into account power-law fluids. In this regard, Schowalter [2] applied
the boundary-layer theory to shear thinning fluids (fluids for which power-law index is less
than 1). After that Lee and Ames [3] extended the work of Schowalter [2] and established
the similar solutions for power-law fluids. A theoretical analysis of laminar natural convec-
tion heat transfer to non-Newtonian fluids was conducted by Acrivos [4]. In that paper,
the author investigated how the well-established expressions for the rate of heat transfer
of Newtonian fluids can be generalized to include the non-Newtonian effects. A complete
survey of the literature on non-Newtonian fluids is impractical however a few items are
listed here to provide starting points for a broader literature (for details see Refs. [5]-[9]).
In later years, Kawase and Ulbrecht [10] presented the approximate solution to the natu-
ral convection heat transfer from a vertical plate. Afterwards, Huang et al. [11] reported
the influence of Prandtl number on free convection flow of power-law non-Newtonian fluids
from a vertical plate. In [11], the author presented similarity solutions and concluded that
the average rate of heat transfer increase when Prandtl number rises. Later on, Kumari
et al. [12] presented a theoretical analysis for laminar natural convection boundary layer
flow of non-Newtonian power-law fluid. In that paper, the authors considered the vertical
sinusoidal wavy geometry and established the numerical solutions via Keller-Box method
for wide range of Prandtl number. Subsequently, a large amount of work for non-Newtonian
fluids including integral, experimental, and numerical methods, was presented under various
physical circumstances (see Refs. [13]-[17]) .

In all above-mentioned studies, attention has been given to fluids which are free from
all impurities (clear fluid). But, pure fluid is rarely available in many practical situations, for
instance, common fluids like air and water contains impurities like dust particles. Therefore,
the analysis of the flow of fluids with suspended particles or gas-particle mixture have
received notable attention due to its practical applications in atmospheric, engineering and
physiological fields. Solid rocket exhaust nozzles, combustion chambers, blast waves moving
over the Earth’s surface, conveying of powdered materials, fluidized beds, environmental
pollutants, petroleum industry, purification of crude oil and other technological fields are
some of the practical applications of dusty fluids (see [18]). In this regard, Farbar and Morley
[19] were the first to analyze the gas-particulate suspension on experimental grounds. After
that, Marble [20] studied the problem of dynamics of a gas containing small solid particles
and developed the equations for gas-particle flow systems. Singleton [21] was the first to
study the boundary layer analysis for dusty fluid and later on several attempts were made
to conclude the physical insight of such two-phase flows (see Refs. [22]-[30]) under different
physical circumstances. In addition, Siddiqa et al. [32] reported the influence of thermal
radiation on natural convection flow of contaminated air and water along the vertical wavy
frustum of a cone. Very recently, the problem of compressible dusty gas along a vertical
wavy surface was investigated numerically by Siddiqa et al. [33]. In that article, the authors
solved the physical model numerically and reported the effect of compressibility, particulate
suspension and sinusoidal waveform on rate of heat transfer and the flow characteristics.
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It is observed that most of the research related to two-phase (particle-fluid) flow
assumes the fluid to be Newtonian in nature because such fluids have linear relationship
between the shear stress and the shear rate. The applications of non-Newtonian power-law
dusty fluids are found in process engineering, therefore it becomes important to reveal their
flow characteristics. In this regard, Chamkha [34] studied the unsteady flow of a power-law
dusty fluid with suction but the author did not considered the heat transfer phenomena.
Thus, present work has been undertaken to give the more detailed analysis of the natural
convection flow of a power-law dusty fluid by considering the thermal energy phenomena.
The equations that govern the two phase flow are reduced to a dimensionless form and then
the coordinate transformation (primitive variable formulation) is employed to transform the
two-phase boundary layer model into a convenient form. Since the equations are coupled
and nonlinear, the solutions are obtained numerically by applying two point implicit finite
difference method. The results for the two-phase problem are displayed in the form of wall
shear stress, heat transfer rate, velocity and temperature profiles, streamlines and isotherms
by varying several controlling parameters. The computational results for carrier phase are
also compared with published data of various studies and all agrees well with the present
solutions. The effects of the presence of dust particle and the non-Newtonian nature of the
fluids on flow and heat transfer characteristics are examined and discussed in detail. For
full demonstration of the various non-Newtonian fluids, the behaviors of both Newtonian
and dilatant fluids on the natural convection laminar flow along a vertical heated wall are
studied by choosing the power-law index as n = 1.0,1.2,1.5,1.8,2.0.

2 Formulation of the Problem

The physical model considered here is an isothermal vertical wall with a temperature, Ty,
which is situated in two-phase dusty power-law fluid with ambient temperature, T, such
that T, > Tw. In our detail computational work, the kinematic viscosity v depends on
shear-rate and is correlated by a modified power-law. Under the assumptions of two-phase
flow given in [30] and [32], the governing equations for non-Newtonian, steady, laminar and
incompressible fluid are given by (see Refs. [21], [23]):

For the fluid phase:
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where (4,0), T, p, p, ¢p, B, K, v are respectively the velocity vector in the (Z,7) direction,
temperature, pressure, density, specific heat at constant pressure, volumetric expansion co-
efficient, thermal conductivity and kinematic viscosity of the fluid /carrier phase. Similarly,
(lp, Vp), Tp, Pp, pp and cs corresponds to the velocity vector, temperature, pressure, density
and specific heat for the particle phase. Further, g is the acceleration due to gravity and 7,,
(7r) is the momentum relaxation time (thermal relaxation time) during which the velocity
(temperature) of the particle phase relative to the fluid is reduced to 1/e times its initial
value. It can be noted that in the above equations the term py, (4, — @) /7y, is the force per
unit volume of mixture of both phases acting on the fluid or the net effect of the dust on
the fluid particles. Moreover, ppcs (T, — T') /71 is the total heat transfer to the fluid per
unit volume of the mixture of the two phases. The viscosity is correlated by a modified
power-law (for details see Ref. [1]), defined as:

K |oa|" !
V=—|—==
p 109
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where K and n are empirical constants characteristic of the fluid. It is important to mention
here that, i) for n < 1 the class of fluids is pseudo-plastic (shear thinning), ii) for n > 1
the fluid is dilatant (shear thickening) and iii) for n = 1 the fluids are simply of Newtonian
type.

The fundamental equations stated above are to be solved under appropriate bound-
ary conditions to determine the flow fields of the fluid and the dust particles. Therefore,
boundary conditions for the fluid phase are:

u(z,0) = 0(z,0) =T(2,0) — T, =0 (10)
u(z,00) =T(2,00) — Too =0
Boundary conditions for the particle phase are:
Up(£,0) = 0y(£,0) = Tp(£,0) =Ty =0 (11)
Up(2,00) = Tp(2,00) =T =0

Following dimensionless variables are now introduced for non-dimensionalization of the gov-
erning equations of two-phase model:

(6, 50) -+ 1/2m
s (%Up):Tc, (U,Up):TCpGrlm( +1),

(T7 Tp) - Too
AT ’
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z
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(12)
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where Gr = ((gBAT)?> " L**t") /(K /p)? is the generalized Grashof number. With the help
of (12) governing equations (1)-(11) becomes:

For the fluid phase:

ou Ov
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It is important to mention here that for different mixtures, the interaction term - may
vary between 0.1 and 10.0 (For details see [18]). It can also be observed that for ay = 0.0,
the flow represents the problem of natural convection in the absence of the dust particles
(i.e carrier phase only). In the present problem we have considered that the lower order
pressure gradient along the z-direction is determined from the inviscid solution (from Egs.
(14) and (18), therefore dp/0x = dp,/0x = 0. The boundary conditions becomes:

u(z,0) =v(z,0) =0(x,0) —1=0
u(x,00) = 6(x,00) = (22)
up(z,0) = vp(2,0) = 0,(x,0) =1 =0
Up(x,00) = Op(x,00) =0

Now, we propose to integrate the above system of equations numerically for two-phase
model. The numerical scheme is applied after converting the dimensionless equations into a
suitable form with the help of primitive variable formulations. For this, we use the following
set of transformations:

=X, y=@a)"PrY () = @0)PUG),  (vv) = (42) T POV,
(6,6,) = (©,65)
(23)

By using (23), the equations (13)-(20) subject to the boundary conditions (22) will be
mapped into the following system of partial differential equations:

For the fluid phase:
oU 2n ou oV

WA o ~mrn oy Tav ~

0 (24)
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For the particle phase:
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The boundary conditions becomes:
U(X,0)=V(X,0)=06(X,0)—1=0
U(X,00) =0(X,00) =0 (30)
UP(X> O) = V;?(X7 O) = ®p(X7 )

3 Solution Methodology

The continuity, momentum and energy equations of carrier and disperse phase, given in
(24) to (29) subject to the boundary conditions (30) are solved numerically with the aid
of the implicit finite difference method which implies Thomas algorithm as a solver. Since
the equations are parabolic in X therefore solutions can be marched in the downstream
direction. The computational domain is discretized over the entire boundary layer region.
Keeping numerical stability in view, two-point central difference and backward difference
quotients are respectively used for diffusion and convective terms. The resulting system
of algebraic equations can be cast into a tri-diagonal matrix equation which is solved via
Thomas algorithm. This algorithm works on the following pattern (For details see Ref.
[35]):

1. Set the suitable initial and boundary conditions.

2. Solve the unknowns U, U,, © and ©, at Y = 0. It implies that these unknown quan-
tities meet the convergence criteria.

3. Solve for the next step ¥; = Y;_1 + AY by using the solution position.
4. The computations are iterated until the following convergence criteria is achieved:

(maz|U; ;| + maz|Upyi, j| + maz|V; ;| + maz|Vyi, j| + max|0; ;| + mazx|©yi, j|) < 107°
(31)



5. Repeat step 2-4 for X maximum.

In the computation procedure, continuity equation of the carrier and the particle phase are
used to obtain normal velocity components V' and V), respectively by using the following

discretization:
Vijg=Vic1; + (77,2-17-21)1/ (Uij = Ui—15) = 28YU; 5 — 4% (Uij —Uij1+ U1 (32)
~Ui—15-1)
2n XAY
Voo = Vo + )Y Uy = Upios) =28V Uy =475 (Ui = Uy + Upi,
_Upz‘—l,j—l)

(33)

At present, rectangular computational domain is used with grid point distribution at equal
spacing. Additionally, 1501 uniform grid points are employed in normal Y direction as
well as in marching X direction. In the program test, a finer axial step size, AX =
X; — X;_1 = 0.006, is found to give acceptable accuracy. The computation has been started
from X; = 0.01 and then marched up to X; = 5.0 by taking uniform grids. By comparing
the results for different grid size in Y directions, we reached at the conclusion to choose
AY =Y; —Y;_1 = 0.02 and the value of the boundary layer Y, is 35.0 which actually
corresponds to the condition ¥ — oo and it lies very well outside the momentum and
thermal boundary layers of the corresponding phase. Implicit finite difference scheme is
unconditionally stable and compatible and hence ensures convergence.

In order to investigate the behavior of drag force and heat transfer rate, solutions are
presented in the form of shear stress rate and Nusselt number respectively. Both physical
quantities are significant from scientific and experimental point of view. These quantities
can be calculated from the following mathematical relations:

7w = Cy (Gr/(4x)1) /20D = o
Y )yv_, (34)
Q = Nu (Gr/(4x)™) /2D — _ 9
Y )y
Now the numerical results obtained for the key parameters are discussed in the section
below.

4 Results and Discussion

The prime purpose of present study is to analyze the non-Newtonian natural convection
boundary layer flow of two-phase dusty fluid. In the analysis, contaminated fluid is moving
along a vertical surface and modified power-law viscosity model is used to elucidate the
effects of non-Newtonian behavior. The coupled system of equations for the two phase
model obtained through primitive variable formulations are solved numerically by the two-
point implicit finite difference method. In order to gain some understanding of this dusty
power-law fluid problem along a heated vertical wall, the influence of several important
parameters on rate of heat transfer and rate of shear stress, velocity and temperature
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profiles and streamlines and isotherms is presented and discussed. In this analysis, the
main point of interest is to find the dominant influence of Prandtl number, Pr, power-
law index, n, mass concentration parameter, D,, specific heat ratio parameter, v and the
dust parameter, oy, against the crosswise coordinate X. The present numerical solutions
are performed for dusty oil (i.e, Pr = 1000.0, D, = 10.0, v = 0.3 and n = 1.5). The
parametric values for dust parameters for oil are taken from study of Apazidis [36], whereas
the values of power-law index n is taken from the analysis of Kumari et al. [12]. During
the computations, the overall range of the parameters is set as: n = 1.0,1.2,1.5,1.8, 2.0,
Pr = 500.0,1000.0 , v = 0.3,0.6,0.9 and ag = 5.0,10.0, 50.0, 100.0.

In order to validate the accuracy of our scheme and numerical computations, com-
parison is also being made with already available data in literature. It is rather important
to mention here that for clear fluid, i.e, D, = ag = 0.0, a number of investigations can be
retrieved that are already discussed by various authors and they becomes the special case
of the present analysis. For instance, the comparison of rate of heat transfer for different
values of Prandtl number is displayed in Tab. 1 for the case of pure Newtonian fluid, i.e.,
when D, = oy = 0.0 and n = 1. Clearly, it is seen from Tab. 1 that the computational data
of the present problem is in excellent agreement with those of [4], [6], [10]-[12]. When com-
paring with [11] we have re-scaled rate of heat transfer Q by dividing it with the factor 4'/4.
The small difference in numerical values may be due to the use of different methodologies
for obtaining the solutions. Besides this, another comparison is also presented in tabular
form, with the study of Kumari et al. [12] for the single-phase problem (see Tab. 2). In
reference [12], stream function formulations have been used and solutions are presented via
Keller box method, while on the other hand, present authors adopted the primitive variable
formulation and solved the problem via Thomas algorithm. It can be seen from table that
the computational values show good comparison between the studies and ultimately ensures
the convergence of our numerical scheme. In Tab. 2, values of rate of heat transfer for i)
Newtonian fluid (n = 1) and ii) dilatant fluids (n > 1) are displayed against the wide range
of Prandtl number Pr starting from 0.7 to 1000.0. It is concluded from Tab. 2, that the
rate of heat transfer increases sufficiently when both Pr and n are increased and also the
dilatant fluids (n > 1) have higher values as compared to the Newtonian fluids (n = 1) (see
Ref. [12]).

Table 1: Comparison of numerical values of Nu (Gr/(4X )”)71/ 20D forp =1 (Newtonian
fluid), while Pr = 10.0, 100.0,1000.0, D, = a4 = 0.0 and v = 1.0,

Pr | Acrivos | EDE | Kawase and | Huang et al. | Kumari et al. | Present
4] 6] Ulbrecht [10] [11] [12]

10 0.8943 | 0.8269 0.8936 0.8268 0.82609 0.82647

100 | 1.5903 | 1.5506 1.5891 1.5486 1.54739 1.54846

1000 | 2.8285 | 2.8047 2.8264 2.8084 2.80689 2.80830

The variation of the shear stress rate, 7, and rate of heat transfer () are plotted
in Fig. 1 for some values of power-law index n and Prandtl number Pr. It can be seen
from Fig. 1(a), that the shear stress rate increases sufficiently when n increases from 1.0 to
1.5. This behavior of shear stress rate is quite expected because the shear thickening fluids
(n > 1) are more viscous as compared to the Newtonian fluid (n = 1). Therefore large
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Table 2: Comparison of numerical values of Nu(Gr/(4X )")_1/ 2 while Pr =
0.7,6.7,10.0,100.0,1000.0, n = 1.0,1.2,1.5, D, = ag = 0.0 and v = 1.0.

Pr n | Kumari et al. | Present
[12]
1.0 0.49841 0.49943
0.7 1.2 0.52334 0.53108
1.5 0.55455 0.56950
1.0 1.03974 1.04042
6.7 1.2 1.11245 1.11286
1.5 1.20304 1.20752
1.0 1.16891 1.16881
10.0 | 1.2 1.25554 1.25634
1.5 1.36409 1.36904
1.0 2.21251 2.21559
100.0 | 1.2 2.43543 2.43349
1.5 2.71709 2.71740
1.0 4.13570 4.13357
1000.0 | 1.2 4.66234 4.66270
1.5 5.30515 5.30278

values of n multiply the viscous effects, which ultimately increases the frictional forces and
as a result the drag force at the surface increases. It is observed form Fig. 1(b) that the
rate of heat transfer increases as n increases. Besides, it is interesting to see that Prandtl
number Pr has also a notable effect on these physical quantities. It is already observed in
Tab. 2 that the rate of heat transfer exhibits the tendency to increase for both n and Pr and
here again this fact is validated graphically. The shear stress rate decreases for large value
of Prandtl number Pr, whereas, the rate of heat transfer get intensified when Pr increases
from 500.0 to 1000.0. The Newtonian fluids (n = 1.0) have small rate of heat transfer as
compared to the dilatant fluids (n > 1).

The influence of the dust parameter, oy, for oil particulate suspension on 7, and @,
is depicted in Fig. 2. Here, the rate of shear stress and rate of heat transfer are plotted for
shear thickening oil for different values of dust parameter oy = 5.0,10.0,50.0,100.0. It is
interesting to infer from Fig. 2(a) that the value of shear stress rate, 7,,, increases sufficiently
owing to the increase in value of dust parameter, oy. Particulary, 7, is very high for large
values of . The presence of inert particles in oil are responsible for the enhancement of
the shear stress rate. As presence of small number of dust particles causes less resistance
to the flow, therefore, 7, is not very influential when the value of dust parameter is small.
But an increment in the value of dust parameter offers more resistance to the flow of oil
particulate suspension near the leading edge and as a result the frictional forces get strong
in the momentum boundary layer region. However, the dust parameter oy a has reverse
effect on the rate of heat transfer, @ (see Fig. 2(b)). This may happens due to the fact
that, by loading the large number of dust particles, the oil mixture loses the thermal energy
and this leads to decrease the temperature of contaminated oil as compared to the pure
fluid case. The dilatant (shear thickening) oil becomes more viscous when it is loaded by
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large number of dust particles and ultimately the rate of heat transfer shows a considerable
decline. Therefore, it happened subject to the interaction of the two phase flow.

Fig. 3 displays the variation in quantities: 7,, and @ that are brought by changing
the value of specific heat ratio parameter () of the oil particulate suspension. The shear
stress rate shows a considerable decline by increasing the value of 7 from 0.3 to 0.9 (See
Fig. 3(a)). Particulary, the shear stress rate becomes too low when v = 0.9. The specific
heat ratio parameter, therefore, acts a retarding force for the shear stress rate. But on the
other hand, it can be visualized from Fig. 3(b) that an opposite behavior is recorded for the
rate of heat transfer (). The rate of heat transfer increases sufficiently by magnifying the
value of specific heat ratio parameter (7). It can be noted that low specific heat ratio causes
a relatively large increase in temperature gradient as compared to large . Interestingly,
v << 1.0 reflects the physical situation where the specific heat of the oil at constant pressure
is less than that of the specific heat of the particle phase, i.e., (¢s < ¢p), due to which the
oil particulate suspension gains more thermal energy which give rise to the temperature
gradient and hence assist the rate of heat transfer to enhance.

Fig. 4 is plotted to visualize the variations in the velocity and temperature profiles
of oil particulate suspension with the power-law index n. The velocity and temperature
profiles are recorded at X = 5.0. It can be seen from Fig. 4(a) that the velocity profile
increases sufficiently by increasing the value of power-law index n. These plots depicts
the fact that for shear-thickening fluids n = 1.2,1.5, 1.8, 2.0, the velocity increases and the
boundary layer thickness reduces. It is interesting to see that the oil particulate suspension
quickly attains its asymptotic value for large values of power-law index n. It can be therefore
concluded that the non-Newtonian (i.e, n > 1 or dilatant fluids) are more likely to achieve
the limiting behavior as compared to the Newtonian fluids (n = 1.0). Fig 4(b) further
depict the corresponding temperature distributions of contaminated oil for 1.0 < n < 2.0.
It is visualized that the temperature profile, ©, exhibits a decline for increasing values of
power-law index n and dilatant fluids (n > 1) quickly attains the limiting value into the
thermal boundary layer region. Such behavior reveals the fact that temperature profile is
high for the Newtonian fluids (n = 1) than the dilatant fluids (n > 1).

Streamlines and isotherms are also drawn in Fig. 5 for oil particulate suspension.
These plots help in accessing the performance of the flow velocity and temperature fields
of dusty power-law fluid moving along a heated isothermal vertical wall. The effect of mass
concentration parameter D, on the distribution of the velocity and temperature fields is
plotted for Newtonian (i.e, n = 1.0) and non-Newtonian shear thickening (i.e, n > 1) fluids.
For comparison, oil suspension with small number of particle cloud (D, = 10.0) is also
presented. As expected, by increasing the particle in the fluid, the velocity of dusty fluid
reduces significantly and fluid tends to cluster near the vicinity of the vertical surface (see
Figs. 5(a) and 5(b)). More interestingly, the influence of D, on temperature distribution for
both phases is notable. When particles are loaded extensively, the relative velocity between
the two phases reduces and relaxation time for energy transfer also decreases and ultimately
temperature lags between the mixture components become smaller. The thermal boundary
layer becomes thinner due to the large temperature lags between the phases (see Figs. 5(c)
and 5(d)). Furthermore, the isotherms in Fig. 5 is revealing the fact that for large values
of mass concentration parameter D, curves are very close to each other for Newtonian (i.e,
n = 1.0) as well as for non-Newtonian shear thickening (i.e, n > 1) fluids.
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5 Conclusions

The present analysis aims to compute the numerical results for two-phase dusty boundary-
layer flow induced by the semi-infinite vertical heated surface. In order to incorporate the
non-Newtonian fluid into the analysis, modified viscosity model is used. Coordinate trans-
formations (primitive variable formulations) are applied to switch the governing equations
of the carrier and the dispersed phase into a convenient form over which two point finite
difference method is applied to obtain the solutions for the whole range of axial coordi-
nate X. Computational results are shown for the physical quantities, namely, rate of shear
stress, rate of heat transfer, velocity and temperature profiles, streamlines and isotherms.
Results are interpreted by considering contaminated oil as a working fluid, which is under
the influence of several physically important parameters, such as, n, Pr, D,, og and . The
agreement with the results of [4], [6], [10]-[12] are found excellent. It is recorded that, the
Newtonian fluids (n = 1.0) have small rate of heat transfer as compared to the dilatant
fluids (n > 1) and the rate of heat transfer deliberately boosted by increasing the values
of power-law index n and Prandtl number Pr. It is also found that the shear stress rate
increases when the dust parameter «y increases and the rate of heat transfer drastically
decreases when metal particles are increased within the oil. In addition, the temperature
profile, ©, for dilatant fluids (n > 1) quickly attains the limiting value into the thermal
boundary layer region as compared to the Newtonian fluid (n = 1.0).

References

[1] Ostwald, W., Ueber die rechnerische Darstellung des Strukturgebietes der Viskositt,
Kolloid Z., 47, 1929, 176-187.

[2] Schowalter, W. R., The application of boundary layer theory to power law pseudo-
plastic fluids, AIChE J., 6, 1960, 24-28.

[3] Lee, S. Y., Ames, W. F., Similar solutions for non-Newtonian fluids, AIChE., 12,
1966, 700-708.

[4] Acrivos, A., A theoretical analysis of laminar natural convection heat transfer to
non-Newtonian fluids, AIChE J., 16, 1960, 584-590.

[5] Na, T. Y., Hansen, A. G., Possible similarity solutions of the laminar natural convec-
tion flow of non-Newtonian fluids, Int. J. Heat Mass Transf., 9, 1966, 261-262.

[6] EDE, A. J., Advances in free convection, Advances in Heat Transf., 4, 1967, 1-64,
Academic, New York.

[7] Sharma, K. K., Adelman, M., Experimental study of natural convection heat transfer
from a vertical plate in a non-Newtonian fluid, Can. J. Chem. Eng., 47, 1969, 553-555.

[8] Dale, J. D., Emery, A. F., The free convection of heat from a vertical plate to several
non-Newtonian pseudoplastic fluids, J. Heat Transf., 94, 1972, 64-72.

[9] Chen, T. V. W., Wollersheim, D. E., Free convection at a vertical plate with uniform
flux condition in non-Newtonian power-law fluids, J. Heat Transf., 95, 1973, 123-124.

12



[10]

[11]

[12]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Kawase, K., Ulbrecht, J., Approximate solution to the natural convection heat transfer
from a vertical plate, Int. Commun. Heat Mass Transf., 11, 1984, 143-155.

Huang, M. J., Huang, J. S., Chou, Y. L., Chen, C. K., Effects of Prandtl number on
free-convection heat transfer from a vertical plate to a non-Newtonian fluid, J. Heat
Transf., 111, 1989, 189-191.

Kumari, M., Pop, 1., Takhar, H. S., Free convection boundary layer flow of a non-
Newtonian fluid along a vertical wavy surface, Int. J. Heat and Fluid Flow, 18, 1997,
625-631.

Pop, I. Gorla, R. S. R., Mixed convection similarity solutions of a non-Newtonian
fluid on a horizontal surface, J. Heat Mass Transf., 33, 1991, 57-63.

Wang, T. Y., Mixed convention heat transfer from a vertical plate to non-Newtonian
Fluids, Int. Commun. Heat Mass Transf., 22, 1995, 212-219.

Denier, J. P., Hewitt, R. E., Asymptotic matching constraints for a boundary-layer
flow of a power-law fluid, J. Fluid Mech., 518, 2004, 261-279.

Hossain, M. A., Grola, R. S.R., Natural convection flow of non-Newtonian power-law
fluid from a slotted vertical isothermal surface, Int. J. Numer. Method H., 19, 2009,
835-846.

Molla, M. M., Yao, L. S., The flow of non-Newtonian fluids on a flat plate with a
uniform heat flux, ASME J. Heat Transf., 131, 2009, 1-6.

Rudinger, G., Fundamentals of gas-particle flow, Elsevier Scientific Publishing Co.,
Amsterdam, 1980.

Farbar, L., Morley, M. J., Heat transfer to flowing gas-solid mixtures in a circular
tube, Ind. Eng. Chem., 49, 1957, 1143-1150.

Marble, F. E., Dynamics of a gas containing small solid particles, combustion and
propulsion, 5th AGARD colloquium, Pergamon press, 1963.

Singleton, R. E., Fluid mechanics of gas-solid particle flow in boundary layers, Ph.D.
Thesis, California Institute of Technology, 1964.

Michael, D. H., Miller, D. A., Plane parallel flow of a dusty gas, Mathematica, 13,
1966, 97-109.

Saffman, P. G., On the stability of laminar flow of a dusty gas, J. Fluid Mech., 13,
1962, 120-128.

Michael, D. H., The steady motion of a sphere in a dusty gas,J. Fluid Mech., 31,
1968, 175-192.

Datta, N., Mishra, S. K., Boundary layer flow of a dusty fluid over a semi-infinite flat
plate, Acta Mech., 42, 1982, 71-83.

13



[26]

[27]

28]

[29]

[32]

33]

[34]

[35]

[36]

Agranat, V. M., Effect of pressure gradient of friction and heat transfer in a dusty
boundary layer, Fluid Dyn., 23, 1988, 729-732.

Gireesha, B. J., Bagewadi, C. S., Prasannakumara, B. C., Pulsatile flow of an unsteady
dusty fluid through rectangular channel, Commun. Nonlinear Sci. Numer. Simulat.,
14, 2009, 2103-2110.

Roopa, G. S., Gireesha, B. J., Bagewadi, C. S., Numerical investigation of mixed
convection boundary layer flow of a dusty fluid over an vertical surface with radiation,
Afr. Math., 24, 2013, 487-502.

Manjunatha, P. T., Gireesha, B. J., Prasannakumara, B. C., Thermal analysis of con-
ducting dusty fluid flow in a porous medium over a stretching cylinder in the presence
of non-uniform source/sink, Int. J. Mech. Mater. Eng., 9, 2014, doi:10.1186/s40712-
014-0013-8.

Siddiqga, S., Hossain, M. A., Saha, S. C., Two-phase natural convection flow of a dusty
fluid, Int. J. Numer. Method, 25, 2015, 1542-1556.

Prasannakumara, B. C., Gireesha, B. J., Manjunatha, P. T., Melting phenomenon
in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence
of thermal radiation and non-uniform heat source/sink, Int. J. Comp. Methods Eng.
Sci. Mech., 16, 2015, 265-274.

Siddiqga, S., Begum, N., Hossain, M. A., Massarotti, N., Influence of thermal radiation
on contaminated air and water flow past a vertical wavy frustum of a cone, Int.
Commun. Heat Mass Transf., 76, 2016, 63-68.

Siddiqa, S., Begum, N., Hossain, M. A., compressible dusty gas along a vertical wavy
surface, Appl. Math. Comput., 293, 2017, 600-610.

Chamkha, A. J., Unsteady flow of a power-law dusty fluid with suction, ASME J.
Fluids Eng., 115, 1993, 330-333.

Siddiga, S., Begum, N., Hossain, M. A., Radiation effects from an isothermal vertical
wavy cone with variable fluid properties, Appl. Math. Comput., 289, 2016, 149-158.

Apazidis, N., Temperature distribution and heat transfer in a particle-fluid flow past
a heated horizontal plate, Int. J. Multiphase Flow, 16, 1990, 495-513.

14



0.28

024"

Fig. 1(a) Shear stress and (b) Rate of heat transfer for n =1.0,1.2,1.5,
Pr=500.0, 1000.0, g = 5.0, D, = 10.0, = 0.3.
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Fig. 2(a) Shear stress and (b) Rate of heat transfer for oy = 5.0,10.0,50.0, 100.0,
D, =10.0, v = 0.3, Pr=1000.0, n = 1.5.

0.243

0.234

0.216 i

0.0 1.0 2.0 3.0 4.0 5.0
(2) X (b)

Fig. 3(a) Shear stress and (b) Rate of heat transfer for v =0.3,0.6,0.9, ag = 5.0,
D, = 10.0, Pr=1000.0, n = 1.5.
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Fig. 4(a) Velocity and (b) Temperature profiles of the carrier phase for
n=10,1.215,1820, D, = 10.0, Pr = 500.0, v = 0.3, ag = 5.0, X = 5.0.
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Fig. 5 Streamlines (top) and Isotherms (bottom) of the carrier phase for
D, = 10.0,100.0, ag = 5.0, v = 0.3, Pr=1000.0, n = 1.5.
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