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Abstract: The aim of this paper is to present a boundary-layer analysis of two-phase

dusty non-Newtonian fluid flow along a vertical surface by using a modified power-law vis-

cosity model. This investigation particularly reports the flow behavior of spherical particles

suspended in the non-Newtonian fluid. The governing equations are transformed into non-

conserved form and then solved straightforwardly by implicit finite difference method. The

numerical results of rate of heat transfer, rate of shear stress, velocity and temperature

profiles and streamlines and isotherms are presented for wide range of Prandtl number, i.e,

(0.7 ≤ Pr ≤ 1000.0), with the representative values of the power-law index n. A good

agreement is found between the present and the previous results when compared with some

special cases. The key observation from the present study is that the power-law fluids with

(n > 1) are more likely to promote the rate of heat transfer near the leading edge.

Keywords: Natural Convection, Dusty Fluid, Two-Phase, Non-Newtonian Fluids, Mod-

ified Power Law, Vertical Surface

Nomenclature

Cf Skin friction coefficient

cp Specific heat at constant pressure for fluid-phase

cs Specific heat at constant pressure for particle-phase

Dρ Mass concentration parameter

g Acceleration due to gravity

Gr Generalized Grashof number

K Dimensional empirical constant appeared in power-law

L Characteristic length

n Power-law index

Nu Nusselt number coefficient

p̂ Dimensional pressure of carrier phase

p̂p Dimensional pressure of particle phase

p Dimensionless pressure of the carrier phase

pp Dimensionless pressure of the particle phase

Pr Prandtl number

1Corresponding author.
Email: saadiasiddiqa@gmil.com
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Q Rate of heat transfer at the surface

T Dimensional temperature of fluid-phase

Tw Surface temperature

T∞ Ambient fluid temperature

Tp Dimensional temperature of particle-phase

ΔT Difference between surface temperature and ambient fluid temperature

û, v̂ Dimensional fluid-phase velocity components

ûp, v̂p Dimensional particle-phase velocity components

u, v Dimensionless fluid-phase velocity components

up, vp Dimensionless particle-phase velocity components

x̄, ȳ Dimensional cartesian coordinates

x, y Dimensionless coordinate system

Uc Reference velocity

Greek letters

α Thermal diffusivity

αd Dusty fluid parameter

β Volumetric expansion coefficient

γ Ratio of cp to cs
κ Thermal conductivity

θ Dimensionless fluid-phase temperature

θp Dimensionless particle-phase temperature

ρ Density of fluid-phase

ρp Density of particle-phase

μ Dynamic viscosity of fluid

ν Kinematic viscosity of fluid

τm Velocity relaxation time of the particles

τT Thermal relaxation time of the particles

τw Shear stress at the surface

Subscripts

w surface condition

∞ ambient condition

p particle phase

Superscripts

− dimensional system

(i, j) nodal positions

1 Introduction

The interest in studying the dynamics of heat transfer problems involving non-Newtonian

power-law fluids has been widely increased in the past half century, because of their wide

range of usage in processing and manufacturing industries. For instance, most of the par-
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ticulate slurries such as coal in water, synthetic lubricants, polymers, paints, emulsions,

biological fluids such as blood, food stuffs such as jams, jellies and marmalades are few

examples of fluids exhibit the non-Newtonian behavior. Although, several number of con-

stitutive laws have been established to describe the behavior of non-Newtonian fluids, but

the most deliberately used model in non-Newtonian fluid mechanics is the Ostwald-de Waele

type power-law model (implied by [1]). Numerous researchers studied heat and mass trans-

fer by taking taking into account power-law fluids. In this regard, Schowalter [2] applied

the boundary-layer theory to shear thinning fluids (fluids for which power-law index is less

than 1). After that Lee and Ames [3] extended the work of Schowalter [2] and established

the similar solutions for power-law fluids. A theoretical analysis of laminar natural convec-

tion heat transfer to non-Newtonian fluids was conducted by Acrivos [4]. In that paper,

the author investigated how the well-established expressions for the rate of heat transfer

of Newtonian fluids can be generalized to include the non-Newtonian effects. A complete

survey of the literature on non-Newtonian fluids is impractical however a few items are

listed here to provide starting points for a broader literature (for details see Refs. [5]-[9]).

In later years, Kawase and Ulbrecht [10] presented the approximate solution to the natu-

ral convection heat transfer from a vertical plate. Afterwards, Huang et al. [11] reported

the influence of Prandtl number on free convection flow of power-law non-Newtonian fluids

from a vertical plate. In [11], the author presented similarity solutions and concluded that

the average rate of heat transfer increase when Prandtl number rises. Later on, Kumari

et al. [12] presented a theoretical analysis for laminar natural convection boundary layer

flow of non-Newtonian power-law fluid. In that paper, the authors considered the vertical

sinusoidal wavy geometry and established the numerical solutions via Keller-Box method

for wide range of Prandtl number. Subsequently, a large amount of work for non-Newtonian

fluids including integral, experimental, and numerical methods, was presented under various

physical circumstances (see Refs. [13]-[17]) .

In all above-mentioned studies, attention has been given to fluids which are free from

all impurities (clear fluid). But, pure fluid is rarely available in many practical situations, for

instance, common fluids like air and water contains impurities like dust particles. Therefore,

the analysis of the flow of fluids with suspended particles or gas-particle mixture have

received notable attention due to its practical applications in atmospheric, engineering and

physiological fields. Solid rocket exhaust nozzles, combustion chambers, blast waves moving

over the Earth’s surface, conveying of powdered materials, fluidized beds, environmental

pollutants, petroleum industry, purification of crude oil and other technological fields are

some of the practical applications of dusty fluids (see [18]). In this regard, Farbar and Morley

[19] were the first to analyze the gas-particulate suspension on experimental grounds. After

that, Marble [20] studied the problem of dynamics of a gas containing small solid particles

and developed the equations for gas-particle flow systems. Singleton [21] was the first to

study the boundary layer analysis for dusty fluid and later on several attempts were made

to conclude the physical insight of such two-phase flows (see Refs. [22]-[30]) under different

physical circumstances. In addition, Siddiqa et al. [32] reported the influence of thermal

radiation on natural convection flow of contaminated air and water along the vertical wavy

frustum of a cone. Very recently, the problem of compressible dusty gas along a vertical

wavy surface was investigated numerically by Siddiqa et al. [33]. In that article, the authors

solved the physical model numerically and reported the effect of compressibility, particulate

suspension and sinusoidal waveform on rate of heat transfer and the flow characteristics.
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It is observed that most of the research related to two-phase (particle-fluid) flow

assumes the fluid to be Newtonian in nature because such fluids have linear relationship

between the shear stress and the shear rate. The applications of non-Newtonian power-law

dusty fluids are found in process engineering, therefore it becomes important to reveal their

flow characteristics. In this regard, Chamkha [34] studied the unsteady flow of a power-law

dusty fluid with suction but the author did not considered the heat transfer phenomena.

Thus, present work has been undertaken to give the more detailed analysis of the natural

convection flow of a power-law dusty fluid by considering the thermal energy phenomena.

The equations that govern the two phase flow are reduced to a dimensionless form and then

the coordinate transformation (primitive variable formulation) is employed to transform the

two-phase boundary layer model into a convenient form. Since the equations are coupled

and nonlinear, the solutions are obtained numerically by applying two point implicit finite

difference method. The results for the two-phase problem are displayed in the form of wall

shear stress, heat transfer rate, velocity and temperature profiles, streamlines and isotherms

by varying several controlling parameters. The computational results for carrier phase are

also compared with published data of various studies and all agrees well with the present

solutions. The effects of the presence of dust particle and the non-Newtonian nature of the

fluids on flow and heat transfer characteristics are examined and discussed in detail. For

full demonstration of the various non-Newtonian fluids, the behaviors of both Newtonian

and dilatant fluids on the natural convection laminar flow along a vertical heated wall are

studied by choosing the power-law index as n = 1.0, 1.2, 1.5, 1.8, 2.0.

2 Formulation of the Problem

The physical model considered here is an isothermal vertical wall with a temperature, Tw,

which is situated in two-phase dusty power-law fluid with ambient temperature, T∞, such

that Tw > T∞. In our detail computational work, the kinematic viscosity ν depends on

shear-rate and is correlated by a modified power-law. Under the assumptions of two-phase

flow given in [30] and [32], the governing equations for non-Newtonian, steady, laminar and

incompressible fluid are given by (see Refs. [21], [23]):

For the fluid phase:
∂û

∂x̂
+

∂v̂

∂ŷ
= 0 (1)

ρ

(
û
∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= −∂p̂

∂x̂
+

∂

∂ŷ

(
μ
∂û

∂ŷ

)
+ ρgβ (T − T∞) +

ρp
τm

(ûp − û) (2)

ρ

(
û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)
= −∂p̂

∂ŷ
+

∂

∂ŷ

(
μ
∂v̂

∂ŷ

)
+

ρp
τm

(v̂p − v̂) (3)

ρcp

(
û
∂T

∂x̂
+ v̂

∂T

∂ŷ

)
= κ

∂2T

∂ŷ2
+

ρpcs
τT

(Tp − T ) (4)

For the particle phase:
∂ûp
∂x̂

+
∂v̂p
∂ŷ

= 0 (5)

ρp

(
ûp

∂ûp
∂x̂

+ v̂p
∂ûp
∂ŷ

)
= −∂p̂p

∂x̂
− ρp

τm
(ûp − û) (6)
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ρp

(
ûp

∂v̂p
∂x̂

+ v̂p
∂v̂p
∂ŷ

)
= −∂p̂p

∂ŷ
− ρp

τm
(v̂p − v̂) (7)

ρpcs

(
ûp

∂Tp

∂x̂
+ v̂p

∂Tp

∂ŷ

)
= −ρpcs

τT
(Tp − T ) (8)

where (û, v̂), T , p̂, ρ, cp, β, κ, ν are respectively the velocity vector in the (x̂, ŷ) direction,

temperature, pressure, density, specific heat at constant pressure, volumetric expansion co-

efficient, thermal conductivity and kinematic viscosity of the fluid/carrier phase. Similarly,

(ûp, v̂p), Tp, p̂p, ρp and cs corresponds to the velocity vector, temperature, pressure, density

and specific heat for the particle phase. Further, g is the acceleration due to gravity and τm
(τT ) is the momentum relaxation time (thermal relaxation time) during which the velocity

(temperature) of the particle phase relative to the fluid is reduced to 1/e times its initial

value. It can be noted that in the above equations the term ρp (ûp − û) /τm is the force per

unit volume of mixture of both phases acting on the fluid or the net effect of the dust on

the fluid particles. Moreover, ρpcs (Tp − T ) /τT is the total heat transfer to the fluid per

unit volume of the mixture of the two phases. The viscosity is correlated by a modified

power-law (for details see Ref. [1]), defined as:

ν =
K

ρ

∣∣∣∣∂û∂ŷ
∣∣∣∣
n−1

(9)

where K and n are empirical constants characteristic of the fluid. It is important to mention

here that, i) for n < 1 the class of fluids is pseudo-plastic (shear thinning), ii) for n > 1

the fluid is dilatant (shear thickening) and iii) for n = 1 the fluids are simply of Newtonian

type.

The fundamental equations stated above are to be solved under appropriate bound-

ary conditions to determine the flow fields of the fluid and the dust particles. Therefore,

boundary conditions for the fluid phase are:

û(x̂, 0) = v̂(x̂, 0) = T (x̂, 0)− Tw = 0
u(x̂,∞) = T (x̂,∞)− T∞ = 0

(10)

Boundary conditions for the particle phase are:

ûp(x̂, 0) = v̂p(x̂, 0) = Tp(x̂, 0)− Tw = 0
ûp(x̂,∞) = Tp(x̂,∞)− T∞ = 0

(11)

Following dimensionless variables are now introduced for non-dimensionalization of the gov-

erning equations of two-phase model:

x =
x̂

L
, y =

ŷ

L
Gr1/2(n+1), (u, up) =

(û, ûp)

Uc
, (v, vp) =

(v̂, v̂p)

Uc
Gr1/2(n+1),

Uc = (gβ�TL)1/2 , (p, pp) =
(p̂, p̂p)

ρU2
c

, (Θ,Θp) =
(T, Tp)− T∞

�T
, �T = Tw − T∞,

(12)

where Gr = ((gβ�T )2−nL2+n)/(K/ρ)2 is the generalized Grashof number. With the help

of (12) governing equations (1)-(11) becomes:

For the fluid phase:
∂u

∂x
+

∂v

∂y
= 0 (13)
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u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
∂u

∂y

∣∣∣∣∂u∂y
∣∣∣∣
n−1
)

+ θ +Dραd(up − u) (14)

∂p

∂y
= 0 (15)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

(
∂2θ

∂y2
+

2

3
Dραd(θp − θ)

)
(16)

For the particle phase:
∂up
∂x

+
∂vp
∂y

= 0 (17)

up
∂up
∂x

+ vp
∂up
∂y

= −∂pp
∂x

− αd(up − u) (18)

∂pp
∂y

= 0 (19)

up
∂θp
∂x

+ vp
∂θp
∂y

= − 2

3γPr
αd(θp − θ) (20)

where

γ =
cs
cp
, τT =

3

2
γτmPr, Dρ =

ρp
ρ
, αd =

1

τm

(
L

gβ�T

)1/2

, Pr =
1

α

(
K

ρ

) 2
(1+n)

L
(1−n)
(1+n)U

3(n−1)
(n+1)

c

(21)

It is important to mention here that for different mixtures, the interaction term γ may

vary between 0.1 and 10.0 (For details see [18]). It can also be observed that for αd = 0.0,

the flow represents the problem of natural convection in the absence of the dust particles

(i.e carrier phase only). In the present problem we have considered that the lower order

pressure gradient along the x-direction is determined from the inviscid solution (from Eqs.

(14) and (18), therefore ∂p/∂x = ∂pp/∂x = 0. The boundary conditions becomes:

u(x, 0) = v(x, 0) = θ(x, 0)− 1 = 0
u(x,∞) = θ(x,∞) = 0

up(x, 0) = vp(x, 0) = θp(x, 0)− 1 = 0
up(x,∞) = θp(x,∞) = 0

(22)

Now, we propose to integrate the above system of equations numerically for two-phase

model. The numerical scheme is applied after converting the dimensionless equations into a

suitable form with the help of primitive variable formulations. For this, we use the following

set of transformations:

x = X, y = (4x)n/2(n+1)Y, (u, up) = (4x)1/2(U,Up), (v, vp) = (4x)−1/2(n+1)(V, Vp),

(θ, θp) = (Θ,Θp)

(23)

By using (23), the equations (13)-(20) subject to the boundary conditions (22) will be

mapped into the following system of partial differential equations:

For the fluid phase:

2U + (4X)
∂U

∂X
− 2n

(n+ 1)
Y
∂U

∂Y
+

∂V

∂Y
= 0 (24)
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2U2 + (4X)U
∂U

∂X
+

(
V − 2n

(n+ 1)
Y U

)
∂U

∂Y
= (4X)(1−n)/2(n+1) ∂

∂Y

(
∂U

∂Y

∣∣∣∣∂U∂Y
∣∣∣∣
n−1
)

+Θ

+Dραd(4X)1/2(Up − U)

(25)

(4X)U
∂Θ

∂X
+

(
V − 2n

(n+ 1)
Y U

)
∂Θ

∂Y
=

1

Pr
(4X)(1−n)/2(n+1) ∂

2Θ

∂Y 2

+
2

3Pr
Dραd(4X)1/2 (Θp −Θ)

(26)

For the particle phase:

2Up + (4X)
∂Up

∂X
− 2n

(n+ 1)
Y
∂Up

∂Y
+

∂Vp

∂Y
= 0 (27)

2U2
p + (4X)Up

∂Up

∂X
+

(
Vp − 2n

(n+ 1)
Y Up

)
∂Up

∂Y
= −αd(4X)1/2(Up − U) (28)

(4X)Up
∂Θp

∂X
+

(
Vp − 2n

(n+ 1)
Y Up

)
∂Θp

∂Y
= − 2

3γPr
αd(4X)1/2 (Θp −Θ) (29)

The boundary conditions becomes:

U(X, 0) = V (X, 0) = Θ(X, 0)− 1 = 0
U(X,∞) = Θ(X,∞) = 0

Up(X, 0) = Vp(X, 0) = Θp(X, 0)− 1 = 0
Up(X,∞) = Θp(X,∞) = 0

(30)

3 Solution Methodology

The continuity, momentum and energy equations of carrier and disperse phase, given in

(24) to (29) subject to the boundary conditions (30) are solved numerically with the aid

of the implicit finite difference method which implies Thomas algorithm as a solver. Since

the equations are parabolic in X therefore solutions can be marched in the downstream

direction. The computational domain is discretized over the entire boundary layer region.

Keeping numerical stability in view, two-point central difference and backward difference

quotients are respectively used for diffusion and convective terms. The resulting system

of algebraic equations can be cast into a tri-diagonal matrix equation which is solved via

Thomas algorithm. This algorithm works on the following pattern (For details see Ref.

[35]):

1. Set the suitable initial and boundary conditions.

2. Solve the unknowns U,Up,Θ and Θp at Y = 0. It implies that these unknown quan-

tities meet the convergence criteria.

3. Solve for the next step Yj = Yj−1 +ΔY by using the solution position.

4. The computations are iterated until the following convergence criteria is achieved:

(max|Ui,j |+max|Upi, j|+max|Vi,j |+max|Vpi, j|+max|Θi,j |+max|Θpi, j|) ≤ 10−6

(31)
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5. Repeat step 2-4 for X maximum.

In the computation procedure, continuity equation of the carrier and the particle phase are

used to obtain normal velocity components V and Vp respectively by using the following

discretization:

Vi,j = Vi−1,j +
2n

(n+ 1)
Y (Ui,j − Ui−1,j)− 2�Y Ui,j − 4

X�Y

�X
(Ui,j − Ui,j−1 + Ui−1,j

−Ui−1,j−1)

(32)

Vpi,j = Vpi−1,j +
2n

(n+ 1)
Y
(
Upi,j − Upi−1,j

)− 2�Y Upi,j − 4
X�Y

�X

(
Upi,j − Upi,j−1 + Upi−1,j

−Upi−1,j−1

)
(33)

At present, rectangular computational domain is used with grid point distribution at equal

spacing. Additionally, 1501 uniform grid points are employed in normal Y direction as

well as in marching X direction. In the program test, a finer axial step size, �X =

Xi−Xi−1 = 0.006, is found to give acceptable accuracy. The computation has been started

from Xi = 0.01 and then marched up to Xi = 5.0 by taking uniform grids. By comparing

the results for different grid size in Y directions, we reached at the conclusion to choose

�Y = Yj − Yj−1 = 0.02 and the value of the boundary layer Y∞ is 35.0 which actually

corresponds to the condition Y → ∞ and it lies very well outside the momentum and

thermal boundary layers of the corresponding phase. Implicit finite difference scheme is

unconditionally stable and compatible and hence ensures convergence.

In order to investigate the behavior of drag force and heat transfer rate, solutions are

presented in the form of shear stress rate and Nusselt number respectively. Both physical

quantities are significant from scientific and experimental point of view. These quantities

can be calculated from the following mathematical relations:

τw = Cf

(
Gr/(4X)−1

)−1/2(n+1)
=

(
∂U

∂Y

)
Y=0

Q = Nu (Gr/(4X)n)−1/2(n+1) = −
(
∂Θ

∂Y

)
Y=0

(34)

Now the numerical results obtained for the key parameters are discussed in the section

below.

4 Results and Discussion

The prime purpose of present study is to analyze the non-Newtonian natural convection

boundary layer flow of two-phase dusty fluid. In the analysis, contaminated fluid is moving

along a vertical surface and modified power-law viscosity model is used to elucidate the

effects of non-Newtonian behavior. The coupled system of equations for the two phase

model obtained through primitive variable formulations are solved numerically by the two-

point implicit finite difference method. In order to gain some understanding of this dusty

power-law fluid problem along a heated vertical wall, the influence of several important

parameters on rate of heat transfer and rate of shear stress, velocity and temperature
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profiles and streamlines and isotherms is presented and discussed. In this analysis, the

main point of interest is to find the dominant influence of Prandtl number, Pr, power-

law index, n, mass concentration parameter, Dρ, specific heat ratio parameter, γ and the

dust parameter, αd, against the crosswise coordinate X. The present numerical solutions

are performed for dusty oil (i.e, Pr = 1000.0, Dρ = 10.0, γ = 0.3 and n = 1.5). The

parametric values for dust parameters for oil are taken from study of Apazidis [36], whereas

the values of power-law index n is taken from the analysis of Kumari et al. [12]. During

the computations, the overall range of the parameters is set as: n = 1.0, 1.2, 1.5, 1.8, 2.0,

Pr = 500.0, 1000.0 , γ = 0.3, 0.6, 0.9 and αd = 5.0, 10.0, 50.0, 100.0.

In order to validate the accuracy of our scheme and numerical computations, com-

parison is also being made with already available data in literature. It is rather important

to mention here that for clear fluid, i.e, Dρ = αd = 0.0, a number of investigations can be

retrieved that are already discussed by various authors and they becomes the special case

of the present analysis. For instance, the comparison of rate of heat transfer for different

values of Prandtl number is displayed in Tab. 1 for the case of pure Newtonian fluid, i.e.,

when Dρ = αd = 0.0 and n = 1. Clearly, it is seen from Tab. 1 that the computational data

of the present problem is in excellent agreement with those of [4], [6], [10]-[12]. When com-

paring with [11] we have re-scaled rate of heat transfer Q by dividing it with the factor 41/4.

The small difference in numerical values may be due to the use of different methodologies

for obtaining the solutions. Besides this, another comparison is also presented in tabular

form, with the study of Kumari et al. [12] for the single-phase problem (see Tab. 2). In

reference [12], stream function formulations have been used and solutions are presented via

Keller box method, while on the other hand, present authors adopted the primitive variable

formulation and solved the problem via Thomas algorithm. It can be seen from table that

the computational values show good comparison between the studies and ultimately ensures

the convergence of our numerical scheme. In Tab. 2, values of rate of heat transfer for i)

Newtonian fluid (n = 1) and ii) dilatant fluids (n > 1) are displayed against the wide range

of Prandtl number Pr starting from 0.7 to 1000.0. It is concluded from Tab. 2, that the

rate of heat transfer increases sufficiently when both Pr and n are increased and also the

dilatant fluids (n > 1) have higher values as compared to the Newtonian fluids (n = 1) (see

Ref. [12]).

Table 1: Comparison of numerical values of Nu (Gr/(4X)n)−1/2(n+1), for n = 1 (Newtonian
fluid), while Pr = 10.0, 100.0, 1000.0, Dρ = αd = 0.0 and γ = 1.0.

Pr Acrivos EDE Kawase and Huang et al. Kumari et al. Present
[4] [6] Ulbrecht [10] [11] [12]

10 0.8943 0.8269 0.8936 0.8268 0.82609 0.82647
100 1.5903 1.5506 1.5891 1.5486 1.54739 1.54846
1000 2.8285 2.8047 2.8264 2.8084 2.80689 2.80830

The variation of the shear stress rate, τw and rate of heat transfer Q are plotted

in Fig. 1 for some values of power-law index n and Prandtl number Pr. It can be seen

from Fig. 1(a), that the shear stress rate increases sufficiently when n increases from 1.0 to

1.5. This behavior of shear stress rate is quite expected because the shear thickening fluids

(n > 1) are more viscous as compared to the Newtonian fluid (n = 1). Therefore large
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Table 2: Comparison of numerical values of Nu (Gr/(4X)n)−1/2(n+1), while Pr =
0.7, 6.7, 10.0, 100.0, 1000.0, n = 1.0, 1.2, 1.5, Dρ = αd = 0.0 and γ = 1.0.

Pr n Kumari et al. Present
[12]

0.7
1.0 0.49841 0.49943
1.2 0.52334 0.53108
1.5 0.55455 0.56950

6.7
1.0 1.03974 1.04042
1.2 1.11245 1.11286
1.5 1.20304 1.20752

10.0
1.0 1.16891 1.16881
1.2 1.25554 1.25634
1.5 1.36409 1.36904

100.0
1.0 2.21251 2.21559
1.2 2.43543 2.43349
1.5 2.71709 2.71740

1000.0
1.0 4.13570 4.13357
1.2 4.66234 4.66270
1.5 5.30515 5.30278

values of n multiply the viscous effects, which ultimately increases the frictional forces and

as a result the drag force at the surface increases. It is observed form Fig. 1(b) that the

rate of heat transfer increases as n increases. Besides, it is interesting to see that Prandtl

number Pr has also a notable effect on these physical quantities. It is already observed in

Tab. 2 that the rate of heat transfer exhibits the tendency to increase for both n and Pr and

here again this fact is validated graphically. The shear stress rate decreases for large value

of Prandtl number Pr, whereas, the rate of heat transfer get intensified when Pr increases

from 500.0 to 1000.0. The Newtonian fluids (n = 1.0) have small rate of heat transfer as

compared to the dilatant fluids (n > 1).

The influence of the dust parameter, αd, for oil particulate suspension on τw and Q,

is depicted in Fig. 2. Here, the rate of shear stress and rate of heat transfer are plotted for

shear thickening oil for different values of dust parameter αd = 5.0, 10.0, 50.0, 100.0. It is

interesting to infer from Fig. 2(a) that the value of shear stress rate, τw, increases sufficiently

owing to the increase in value of dust parameter, αd. Particulary, τw is very high for large

values of αd. The presence of inert particles in oil are responsible for the enhancement of

the shear stress rate. As presence of small number of dust particles causes less resistance

to the flow, therefore, τw is not very influential when the value of dust parameter is small.

But an increment in the value of dust parameter offers more resistance to the flow of oil

particulate suspension near the leading edge and as a result the frictional forces get strong

in the momentum boundary layer region. However, the dust parameter αd a has reverse

effect on the rate of heat transfer, Q (see Fig. 2(b)). This may happens due to the fact

that, by loading the large number of dust particles, the oil mixture loses the thermal energy

and this leads to decrease the temperature of contaminated oil as compared to the pure

fluid case. The dilatant (shear thickening) oil becomes more viscous when it is loaded by

10



large number of dust particles and ultimately the rate of heat transfer shows a considerable

decline. Therefore, it happened subject to the interaction of the two phase flow.

Fig. 3 displays the variation in quantities: τw and Q that are brought by changing

the value of specific heat ratio parameter (γ) of the oil particulate suspension. The shear

stress rate shows a considerable decline by increasing the value of γ from 0.3 to 0.9 (See

Fig. 3(a)). Particulary, the shear stress rate becomes too low when γ = 0.9. The specific

heat ratio parameter, therefore, acts a retarding force for the shear stress rate. But on the

other hand, it can be visualized from Fig. 3(b) that an opposite behavior is recorded for the

rate of heat transfer Q. The rate of heat transfer increases sufficiently by magnifying the

value of specific heat ratio parameter (γ). It can be noted that low specific heat ratio causes

a relatively large increase in temperature gradient as compared to large γ. Interestingly,

γ << 1.0 reflects the physical situation where the specific heat of the oil at constant pressure

is less than that of the specific heat of the particle phase, i.e., (cs < cp), due to which the

oil particulate suspension gains more thermal energy which give rise to the temperature

gradient and hence assist the rate of heat transfer to enhance.

Fig. 4 is plotted to visualize the variations in the velocity and temperature profiles

of oil particulate suspension with the power-law index n. The velocity and temperature

profiles are recorded at X = 5.0. It can be seen from Fig. 4(a) that the velocity profile

increases sufficiently by increasing the value of power-law index n. These plots depicts

the fact that for shear-thickening fluids n = 1.2, 1.5, 1.8, 2.0, the velocity increases and the

boundary layer thickness reduces. It is interesting to see that the oil particulate suspension

quickly attains its asymptotic value for large values of power-law index n. It can be therefore

concluded that the non-Newtonian (i.e, n > 1 or dilatant fluids) are more likely to achieve

the limiting behavior as compared to the Newtonian fluids (n = 1.0). Fig 4(b) further

depict the corresponding temperature distributions of contaminated oil for 1.0 ≤ n ≤ 2.0.

It is visualized that the temperature profile, Θ, exhibits a decline for increasing values of

power-law index n and dilatant fluids (n > 1) quickly attains the limiting value into the

thermal boundary layer region. Such behavior reveals the fact that temperature profile is

high for the Newtonian fluids (n = 1) than the dilatant fluids (n > 1).

Streamlines and isotherms are also drawn in Fig. 5 for oil particulate suspension.

These plots help in accessing the performance of the flow velocity and temperature fields

of dusty power-law fluid moving along a heated isothermal vertical wall. The effect of mass

concentration parameter Dρ on the distribution of the velocity and temperature fields is

plotted for Newtonian (i.e, n = 1.0) and non-Newtonian shear thickening (i.e, n > 1) fluids.

For comparison, oil suspension with small number of particle cloud (Dρ = 10.0) is also

presented. As expected, by increasing the particle in the fluid, the velocity of dusty fluid

reduces significantly and fluid tends to cluster near the vicinity of the vertical surface (see

Figs. 5(a) and 5(b)). More interestingly, the influence of Dρ on temperature distribution for

both phases is notable. When particles are loaded extensively, the relative velocity between

the two phases reduces and relaxation time for energy transfer also decreases and ultimately

temperature lags between the mixture components become smaller. The thermal boundary

layer becomes thinner due to the large temperature lags between the phases (see Figs. 5(c)

and 5(d)). Furthermore, the isotherms in Fig. 5 is revealing the fact that for large values

of mass concentration parameter Dρ curves are very close to each other for Newtonian (i.e,

n = 1.0) as well as for non-Newtonian shear thickening (i.e, n > 1) fluids.
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5 Conclusions

The present analysis aims to compute the numerical results for two-phase dusty boundary-

layer flow induced by the semi-infinite vertical heated surface. In order to incorporate the

non-Newtonian fluid into the analysis, modified viscosity model is used. Coordinate trans-

formations (primitive variable formulations) are applied to switch the governing equations

of the carrier and the dispersed phase into a convenient form over which two point finite

difference method is applied to obtain the solutions for the whole range of axial coordi-

nate X. Computational results are shown for the physical quantities, namely, rate of shear

stress, rate of heat transfer, velocity and temperature profiles, streamlines and isotherms.

Results are interpreted by considering contaminated oil as a working fluid, which is under

the influence of several physically important parameters, such as, n, Pr, Dρ, αd and γ. The

agreement with the results of [4], [6], [10]-[12] are found excellent. It is recorded that, the

Newtonian fluids (n = 1.0) have small rate of heat transfer as compared to the dilatant

fluids (n > 1) and the rate of heat transfer deliberately boosted by increasing the values

of power-law index n and Prandtl number Pr. It is also found that the shear stress rate

increases when the dust parameter αd increases and the rate of heat transfer drastically

decreases when metal particles are increased within the oil. In addition, the temperature

profile, Θ, for dilatant fluids (n > 1) quickly attains the limiting value into the thermal

boundary layer region as compared to the Newtonian fluid (n = 1.0).
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Fig. 1(a) Shear stress and (b) Rate of heat transfer for n = 1.0, 1.2, 1.5,
Pr=500.0, 1000.0, αd = 5.0, Dρ = 10.0, γ = 0.3.
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Fig. 2(a) Shear stress and (b) Rate of heat transfer for αd = 5.0, 10.0, 50.0, 100.0,
Dρ = 10.0, γ = 0.3, Pr=1000.0, n = 1.5.
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Fig. 3(a) Shear stress and (b) Rate of heat transfer for γ = 0.3, 0.6, 0.9, αd = 5.0,
Dρ = 10.0, Pr=1000.0, n = 1.5.
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Fig. 4(a) Velocity and (b) Temperature profiles of the carrier phase for
n = 1.0, 1.2, 1.5, 1.8, 2.0, Dρ = 10.0, Pr = 500.0, γ = 0.3, αd = 5.0, X = 5.0.
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Fig. 5 Streamlines (top) and Isotherms (bottom) of the carrier phase for
Dρ = 10.0, 100.0, αd = 5.0, γ = 0.3, Pr=1000.0, n = 1.5.
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