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DISCONTINUOUS GALERKIN METHODS

CHRISTIAN KREUZER AND EMMANUIL H. GEORGOULIS

Abstract. We develop a general convergence theory for adaptive discontinu-

ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and

LDG schemes as well as all practically relevant marking strategies. Another
key feature of the presented result is, that it holds for penalty parameters only

necessary for the standard analysis of the respective scheme. The analysis

is based on a quasi interpolation into a newly developed limit space of the
adaptively created non-conforming discrete spaces, which enables to generalise

the basic convergence result for conforming adaptive finite element methods by

Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive

finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707–737].

1. Introduction

Discontinuous Galerkin finite element methods (DGFEM) have enjoyed consid-
erable attention during the last two decades, especially in the context of adaptive
algorithms (ADGMs): the absence of any conformity requirements across element
interfaces characterizing DGFEM approximations allows for extremely general adap-
tive meshes and/or an easy implementation of variable local polynomial degrees in
the finite element spaces. There has been a substantial activity in recent years for
the derivation of a posteriori bounds for discontinuous Galerkin methods for elliptic
problems [KP03, BHL03, Ain07, HSW07, CGJ09, EV09, ESV10, ZGHS11, DPE12].
Such a posteriori estimates are an essential building block in the context of adaptive
algorithms, which typically consist of a loop

(1.1) SOLVE Ñ ESTIMATE Ñ MARK Ñ REFINE.

The convergence theory, however, for the ‘extreme’ non-conformity case of ADGMs
had been a particularly challenging problem due to the presence of a negative power
of the mesh-size h stemming from the discontinuity-penalization term. As a conse-
quence, the error is not necessarily monotone under refinement. Indeed, consulting
the unprecedented developments of convergence and optimality theory of conform-
ing adaptive finite element methods (AFEMs) during the last two decades, the strict
reduction of some error quantity appears to be fundamental for most of the results.
In fact, Dörfler’s marking strategy typically ensures that the error is uniformly re-
duced in each iteration [Dör96, MNS00, MNS02] and leads to optimal convergence
rates [Ste07, CKNS08, KS11, DK08, BDK12]; compare also with the monographs
[NSV09, CFP14] and the references therein. Showing that the error reduction is
proportional to the estimator on the refined elements, instance optimality of an
adaptive finite element method was shown recently for an AFEM with modified
marking strategy in [DKS16, KS16]. A different approach was, however, taken in
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2 CH. KREUZER AND E.H. GEORGOULIS

[MSV08, Sie11], where convergence of the AFEM is proved, exploiting that the ap-
proximations converge to a solution in the closure of the adaptively created finite
element spaces in the trial space together with standard properties of the a posteri-
ori bounds. The result covers a large class of inf-sup stable PDEs and all practically
relevant marking strategies without yielding convergence rates though.

Karakashian and Pascal [KP07] gave the first proof of convergence for an adaptive
DGFEM based on a symmetric interior penalty scheme (SIPG) with Dörfler marking
for Poisson’s problem. Their proof addresses the challenge of negative power of h in
the estimator, by showing that the discontinuity-penalization term can be controlled
by the element and jump residuals only, provided that the DGFEM discontinuity-
penalisation parameter, henceforth denoted by σ, is chosen to be sufficiently large;
the element and jump residuals involve only positive powers of h and, therefore, can
be controlled similarly as for conforming methods. The optimality of the adaptive
SIPG was shown in [BN10]; see also [HKW09].

The standard error analysis of the SIPG requires that σ is sufficiently large for
the respective bilinear from to be coercive with respect to an energy-like norm. It
is not known in general, however, whether the choice of σ required for coercivity
of the interior penalty DGFEM bilinear form is large enough to ensure that the
discontinuity-penalization term can be controlled by the element and jump residuals
only. Therefore, the convergence of SIPG is still open for values of σ large enough
for coercivity but, perhaps, not large enough for the crucial result from [KP07] to
hold. To the best of our knowledge, the only result in this direction is the proof of
convergence of a weakly overpenalized ADGM for linear elements [GG14], utilizing
the intimate relation between this method and the lowest order Crouzeix-Raviart
elements.

This work is concerned with proving that the ADGM converges for all values of σ
for which the method is coercive, thereby settling the above discrepancy between the
magnitude of σ required for coercivity and the, typically much larger, values required
for proof of convergence of ADGM. Apart from settling this open problem theoret-
ically, this new result has some important consequences in practical computations:
it is well known that as σ grows, the condition number of the respective stiffness
matrix also grows. Therefore, the magnitude of the discontinuity-penalization pa-
rameter σ affects the performance of iterative linear solvers, whose complexity is
also typically included in algorithmic optimality discussions of adaptive finite ele-
ments. In addition, the theory presented here includes a large class of practically
relevant marking strategies and covers popular discontinuous Galerkin methods like
the local discontinuous Galerkin method (LDG) and even the nonsymmetric inte-
rior penalty method (NIPG), which are coercive for any σ ą 0. Moreover, we expect
that it can be generalised to non-conforming discretisations for a number of other
problems like the Stokes equations or fourth order elliptic problems. However, as
for the conforming counterpart [MSV08], no convergence rates are guaranteed.

The proof of convergence of the ADGM, discussed below, is motivated by the
basic convergence for the conforming adaptive finite element framework of Morin,
Siebert and Veeser [MSV08]. More specifically, we extend considerably the ideas
from [MSV08] and [Gud10] to be able to address the crucial challenge that the limits
of DGFEM solutions, constructed by the adaptive algorithm, do not necessarily
belong to the energy space of the boundary value problem as well as to conclude
convergence from a perturbed best approximation result.

To highlight the key theoretical developments without the need to resort to com-
plicated notation, we prefer to focus on the simple setting of the Poisson problem
with essential homogeneous boundary conditions and conforming shape regular tri-
angulations. We believe, however, that the results presented below are valid for
general elliptic PDEs including convection and reaction phenomena as well as for
some classes of non conforming meshes; compare with [BN10].
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The remainder of this work is structured as follows. In Section 2 we shall in-
troduce the ADGM framework for Poisson’s equation and state the main result,
which is then proved in Section 5 after some auxiliary results, needed to generalise
[MSV08], are provided in Sections 3 and 4. In particular, in Section 3 a space is
presented, which is generated from limits of discrete discontinuous functions in the
sequence of discontinuous Galerkin spaces constructed by ADGM. Section 4 is then
concerned with proving that the sequence of discontinuous Galerkin solutions pro-
duced by ADGM converges indeed to a generalised Galerkin solution in this limit
space. This follows from an (almost) best-approximation property, generalising the
ideas in [Gud10].

2. The ADGM and the main result

Let a measurable set ω and a m P N. We consider the Lebesgue space L2pω;Rmq
of square integrable functions over ω with values in R

m, with inner product x¨, ¨yω
and associated norm }¨}ω. We also set L2pωq :“ L2pω;Rq. The Sobolev space H1pωq
is the space of all functions in L2pωq whose weak gradient is in L2pω;Rdq, for d P N.
Thanks to the Poincaré-Friedrichs’ inequality, the closure H1

0 pωq of C8
0 pωq in H1pωq

is a Hilbert space with inner product x∇¨, ∇¨yω and norm }∇¨}ω. Also, we denote

the dual space H´1pωq of H1
0 pωq, with the norm }v}H´1pωq :“ supwPH1

0 pωq
xv, wy

}∇w}ω ,
v P H´1pωq, with dual brackets defined by xv , wy :“ vpwq, for w P H1

0 pωq.
Let Ω Ă R

d, d “ 2, 3, be a bounded polygonal (d “ 2) or polyhedral (d “ 3)
Lipschitz domain. We consider the Poisson problem

(2.1) ´Δu “ f in Ω, u “ 0 on BΩ,
with f P L2pΩq. The weak formulation of (2.1) reads: find u P H1

0 pΩq, such that

x∇u, ∇vyΩ “ xf, vyΩ for all v P H1
0 pΩq.(2.2)

From the Riesz representation theorem, it follows that the solution u exists and is
unique.

2.1. Discontinuous Galerkin method. Let G be a conforming (that is, not con-
taining any hanging nodes) subdivision of Ω into disjoint closed simplicial elements
E so that Ω̄ “ ŤtE : E P Gu and set hE :“ |E|1{d. Let S “ SpGq be the set
of pd´ 1q-dimensional element faces S associated with the subdivision G including

BΩ, and let S̊ “ S̊pGq Ă S by the subset of interior faces only. We also introduce
the mesh size function hG : Ω Ñ R, defined by hGpxq :“ hE , if x P EzBE and

hGpxq “ hS :“ |S|1{pd´1q, if x P S P S and set Γ “ ΓpGq “ ŤtS : S P Su and Γ̊ “
Γ̊pGq “ ŤtS : S P S̊u. We assume that G is derived by iterative or recursive newest
vertex bisection of an initial conforming mesh G0; see [Bän91, Kos94, Mau95, Tra97].
We denote by G the family of shape regular triangulations consisting of such sub-
divisions of G0.

Let PrpEq denote the the space of all polynomials on E of degree at most r P N,
we define the discontinuous finite element space

(2.3) VpGq :“
ź
EPG

PrpEq Ă
ź
EPG

W 1,ppEq “:W 1,ppGq, 1 ď p ď 8,

and H1pGq :“ W 1,2pGq. Let N “ N pGq be the set of Lagrange nodes of VpGq and
define the neighbourhood of a node z P N pGq by NGpzq :“ tE1 P G : z P E1u,
and the union of its elements by ωGpzq “ ŤtE1 P G : z P E1u. We also define
the corresponding neighbourhoods for all elements E P G by NGpEq :“ tE1 P G :
E X E1 ‰ Hu and ωGpEq “ ŤtE1 P G : E1 X E ‰ Hu “ ŤtωGpzq : z P N pEq X Eu,
respectively, and set ωGpSq :“ ŤtE P G : S Ă Eu; compare with Figure 1. The
numbers of neighbours #NGpzq and #NGpEq are uniformly bounded for all z P N ,
respectively E P G, depending on the shape regularity of G and, thus, on G0.
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E

Figure 1. The neighbourhood NGpEq of some E P G.

Let E`, E´ be two generic elements sharing a face S :“ E` X E´ P S̊ and let
n` and n´ the outward normal vectors of E` respectively E´ on S. For q : Ω Ñ R

and φ : Ω Ñ R
d, let q˘ :“ q|SXBE˘ and φ˘ :“ φ|SXBE˘ , and set

ttquu|S :“ 1

2
pq` ` q´q, ttφuu|S :“ 1

2
pφ` ` φ´q,

rrqss |S :“ q`n` ` q´n´, rrφss |S :“ φ` ¨ n` ` φ´ ¨ n´;

if S Ă BE X BΩ, we set ttφuu|S :“ φ` and rrqss |S :“ q`n`.
In order to define the discontinuous Galerkin schemes, we introduce the following

local lifting operators. For S P S, we define RS
G : L2pSqd Ñ ś

EPG P�pEqd and

LS
G : L2pSq Ñ ś

EPG P�pEqd by
ˆ
Ω

RS
Gpφq ¨ τ dx “

ˆ
S

φ ¨ ttτ uu ds @τ P
ź
EPG

P�pEqd(2.4a)

and
ˆ
Ω

LS
Gpqq ¨ τ dx “

ˆ
S

q rrτ ss ds @τ P
ź
EPG

P�pEqd,(2.4b)

with � P tr, r ` 1u. Note that LS
Gpqq and RS

Gpφq vanish outside ωGpSq. Moreover,
using the local definition and the boundedness of the lifting operators in a reference
situation together with standard scaling arguments, we have for φ P PrpSqd and
q P PrpSq that››LS

Gpφq››
Ω

À
›››h´1{2

G φ
›››
S

and
››RS

Gpqq››
Ω

À
›››h´1{2

G q
›››
S
;(2.4c)

compare with [ABCM02]. Also, here and below we write a À b when a ď Cb for a
constant C not depending on the local mesh size of G or other essential quantities
for the arguments presented below. Observing that the sets ωGpSq, S P S do overlap
at most d ` 1 times, we have for the global lifting operators RG : L2pΓqd Ñ VpGqd
and LG : L2p̊Γq Ñ VpGqd defined by

RGpφq :“
ÿ
SPS

RS
Gpφq and LGpqq :“

ÿ
SPS̊

RS
Gpqq,

that

}RGprrvssq}Ω À
›››h´1{2

G v
›››
Γ

and }LGpβ ¨ rrvssq}Ω À |β|
›››h´1{2

G v
›››
Γ̊

for all v P VpGq and β P R
d.
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We define the bilinear form BGr¨, ¨s : VpGq ˆ VpGq Ñ R by

BGrw, vs :“
ˆ
G
∇w ¨ ∇v dx´

ˆ
S

`tt∇wuu ¨ rrvss ` θtt∇vuu ¨ rrwss ˘
ds

`
ˆ
S̊

`
β ¨ rrwss rr∇vss ` rr∇wssβ ¨ rrvss ˘

ds

`
ˆ
Ω

γ
`
RGprrwssq ` LGpβ ¨ rrwssq˘ ¨ `

RGprrvssq ` LGpβ ¨ rrvssq˘
dx

`
ˆ
S

σ

hG
rrwss ¨ rrvss ds;

(2.5)

for θ P t˘1u, γ P t0, 1u, β P R
d and σ ě 0. Here we have used the short-hand

notation ˆ
G

¨dx :“
ÿ
EPG

ˆ
E

¨dx and

ˆ
S

¨ds :“
ÿ
SPS

ˆ
S

¨ds.

We consider the choices θ “ 1, β “ 0, and γ “ 0 yielding the symmetric interior
penalty method (SIPG) [DD76], θ “ ´1, β “ 0, and γ “ 0 which gives the nonsym-
metric interior penalty methods (NIPG) [RWG99], and θ “ 1, β P R

d, and γ “ 1
which yields the local discontinuous Galerkin method (LDG) [CS98]; compare also
with [ABCM02] and [JNS16].

In all three cases, the corresponding discontinuous Galerkin finite element method
(DGFEM) then reads: find uG P VpGq such that

(2.6) BGruG , vGs “
ˆ
Ω

fvG dx “: lpvGq, for all vG P VpGq.
Upon denoting by ∇pwv the piecewise gradient ∇pwv|E “ ∇v|E for all E P G, the
corresponding energy norm |||¨|||G is defined by

|||w|||G :“
´ ››∇pww

››2
Ω

` σ̄
›››h´1{2

G rrwss
›››2
Γ

¯1{2
,

for w|E P H1pEq, E P G. Here σ̄ :“ maxt1, σu. Also, for some subset M Ă G with
ω “ ŤtE | E P Mu, we define

|||w|||M :“
´ ››∇pww

››2
ω

` σ̄
›››h´1{2

G rrwss
›››2
ΓpMq

¯1{2
.

If for SIPG we have σ :“ Cσr
2 for some constant Cσ ą 0 sufficiently large, σ ą 0

for NIPG and for LDG σ ą 0 when � “ r and σ “ 0 when � “ r ` 1 ([JNS16]), then
there exists α “ αpσq ą 0, such that

α |||w|||2G ď BGrw, ws @w P H1pGq,(2.7)

i.e. all three DGFEMs are coercive in VpGq; see, e.g., [Arn82, ABCM02, JNS16] for
details. Note that the choice σ̄ “ maxt1, σu accounts for the fact that we can have
σ “ 0 for the LDG in [JNS16].

From standard scaling arguments, we conclude the following local Poincaré-
Friedrichs inequality from [Bre03, BO09].

Proposition 1 (Poincaré-VpGq). Let G be a triangulation of Ω and G‹ some re-
finement of G. Then, for v P VpG‹q, E P G and vE :“ |ωGpEq|´1

´
ωGpEq v dx, we

have

}v ´ vE}2ωGpEq À
ˆ
ωGpEq

h2G |∇pwv|2 dx`
ˆ
SPS‹,SĂωGpEq

h2Gh
´1
G‹ rrvss2 ds,

where S‹ “ SpG‹q and the hidden constant depends on d and on the shape regularity
of NGpEq.
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The next important result from [KP03, Theorem 2.2] (compare also with [BN10,
Lemma 6.9] and [BO09, Theorem 3.1]) quantifies the local distance of a discrete
non-conforming function to the conforming subspace with the help of the of the
scaled jump terms.

Proposition 2. For G P G, there exists an interpolation operator IG : H1pGq Ñ
VpGq XH1

0 pΩq, such that we have›››h1{2
G pv ´ IGvq

›››2
L2pEq

` }∇pv ´ IGvq}2L2pEq À
ˆ

BE
h´1
G rrvss2 ds,

for all E P G and v P VpGq.
From this, we can easily deduce the following broken Friedrichs type inequality;

compare also with [BO09, (4.5)].

Corollary 3 (Friedrichs-VpGq). Let G P G, then

}v}L2pΩq À |||v|||G for all v P VpGq.
Let BV pΩq denote the Banach space of functions with bounded variation equiped

with the norm

}v}BV pΩq “ }v}L1pΩq ` |Dv|pΩq,
where Dv is the measure representing the distributional derivative of v with total
variation

|Dv|pΩq “ sup
φPC1

0 pΩqd,}φ}
L8pΩqď1

ˆ
Ω

v div φ dx.

Here the supremum is taken over the space C1
0 pΩqd of all vector valued continuously

differentiable functions with compact support in Ω.
Another crucial result [BO09, Lemma 2] states then that the total variation of the

distributional derivative of broken Sobolev functions is bounded by the discontiuous
Galerkin norm.

Proposition 4. For G P G we have that

|Dv|pΩq À }∇v}L1pΩq `
ˆ
S

|rrvss| ds À |||v|||G for all v P H1pGq.

2.2. A posteriori error bound. We recall the a posteriori results from [KP03,
BN10, BGC05, BHL03]; compare also with [CGJ09].

For v P VpGq, we define the local error indicators for E P G by

EGpv, Eq :“
´ˆ

E

h2G |f ` Δv|2 dx`
ˆ

BEXΩ

hG rr∇vss2 ds` σ

ˆ
BE
h´1
G rrvss2 ds

¯1{2
;

when v “ uG , we shall write EGpEq :“ EGpuG , Eq. Also, for M Ă G, we set

EGpv,Mq :“
´ ÿ

EPM
Epv, Eq2

¯1{2
.

Proposition 5. Let u P H1
0 pΩq be the solution of (2.2) and uG P VpGq its respective

DGFEM approximation (2.6) on the grid G P G. Then,

α |||u´ uG |||2G ď BGru´ uG , u´ uGs À
ÿ
EPG

EGpEq2,

The efficiency of the estimator follows with the standard bubble function tech-
nique of Verfürth [Ver96, Ver13]; compare also with [KP03, Theorem 3.2], [Gud10,
Lemma 4.1] and Proposition 22 below.
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Proposition 6. Let u P H1
0 pΩq be the solution of (2.2) and let G P G. Then, for

all v P VpGq and E P G, we have

ˆ
E

h2G |f ` Δv|2 dx`
ˆ

BEXΩ

hG rr∇vss2 ds

À }u´ v}2ωGpEq ` ››∇pwpu´ vq››2
ωGpEq ` oscpNGpEq, fq2,

with data-oscillation defined by

oscpM, fq :“
´ ÿ

E1PM
oscpE, fq2

¯1{2
, where oscpE, fq :“ inf

fEPPr´1

}hGpf ´ fEq}E ,

for all M Ă G. In particular, this implies

EGpv, Eq À |||v ´ u|||NGpEq ` oscpNGpEq, fq.
Remark 7. Note that the presented theory obviously applies to all locally equivalent
estimators as well; compare e.g. with [KP03, BN10, BGC05, BHL03, CGJ09]. For
the sake of a unified presentation, we restrict ourselves to the above representation.

2.3. Adaptive discontinuous Galerin finite element method (ADGM). The
adaptive algorithm, whose convergence will be shown below, reads as follows.

Algorithm 8 (ADGM). Starting from an initial triangulation G0, the adaptive
algorithm is an iteration of the following form

(1) uk “ SOLVEpVpGkqq;
(2) tEkpEquEPGk

“ ESTIMATEpuk,Gkq;
(3) Mk “ MARK

`tEkpEquEPGk
,Gk

˘
;

(4) Gk`1 “ REFINEpGk,Mkq; increment k.

Here we have used the notation EkpEq :“ EGk
pEq, for brevity.

SOLVE. We assume that the output

uG “ SOLVEpVpGqq
is the DGFEM approximation (2.6) of u with respect to VpGq.
ESTIMATE. We suppose that

tEGpEquEPG :“ ESTIMATEpuG ,Gq
computes the error indicators from Section 2.2.

MARK. We assume that the output

M :“ MARKptEGpEquEPG ,Gq
of marked elements satisfies

EGpEq ď gpEGpMqq, for all E P GzM.(2.8)

Here g : R`
0 Ñ R

`
0 is a fixed function, which is continuous in 0 with gp0q “ 0, i.e.

limεÑ0 gpεq “ 0.

REFINE. We assume for M Ă G P G, that for the refined grid

G̃ :“ REFINEpG,Mq
we have

E P M ñ E P GzG̃,(2.9)

i.e., each marked element is refined at least once.
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Figure 2. Selection of a sequence of triangulations of Ω “ p0, 1q2,
where in each iteration the elements in Ω´ “ r0, 0.5s ˆ r0, 0.5s are
marked for refinement. The elements G` in the remaining domain
ΩzΩ´ are, after some iteration, not refined anymore. Moreover,
after some iteration, their whole neighbourhood is not refined any-
more.

2.4. The main result. The main result of this work states that the sequence of
discontinuous Galerkin approxiations, produced by ADGM, converges to the exact
solution of (2.1).

Theorem 9. We have that

EkpGkq Ñ 0 as k Ñ 8.

In particular, this implies that

|||u´ uk|||k Ñ 0 as k Ñ 8.

3. A limit space and quasi-interpolation

In this section we shall first introduce a new limit space V8 of the sequence
of adaptively constructed discontinuous finite element spaces tVpGkqukPN. A new
quasi-interpolation operator is then introduced in Section 3.3 in order to to prove
that there exists a unique Galerkin solution u8 of a generalised discontinuous
Galerkin problem in V8.

3.1. Sequence of partitions. The ADGM produces a sequence tGkukPN0
of nested

admissible partitions of Ω. Following [MSV08], we define

G` :“
ď
kě0

č
jěk

Gj , and Ω` :“ ΩpG`q

to be the set and domain of all elements, respectively, which eventually will not be
refined any more; here ΩpXq :“ interior pŤtE : E P Xuq for a collection of elements
X. We also define the complementary domain Ω´ :“ interiorpΩzΩ`q. For the ease
of presentation, in what follows, we shall replace subscripts Gk by k to indicate the
underlying triangulation, e.g. we write NkpEq instead of NGk

pEq.
The following result states that neighbours of elements in G` are eventually also

elements of G`; cf., [MSV08, Lemma 4.1].

Lemma 10. For E P G` there exists a constant K “ KpEq P N0, such that

NkpEq “ NKpEq for all k ě K,

i.e., we have NkpEq Ă G` for all k ě K.
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Next, for a fixed k P N0, we set

G´
k :“ tE P Gk : ωkpEq Ă Ω´u, Ω´

k :“ ΩpG´
k q,

G`
k :“ Gk X G`, Ω`

k :“ ΩpG`
k q,

G``
k :“ tE P Gk : NkpEq Ă G`u, Ω``

k :“ ΩpG``
k q,

G‹
k :“ GkzpG``

k Y G´
k q, Ω‹

k :“ ΩpG‹
kq;

compare also with Figure 2. This notation is also adopted for the corresponding
faces, e.g., we denote S`

k :“ SpG`
k q and S̊`

k :“ S̊pG`
k q and correspondingly for all

other above sub-triangulations of Gk.
The next lemma is related to [MSV08, (4.15) and Corollary 4.1]. However, the

definitions of Ω‹
k and Ω´

k differ from the corresponding ones in [MSV08], which
requires some modifications in the proof.

Lemma 11. We have that limkÑ8 |Ω‹
k| “ 0 and limkÑ8 }hkχΩ´

k
}L8pΩq “ 0, with

χΩ´
k
denoting the characteristic function of Ω´

k .

Proof. In order to prove the first claim, we begin by observing that |Ω‹
k| ď |Ω´zΩ´

k |`
|Ω`zΩ``

k | and consider the two terms on the right-hand side separately.

Since #G`
k ă 8, we have thanks to Lemma 10 that for all k P N there exists

K “ Kpkq ě k, such that G``
K Ą G`

k . Consequently, we have

|Ω`zΩ``
Kpkq| ď |Ω`zΩ`

k | “
ÿ

EPG`zG`
k

|E| Ñ 0,

as k Ñ 8. This holds because the right-hand side is a tail of the series
ř

EPG` |E|,
which is convergent, as |E| ą 0 and all partial sums are bounded by |Ω|. Since
|Ω`zΩ``

k | is monotonically decreasing, we conclude that |Ω`zΩ``
k | Ñ 0 as k Ñ 8.

We observe that the sequence tΩ´
k ukPN is nested, i.e. Ω´

0 Ă Ω´
1 Ă Ω´

2 Ă . . . Ă Ω´.
Therefore, we have that the sequence t|Ω´zΩ´

k |ukPN is converging, because it is

monotonically decreasing. Assume that limkÑ8 |Ω´zΩ´
k | ‰ 0, then we have by the

continuity of the Lebesgue measure that

0 ‰ lim
kÑ8 |Ω´zΩ´

k | “ ˇ̌
Ω´z

ď
kě0

Ω´
k

ˇ̌
.

Consequently, there exists a ball Bρ with some radius ρ ą 0 such that Bρ Ă
Ω´z Ť

kě0 Ω
´
k . For k P N let GBρ

k :“ tE P Gk : E X Bρ ‰ Hu, then there exists

E P GBρ

k with |E| Á ρ independent of k. This follows from the fact that, since

Bρ Ă Ω´zΩ´
k , there exists no E P Gk with ΩpNkpEqq Ă Bρ, together with the local

quasi uniformity of Gk. Thanks to the fact that the size of an element is reduced
under refinement by a factor 2´1{d and that the grids Gk are nested, we have that
there is some K ą 0, such that there exists E P GBρ

k with E P GK for all k ě K,
i.e. E P G`. This is the contradiction since H ‰ E XBρ Ă E X Ω´.

The second claim follows from [MSV08, Corollary 4.1] noting that Ω´ Ă Ω0
k with

Ω0
k as in [MSV08]. �

3.2. The limit space. In this section, we shall investigate the limit of the finite
element spaces Vk :“ VpGkq, k P N. To this end, we define

V8 :“ �
v P BV pΩq : v|Ω´ P H1

BΩXBΩ´ pΩ´q and v|E P Pr @E P G`

such that DtvkukPN, vk P Vk with lim
kÑ8 |||v ´ vk|||k “ 0

and lim sup
kÑ8

|||vk|||k ă 8(
;

here H1
BΩXBΩ´ pΩ´q denotes the space of functions from H1

0 pΩq restricted to Ω´.
Note that for v P BV pΩq there exists the L1-trace of v on Γk “ ŤtS : S P Sku;
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compare e.g. with the trace theorem [BO09, Theorem 4.2]. In other words, v is
measurable with respect to the pd ´ 1q-dimensional Hausdorff measure on Sk and,
therefore, the term |||v|||k, v P V8, makes sense. Obviously, we have VkXCpΩq Ă V8
for all k P N and, thus, V8 is not empty.

Setting h` :“ hG` and S` :“ SpG`q, we define

xv, wy8 :“
ˆ
Ω´

∇v ¨ ∇w dx`
ˆ
G`

∇v ¨ ∇w dx` σ̄

ˆ
S`

h´1` rrvss rrwss ds,

and |||v|||8 :“ xv, vy1{2
8 , for all v, w P V8. For brevity, we shall frequently use the

notation ˆ
Ω

∇pwv ¨ ∇pww dx ”
ˆ
Ω´

∇v ¨ ∇w dx`
ˆ
G`

∇v ¨ ∇w dx.

We shall next list some basic properties of the space V8.

Proposition 12. For v P V8, we have

|||v|||k Õ |||v|||8 ă 8 as k Ñ 8.

In particular, for fixed � P N, let E P G�; then, we haveˆ
tSPSk:SĂEu

h´1
k rrvss2 ds Õ

ˆ
tSPS`:SĂEu

h´1` rrvss2 ds, as k Ñ 8.

Proof. Since v P V8, there exists tvkukPN, vk P Vk with limkÑ8 |||v ´ vk|||k “ 0 and
lim supkÑ8 |||vk|||k ă 8. We first observe that

|||v|||k ď |||v ´ vk|||k ` |||vk|||k ă 8
uniformly in k. Thanks to the mesh-size reduction, i.e. hm ď hk for all m ě k, we
conclude that ˆ

Sk

h´1
k rrvss2 ds ď

ˆ
Sk

h´1
m rrvss2 ds ď

ˆ
Sm

h´1
m rrvss2 ds,

thanks to the inclusion
Ť

SPSk
S Ă Ť

SPSm
S. Therefore, we have |||v|||k ď |||v|||m

for all m ě k and, thus, t|||v|||kukPN converges. Consequently, for ε ą 0 there exists
K “ Kpεq, such that for all k ě K and m ą k large enough, we have

ε ą | |||v|||2m ´ |||v|||2k | “ σ̄

ˆ
SmzpSmXSkq

h´1
m rrvss2 ds´ σ̄

ˆ
SkzpSmXSkq

h´1
k rrvss2 ds

ě p21{pd´1q ´ 1q σ̄
ˆ
SkzpSmXSkq

h´1
k rrvss2 ds

ě p21{pd´1q ´ 1q σ̄
ˆ
SkzS`

k

h´1
k rrvss2 ds.

This follows from the fact that hm|S ď 2´1{pd´1qhk|S for all S P SkzpSm X Skq
together with S`

k “ Sm X Sk for sufficiently large m ą k.

Therefore, we have
´
SkzS`

k
h´1
k rrvss2 ds Ñ 0 as k Ñ 8 and, thus,

|||v|||2k “
ˆ
Ω

|∇pwv|2 dx` σ̄

ˆ
S`
k

h´1
k rrvss2 ds` σ̄

ˆ
SkzS`

k

h´1
k rrvss2 ds Ñ |||v|||28 ` 0.

This proves the first claim. The second claim is a localised version and follows
completely analogously. �

Lemma 13 (Poincaré-V8). Fix k P N and let E P Gk. Then for v P V8 and
vE :“ 1

|ωkpEq|
´
ωkpEq v dx, we have

}v ´ vE}2ωkpEq À ››hk∇pwv
››2
ωkpEq `

ˆ
tSPS`:SĂωkpEqu

h2kh
´1` rrvss2 ds.
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Proof. By the definition of V8, there exists v� P V�, � P N0, with lim�Ñ8 |||v ´ v�|||� “
0 and lim sup�Ñ8 |||v�|||� ă 8. Therefore, we have››∇pwv�

››2
ωkpEq `

ˆ
tSPS�:SĂωkpEqu

h´1
� rrv�ss2 ds

Ñ ››∇pwv
››2
ωkpEq `

ˆ
tSPS`:SĂωkpEqu

h´1` rrvss2 ds as � Ñ 8;

see Proposition 12. Moreover, we have

}vE ´ v�,E}ωkpEq ď }v ´ v�}ωkpEq ď |||v ´ v�|||� Ñ 0 as � Ñ 8,

where v�,E :“ 1
|ωkpEq|

´
ωkpEq v� dx. We conclude with Proposition 1 that

}v ´ vE}2ωkpEq Ð }v� ´ v�,E}2ωkpEq

À ››hk∇pwv�
››2
ωkpEq `

ˆ
tSPS�:SĂωkpEqu

h2kh
´1
� rrv�ss2 ds

Ñ ››hk∇pwv
››2
ωkpEq `

ˆ
tSPS`:SĂωkpEqu

h2kh
´1` rrvss2 ds,

as � Ñ 8. �

In order to extend the dG bilinear form (2.5) to V8, we need to define appropriate
lifting operators. For each S P S`, there exists � “ �pSq P N, such that S P S``

� . We

define the local lifting operators RS8 : L2pSqd Ñ L2pΩqd and LS8 : L2pSq Ñ L2pΩqd
by

RS8 “ RS
� :“ RS

G�
and LS8 “ LS

� :“ LS
G�
.(3.1)

From (2.4) it is easy to see, that RS
� and LS

� depend only on S and the at most
two adjacent elements E,E1 P G`

� with S Ă E X E1. Therefore, and thanks to the

fact that the G`
k are nested, we have that RS

� “ RS
k for all k ě � and, thus, the

definition is unique. We formally define the global lifting operators by

R8 :“
ÿ

SPS`
RS8 and L8 :“

ÿ
SPS̊`

LS8;

here S̊` :“ tS P S` : S R BΩu.
Moreover, from the local estimates (2.4c), it is easy to see that for v P V8 and

β P R
d, we have that

ř
SPS`

k
RS8prrvssq and ř

SPS̊`
k
LS8pβ ¨ rrvssq are Cauchy sequences

in L2pΩqd. Consequently, R8prrvssq, L8pβ ¨ rrvssq P L2pΩq are well posed and we have

}R8prrvssq}Ω À
›››h´1{2

` v
›››
Γ`

and }L8pβ ¨ rrvssq}Ω À |β|
›››h´1{2

` v
›››
Γ̊`
,(3.2)

where Γ` “ ŤtS : S P S`u and Γ̊` “ ŤtS : S P S̊`u. This enables us to generalise
the discontinuous Galerkin bilinear form to V8 setting

B8rw, vs :“
ˆ
Ω

∇pww ¨ ∇pwv dx´
ˆ
S`

`tt∇wuu ¨ rrvss ` θtt∇vuu ¨ rrwss ˘
ds

`
ˆ
S̊`

`
β ¨ rrwss rr∇vss ` rr∇wssβ ¨ rrvss ˘

ds

`
ˆ
Ω

γ
`
R8prrwssq ` L8pβ ¨ rrwssq˘ ¨ `

R8prrvssq ` L8pβ ¨ rrvssq˘
dx

`
ˆ
S`

σ

h`
rrwss ¨ rrvss ds,

for v, w P V8.

Lemma 14. The space
`
V8, x¨, ¨y8

˘
is a Hilbert space.
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Corollary 15. There exists a unique u8 P V8, such that

B8ru8, vs “
ˆ
Ω

fv dx for all v P V8.(3.3)

In order to prove the last two statements, we introduce a new quasi-interpolation,
which is designed in due consideration of the future refinements. The proofs of
Lemma 14 and Corollary 15 are postponed to the end of Section 3.3.

3.3. Quasi-interpolation. We shall now define a quasi-interpolation operator Πk,
which maps into V8 X Vk; this will be a key technical tool in the analysis. On the
one hand, membership in V8 XVk suggests to use some Clément type interpolation
since the mapped functions need to be continuous in Ω´. On the other hand,
the fact that the ADGM may leave some elements (namely G`

k Ą G``
k ) unrefined,

suggests to define Πk to be the identity on these elements. Note that the quasi-
interpolation operator from [CGS13] is motivated by a similar idea in order to map
from one Crouzeix-Raviart space into its intersection with a finer one.

For fixed k P N, let tΦE
z : E P Gk, z P NkpEqu be the Lagrange basis of

Vk :“ VpGkq, i.e., ΦE
z is a piecewise polynomial of degree r with supppΦE

z q “ E and

ΦE
z pyq “ δzy for all z, y P Nk.

Its dual basis is then the set tΨE
z : E P Gk, z P NkpEqu of piecewise polynomials of

degree r, such that supppΨE
z q “ E and@

ΨE
y , Φ

E
z

D
Ω

“ δzy for all z, y P NkpEq.
For all � ě k, we define Πk : L1pΩq Ñ L1pΩq by

Πkv :“
ÿ

EPGk

ÿ
zPNkpEq

pΠkvq|EpzqΦE
z ,(3.4)

where for z P NkpEq we have that

pΠkvq|Epzq :“
$’&’%
´
E
vΨE

z dx, if Nkpzq X G``
k ‰ H

0, else if z P BΩř
E1PNkpzq

|E1|
|ωkpzq|

´
E1 vΨ

E1
z dx, else.

(3.5)

Lemma 16 (Properties of Πk). The operator Πk : L1pΩq Ñ L1pΩq defined in (3.4)
has the following properties:

(1) Πk : LppΩq Ñ LppΩq is a linear and bounded projection for all 1 ď p ď 8.
In particular, we have that

}Πkv}LppEq À }v}LppωkpEqq ,

where the constant solely depends on p, r, d, and the shape regularity of G0.
(2) Πkv P Vk for all v P L1pΩq;
(3) Πkv|E “ v|E, if E P Gk and v|ωkpEq P PrpωkpEqq;
(4) Πkv|E “ v|E, if E P G``

k and v|E P PrpEq; if moreover v P Vk, then also

rrv ´ Πkvss |S ” 0 for all S P S``
k .

(5) Πkv|ΩzΩ`
k

P CpΩzΩ`
k q and rrΠkvss “ 0 on BpΩzΩ`

k q;
(6) Πkv “ v, for all v P Vk with v|ΩzΩ``

k
P CpΩzΩ``

k q;
(7) Πkv P V8, and we have |||Πkv|||k “ |||Πkv|||8.

Proof. Claims (1)–(3) follow by standard estimates for the Scott-Zhang opera-
tor [SZ90, DG12].

Assertion (4) is a consequence of the definition (3.5) of Πk since E P G``
k implies

that NkpEq XG``
k “ NkpEq. Note that v P VpGq implies v|E P PrpEq for all E P Gk

and thus pΠkvq|Epzq “ v|Epzq for all E P Nkpzq if Nkpzq X G``
k ‰ H. This is in

particular the case when z P S X Nk with S P S``
k .
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For E P GkzG`
k , we have that Nkpzq XG``

k “ H since otherwise there exists E1 P
NkpEq XG``

k and thus E P NkpE1q, which implies E P G`
k , thanks to the definition

of G``
k . Therefore, (3.5) implies that Πkv is continuous on ΩzΩ`

k . Moreover, for

z P NkpEqXΩzΩ`
k , definition (3.5) is independent of E and thus Πkv does not jump

across the boundary ΩzΩ`
k . This completes the proof of (5).

On the one hand, if v P Vk with v|ΩzΩ`
k

P CpΩzΩ``
k q then we have clearly

Πkv|ΩzΩ`
k

“ v|ΩzΩ`
k
. On the other hand, we can conclude Πkv|Ω``

k
“ v|Ω``

k
from (4).

This yields (6).
The claim (7) is an immediate consequence of (5). �

Lemma 17 (Stability). Let v P V� for some k ď � P N0Yt8u. Then for all E P Gk,
we haveˆ

E

|∇Πkv|2 dx`
ˆ

BE
h´1
k rrΠkvss2 ds

À
ˆ
ωkpEq

ˇ̌∇pwv
ˇ̌2

dx`
ÿ

E1PG�,E1ĂωkpEq

ˆ
BE1

h´1
� rrvss2 ds,

setting G� :“ G` and h� :“ h`, when � “ 8. In particular, we have |||Πkv|||k À |||v|||�.
Proof. We begin by noting that, summing over all elements in Gk and accounting
for the finite overlap of the domains ωkpEq, E P Gk, the global stability estimate is
an immediate consequence of the corresponding local one.

We first assume � ă 8. Let E P G``
k Ă G``

� . Then, thanks to Lemma 16(4), we
have Πkv|E “ v|E . Moreover, let E1 P Gk such that E X E1 P Sk; then Nkpzq Q E P
G``
k and thus pΠkvq|E1 pzq “ v|E1 pzq, for all z P NkpEq XNkpE1q. Consequently, we

have rrΠkvss “ rrvss on BE, in other wordsˆ
E

|∇Πkv|2 dx`
ˆ

BE
h´1
k rrΠkvss2 ds “

ˆ
E

|∇v|2 dx`
ˆ

BE
h´1
k rrvss2 ds.(3.6)

Let now E P Gk be arbitrary. Then, an inverse estimate and the local stability
(Lemma 16 (1) and (3)) for vE :“ 1

|ωkpEq|
´
ωkpEq v dx P R, implyˆ

E

|∇Πkv|2 dx À
ˆ
E

h´2
k |Πkpv ´ vEq|2 dx À

ˆ
ωkpEq

h´2
k |v ´ vE |2 dx

À
ÿ

E1ĂωkpEq,E1PG�

ˆ
E1

|∇v|2 dx`
ˆ

BE1
h´1
� rrvss2 ds;

(3.7)

here the last estimate follows from the broken Poincaré inequality, Proposition 1.
If now for all E1 P Gk, with E1 Ă ωkpEq, we have E1 R G``

k , which implies

E P GkzG``
k . Then, thanks to Lemma 16(5), we have that Πkv is continuous across

BE, i.e., rrΠkvss |BE “ 0. On the contrary, assuming that there exists E1 P G``
k ,

with E1 P NkpEq, we conclude that E P NkpE1q and thus E P G`. From the local
quasi uniformity, we thus have for all E2 P G� with E2 X E ‰ H that |E2| � |E|.
Let z P NkpEq; then, according to (3.5), we have that

rrΠkvss |BEpzq “
#

rrvss |BEpzq, if DE1 P Nkpzq X G``
k ;

0, else.

Using standard scaling arguments, this impliesˆ
BE

rrΠkvss2 ds � |BE|
ÿ

zPNkXBE

` rrΠkvss |BEpzq˘2 “ |BE|
ÿ

zPNkXBE

` rrvss |BEpzq˘2
ď |BE|

ÿ
zPN�XBE

` rrvss |BEpzq˘2
�

ˆ
BE

rrvss2 ds.

Combining this with (3.7) proves the local bound in the case � ă 8.



14 CH. KREUZER AND E.H. GEORGOULIS

For � “ 8, we observe that a bound similar to (3.7) can be obtained with
Lemma 13 instead of Proposition 1. The local bound follows then by arguing as in
the case � ă 8. �

Corollary 18 (Interpolation estimate). For v P V�, k ď � P NY t8u, we have that

ˆ
E

|∇pwv ´ ∇pwΠkv|2 dx`
ˆ
E

h´2
k |v ´ Πkv|2 `

ˆ
BE
h´1
k rrv ´ Πkvss2

À
ˆ
ωkpEq

|∇pwv|2 dx`
ÿ

SPS�,SĂωkpEq

ˆ
S

h´1
k rrvss2 ,

where we set G� :“ G` and h� :“ h`, when � “ 8. The constant depends only on
d, r and the shape regularity of G0.

Proof. The claim follows from Lemma 16(3), together with the stability Lemma 17
and the local Poincaré inequality from Proposition 1, respectively, Lemma 13. �

The next result concerns the convergence of the quasi-interpolation.

Lemma 19. Let v P V8; then,

|||v ´ Πkv|||k Ñ 0 and |||v ´ Πkv|||8 Ñ 0

as k Ñ 8.

Proof. For brevity, set vk :“ Πkv P Vk. Thanks to Lemma 13 and Lemma 16(4)
and (5), we have that

|||v ´ vk|||2k À
ˆ
GkzG``

k

|∇pwv ´ ∇pwvk|2 dx`
ˆ
SkzS``

k

h´1
k |rrv ´ vkss|2 ds

ď
ˆ
G´
k

|∇pwv ´ ∇pwvk|2 dx`
ˆ
G‹
k

|∇pwv ´ ∇pwvk|2 dx

`
ˆ
S´
k

h´1
k |rrv ´ vkss|2 ds`

ˆ
S‹
k

h´1
k |rrv ´ vkss|2 ds

“ I´
k ` I‹

k ` II´
k ` II‹

k .

We first observe that II´
k “ 0 since v, vk P H1pΩ´

k q (note that rrvss “ rrvkss “ 0 even

on the boundary BΩ´
k since Ω´

k Ă Ω´). We conclude from Lemma 17 that

I‹
k ` II‹

k “
ˆ
G‹
k

|∇pwv ´ ∇pwvk|2 dx`
ˆ
S‹
k

h´1
k |rrv ´ vkss|2 ds

À
ÿ

EPG‹
k

´ ˆ
ωkpEq

|∇pwv|2 dx`
ÿ

E1PG`,E1ĂωkpEq

ˆ
BE1

h´1` rrvss2 ds
¯

À
ÿ

EPG‹
k

ˆ
ωkpEq

|∇pwv|2 dx`
ˆ
S`zS``

k

h´1` rrvss2 ds.

The first term on the right-hand side vanishes in the limit k Ñ 8, from Lemma 11.
The second term is the tail of a convergent series, since it is bounded thanks to
|||v|||8 ă 8 and all of its summands are positive. Therefore, I‹

k ` II‹
k Ñ 0 as k Ñ 8.

Thus, it remains to prove that I´
k Ñ 0 as k Ñ 8. To this end, recall that

H1
BΩXBΩ´ pΩ´q is the space of restrictions of H1

0 pΩq-functions to Ω´. Since H2
0 pΩq

is dense in H1
0 pΩq, for ε ą 0, there exists vε P H2

0 pΩq such that }v ´ vε}H1pΩ´q ď
}v ´ vε}H1pΩq ă ε. Combining Lemma 16(3) and (1) with the Bramble-Hilbert
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Lemma (see, e.g., [BS02]), we obtain with standard arguments that
ˆ
G´
k

|∇v ´ ∇vk|2 dx À ε2 `
ˆ
G´
k

|∇vε ´ ∇Πkvε|2 dx

À ε2 `
ˆ
NkpG´

k q
h2k

ÿ
|α|“2

|Dαvε|2 dx

À ε2 ` }hkχΩ´
k

}2L8pΩq
ˆ
Ω

ÿ
|α|“2

|Dαvε|2 dx,

where we have used that }hk}L8pΩpNkpG´
k qqq À }hkχΩ´

k
}L8pΩq, thanks to the local

quasi-uniformity of Gk. Thus, we have }hkχΩ´
k

}L8pΩq Ñ 0 as k Ñ 8 from Lemma 11

and, therefore, we can conclude that limkÑ8 I´
k À ε. This completes the proof of

the first claim, since ε ą 0 is arbitrary.
The second claim follows similarly by replacing Sk by S` and noting that |||Πkv|||k “

|||Πkv|||8, since Πkv is continuous in ΩzΩ`. �

Proof of Lemma 14. The positivity of |||¨|||8 on V8 follows from Lemma 19 together
with }w}BV pΩq ď |||w|||� for all w P V�; see Corollary 3 and Proposition 4.

In order to prove that V8 is complete with respect to |||¨|||8, let 0 ‰ v P V
|||¨|||88 ,

i.e. there exists a sequence tv�u�PN Ă V8, such that
ˇ̌̌̌̌̌
v ´ v�

ˇ̌̌̌̌̌
8 Ñ 0 as � Ñ 8. Note

that v�|E P Pr for all E P G` and thus it follows from the definition of |||¨|||8 that
also v|E P Pr for all E P G`.

For each �,m P N, we define v�m :“ Πmv
� P Vm and since v�m P CpΩzΩ`q

(see Lemma 16(5)), we have that
ˇ̌̌̌̌̌
v�m

ˇ̌̌̌̌̌
�

“ ˇ̌̌̌̌̌
v�m

ˇ̌̌̌̌̌
8 for all � ě m P N. Thanks to

Lemma 19, for each � P N, there exists a monotone sequence tm�u� P N, such thatˇ̌̌̌̌̌
v� ´ v�m�

ˇ̌̌̌̌̌
8 ď 1

� and thusˇ̌̌̌̌̌
v ´ v�m�

ˇ̌̌̌̌̌
m�

ď ˇ̌̌̌̌̌
v ´ v�m�

ˇ̌̌̌̌̌
8 ď ˇ̌̌̌̌̌

v ´ v�
ˇ̌̌̌̌̌

8 ` ˇ̌̌̌̌̌
v� ´ v�m�

ˇ̌̌̌̌̌
8 Ñ 0 as � Ñ 8.

Consequently, we have thatˇ̌̌̌̌̌
v�m�

ˇ̌̌̌̌̌
m�

“ ˇ̌̌̌̌̌
v�m�

ˇ̌̌̌̌̌
8 Ñ |||v|||8 ă 8 as � Ñ 8.

Thanks to Corollary 3 and Proposition 4, we can extract another subsequence of
tv�m�

u�PN which is weakly-˚ converging in BV pΩq. Therefore, v P BV pΩq, and we
have in the distributional sense, that

Dvpφq “
ˆ
Ω

∇pwv ¨ φ dx`
ˆ
S`

rrvss ¨ φ ds @φ P C8
0 pΩqd.

Note that Vk Ă Vj for j ě k and thus wk :“ v�m�
P Vk, k P tm�, . . . ,m�`1 ´ 1u.

Consequently, we have |||v ´ wk|||k ď |||v ´ wk|||8 “ ˇ̌̌̌̌̌
v ´ v�m�

ˇ̌̌̌̌̌
8 Ñ 0 as k Ñ 8.

It remains to verify that v|Ω´ P H1
BΩXBΩ´ pΩ´q, i.e., that v is a restriction of a

function from H1
0 pΩq to Ω´. To this end, we consider the conforming interpolation

Ikwk P Vk X H1
0 pΩq from Proposition 2, which also implies that }∇Ikwk}L2pΩq À

|||wk|||8 ă 8 uniformly in k, i.e., there exists a weak limit ṽ P H1
0 pΩq of a subsequence

of tIkwkukPN. On the other hand, it follows from Lemma 16(5) that rrwkss |BE “ 0
for all E P G`

k (recall that Ωm̀�
Ă Ω`

k for k ě m�). Consequently, the local estimate

in Proposition 2 implies Ikwk “ wk in Ω´ Ă pΩzΩ`
k q. Therefore, we have

}∇v ´ ∇Ikwk}L2pΩ´q “ ››∇v ´ ∇pwwk

››
L2pΩ´q ď |||v ´ wk|||8 Ñ 0

as k Ñ 8 and thus v|Ω´ “ ṽ|Ω´ .
Concluding, we have proved v P V8, which implies Lemma 14. �
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Proof of Corollary 15. The assertion follows from Lemma 14 and the observation
that

|||v|||28 À B8rv, vs and B8rv, ws À |||v|||8 |||w|||8

for all v, w P V8. Indeed, the continuity follows with standard techniques using (3.2)
and the coercivity is a consequence of

|||Πkv|||28 “ |||Πkv|||2k À BkrΠkv, Πkvs “ B8rΠkv, Πkvs

and Lemma 19. �

4. (Almost) best approximation property

In this section we shall prove that the solution u8 P V8 of (3.3) is indeed the limit
of the discontinuous Galerkin solutions produced by ADGM. This is a consequence of
the density of spaces tVkukPN0 in V8 and the (almost) best approximation property
of discontinuous Galerkin solutions; the latter generalises [Gud10].

Lemma 20. Let u8 P V8 be the solution of (3.3) and uk P Vk be the DGFEM
approximation from (2.6) on Gk for some k P N and u8 the unique solution of the
limit problem from Corollary 15. Then, we have

|||u8 ´ uk|||k À |||u8 ´ Πku8|||8 ` xf, uk ´ ΠkukyΩ ´ BkrΠku8, uk ´ Πkuks
|||uk ´ Πku8|||k

.

Proof. Assume that uk ‰ Πku8 P Vk XV8 and set ψ “ uk ´Πku8. Then, we have
from (2.7) that

α |||uk ´ Πku8|||2k ď Bkruk ´ Πku8, ψs “ xf, ψyΩ ´ BkrΠku8, ψs
“ xf, ΠkψyΩ ` xf, ψ ´ ΠkψyΩ ´ BkrΠku8, ψs
“ `

B8ru8, Πkψs ´ BkrΠku8, Πkψs˘
` ` xf, ψ ´ ΠkψyΩ ´ BkrΠku8, ψ ´ Πkψs˘ ” pIq ` pIIq,
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using that Πkψ P Vk X V8 from Lemma 16(7). For pIq, we have, respectively,

pIq “
ˆ
Ω

∇pwu8 ¨ ∇pwΠkψ dx´
ˆ
S`

`tt∇u8uu ¨ rrΠkψss ` θtt∇Πkψuu ¨ rru8ss ˘
ds

`
ˆ
S̊`

`
β ¨ rru8ss rr∇Πkψss ` rr∇u8ssβ ¨ rrΠkψss ˘

ds

`
ˆ
Ω

γ
`
R8prru8ssq ` L8pβ ¨ rru8ssq˘ ¨ `

R8prrΠkψssq ` L8pβ ¨ rrΠkψssq˘
dx

`
ˆ
S`

σ

h`
rru8ss ¨ rrΠkψss ds

´
ˆ
Ω

∇pwΠku8 ¨ ∇pwΠkψ dx`
ˆ
Sk

`tt∇Πku8uu ¨ rrΠkψss ` θtt∇Πkψuu ¨ rrΠku8ss ˘
ds

´
ˆ
S̊`

`
β ¨ rrΠku8ss rr∇Πkψss ` rr∇Πku8ssβ ¨ rrΠkψss ˘

ds

´
ˆ
Ω

γ
`
RkprrΠku8ssq ` Lkpβ ¨ rrΠku8ssq˘ ¨ `

RkprrΠkψssq ` Lkpβ ¨ rrΠkψssq˘
dx

´
ˆ
S`

σ

hk
rrΠku8ss ¨ rrΠkψss ds

“
ˆ
Ω

∇pwpu8 ´ Πku8q ¨ ∇pwΠkψ dx

´
ˆ
S`
k

tt∇pu8 ´ Πku8quu ¨ rrΠkψss ds´ θ

ˆ
S`

tt∇Πkψuu ¨ rru8 ´ Πku8ss ds

`
ˆ
S̊`

`
β ¨ rru8 ´ Πku8ss rr∇Πkψss ` rr∇u8 ´ ∇Πku8ssβ ¨ rrΠkψss ˘

ds

`
ˆ
Ω

γ
`
R8prru8 ´ Πku8ssq ` L8pβ ¨ rru8 ´ Πku8ssq˘

¨ `
R8prrΠkψssq ` L8pβ ¨ rrΠkψssq˘

dx

`
ˆ
S`
k

σ

hk
rru8 ´ Πku8ss ¨ rrΠkψss ds

À |||u8 ´ Πku8|||8 |||Πkψ|||8 “ |||u8 ´ Πku8|||8 |||Πkψ|||k
À |||u8 ´ Πku8|||8 |||uk ´ Πku8|||k ;

here we used that Πku8,Πkψ P Vk X V8, h8 “ hk on S`
k and that Πku8 and

Πkψ are continuous on ΩzΩ`
k , i.e., rrΠku8ss “ rrΠkψss “ 0 on S`zS`

k , which follows

from Lemma 16. Note that this and rrΠku8ss “ rrΠkψss “ 0 on BpΩzΩ`
k q from

Lemma 16 also implies that LkpΠkψq “ L8pΠkψq and LkpΠku8q “ L8pΠku8q
as well as the corresponding relations between Rk and R8; compare with (3.1).
Thus, the above estimate follows from the Cauchy-Schwarz inequality, application
of inverse inequalities in conjunction with the stability of the lifting operators (3.2),
and Lemma 17.

Consequently, triangle inequality and the above imply

|||u8 ´ uk|||k ď |||u8 ´ Πku8|||k ` |||uk ´ Πku8|||k
À |||u8 ´ Πku8|||k ` |||u8 ´ Πku8|||8

` xf, ψ ´ ΠkψyΩ ´ BkrΠku8, ψ ´ Πkψs
|||uk ´ Πku8|||k

.

Thanks to |||u8 ´ Πku8|||k ď |||u8 ´ Πku8|||8, this proves the assertion. �

The properties of the quasi-interpolation (3.4) allow for the consistency term in
Lemma 20 to be bounded by the a posteriori indicators of essentially the elements,
which will experience further refinements.
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Lemma 21. Let u8 P V8 be the solution of (3.3) and uk P Vk be the DGFEM
approximation from (2.6) on Gk for some k P N. Then, we have

xf, uk ´ ΠkukyΩ ´ BkrΠku8, uk ´ Πkuks
|||uk ´ Πku8|||k

À
´ ÿ

EPGkzG3`
k

EkpΠku8, Eq2
¯1{2

,

where G3`
k :“ tE P Gk : NkpEq Ă G``

k u.
Proof. Let vk :“ Πku8 and φ :“ uk ´Πkuk “ uk ´Πku8 ´Πkpuk ´Πku8q. Then,
using integration by parts, we have

xf, φyΩ ´ Bkrvk, φs
“
ˆ
Gk

pf ` Δvkqφ dx´
ˆ
Sk

rr∇vkss ttφuu ds`
ˆ
Sk

θtt∇φuu rrvkss ds

´
ˆ
S̊k

`
β ¨ rrvkss rr∇φss ` rr∇vkssβ ¨ rrφss ˘

ds

´
ˆ
Ω

γ
`
Rkprrvkssq ` Lkpβ ¨ rrvkssq˘ ¨ `

Rkprrφssq ` Lkpβ ¨ rrφssq˘
dx

´ σ

ˆ
Sk

h´1
k rrvkss rrφss ds.

Thanks to properties of Πk (see Lemma 16), we have that rrvkss |S ” 0 for S P SkzS`
k ,

rrvkss |ΩzΩ`
k

” 0, φ|E ” 0 for E P G``
k , and rrφss |S ” 0 for S P S``

k . Therefore, we

have

xf, φyΩ ´ Bkrvk, φs
“
ˆ
GkzG``

k

pf ` Δvkqφ dx´
ˆ
SkzS``

k

rr∇vkss ttφuu ds

` θ

ˆ
S`
k

tt∇φuu rrvkss ds

´
ˆ
S̊`
k

β ¨ rrvkss rr∇φss ds´
ˆ
S̊kzS``

k

rr∇vkssβ ¨ rrφss ds

´
ˆ
Ω

γ
`
Rkprrvkssq ` Lkpβ ¨ rrvkssq˘ ¨ `

Rkprrφssq ` Lkpβ ¨ rrφssq˘
dx

´ σ

ˆ
S`
k zS``

k

h´1
k rrvkss rrφss ds

.(4.1)

The last term on the right-hand side of (4.1) can be estimated using Cauchy-
Schwarz’ inequality; for the first two terms we use the interpolation estimates from
Corollary 18 for φ “ ψ ´ Πkψ with ψ “ uk ´ Πku8 P Vk as to obtain

ˆ
GkzG``

k

pf ` Δvkqφ dx´
ˆ
SkzS``

k

rr∇vkss ttφuu ds

À
«´ˆ

GkzG``
k

h2k|f`Δvk|2 dx
¯1{2`

´ˆ
SkzS``

k

hk rr∇vkss2 ds
¯1{2

ff
|||uk ´ Πku8|||k .

Moreover, from φ|E ” 0, E P G``
k , we have that φ|ωkpSq ” 0 and thus tt∇φuu|S ” 0 for

all S P S3`
k “ SpG3`

k q. Therefore, by standard trace inequalities, inverse estimates
and Corollary 18, we have that
ˆ
S`
k

tt∇φuu rrvkss ds “
ˆ
S`
k zS3`

k

tt∇φuu rrvkss ds À
´ˆ

S`
k zS3`

k

h´1
k rrvkss2 ds

¯1{2 |||φ|||k .
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A similar argument yields

ˆ
S̊`
k

β ¨ rrvkss rr∇φss ds “
ˆ
S̊`
k zS3`

k

β ¨ rrvkss rr∇φss ds

À |β|
´ˆ

S̊`
k zS3`

k

h´1
k rrvkss2 ds

¯1{2 |||φ|||k .

Finally we have with (2.4c) and the local support of the local liftings, that

ˆ
Ω

Rkprrvkssq ¨Rkprrφssq dx “
ˆ
Ω

` ÿ
SPS`

k

RS
k prrvkssq˘ ¨ ` ÿ

SPSkzS``
k

RS
k prrφssq˘

dx

“
ˆ
G`
k zG``

k

Rkprrvkssq ¨Rkprrφssq dx

À ` ˆ
S`
k zS3`

k

h´1
k rrvkss2 ds

¯1{2 |||φ|||k .

Similar bounds hold for the remaining terms in (4.1). Combining the above obser-
vations proves the desired assertion. �

In order to conclude convergence of the sequence of discrete discontinuous Galerkin
approximations from Lemma 21, we need to control the error estimator. To this
end, we shall use Verfürth’s bubble function technique.

Proposition 22. Let u8 be the solution of (3.3). Then, for every E P G´
k and

v P Vk, k P N, we have

ˆ
E

h2k|f ` Δv|2 dx`
ˆ

BEXΩ

hk
““∇pwv

‰‰2
ds

À ››∇pwpu8 ´ vq››2
ωkpEq `

ˆ
tSPS`:SĂωkpEqu

h´1` rru8 ´ vss2 ds

` oscpNkpEq, fq2;

in particular, we also have

ÿ
EPG´

k

ˆ
E

h2k|f ` Δv|2 dx`
ˆ

BEXΩ

hk
““∇pwv

‰‰2
ds

À |||u8 ´ v|||28 `
ÿ

EPG´
k

ÿ
E1PωkpEq

oscpE1, fq2.

Note that since v P Vk Ć V8 in general, the above terms may be equal to infinity.

Proof. The proof follows from standard techniques; compare e.g. [KP03, BN10].
However, in order to keep the presentation self-contained, we provide a sketch of
the proof. For E P G´

k , let φE P H1
0 pEq be Verfürth’s element bubble function with

hdE }∇qφ}2L8pEq À }∇qφ}2E À h´2
E }q}2E for all q P Pr´1pEq.(4.2)

Note that extending φE by zero to the whole domain Ω, we have that φE P V8, since
E Ă Ω´. Let fE P Pr´1pEq an arbitrary polynomial. Observing that pfE `ΔvqφE P
CpΩq and thus does not jump across faces, we have by equivalence of norms on finite
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dimensional spaces and a scaled trace inequality, that

ˆ
E

|fE ` Δv|2 dx

À
ˆ
E

pfE ` ΔvqpfE ` ΔvqφE dx

“ B8ru8 ´ v, pfE ` ΔvqφEs ´
ˆ
E

pf ´ fEqpfE ` ΔvqφE dx

À ››∇pwpu8 ´ vq››
E

}∇pfE ` ΔvqφE}E ´
ˆ
S`

rru8 ´ vss tt∇pfE ` ΔvqφEuu ds
` }f ´ fE}E }pfE ` ΔvqφE}E .

From (4.2) and standard inverse estimates, we conclude thatˇ̌̌̌ˆ
S`

rru8 ´ vss tt∇pfE ` ΔvqφEuu ds
ˇ̌̌̌

ď
ÿ

SPS`,SĂE

ˆ
S

rru8 ´ vss2 ds }∇pfE ` ΔvqφE}L8pEq

À
´ˆ

S`
hd´1` rru8 ´ vss2 ds

¯1{2
h

´1´ d
2

E }fE ` Δv}E

À
´ˆ

S`
h´1` rru8 ´ vss2 ds

¯1{2
h´1
E }fE ` Δv}E ,

since h` ď hE on E. Therefore, we arrive at

ˆ
E

h2k|fE ` Δv|2 dx À ››∇pwpu8 ´ vq››2
E

`
ÿ

SPS`,SĂE

ˆ
S

h´1` rru8 ´ vss2 ds

` h2E }f ´ fE}2E .
(4.3)

Thanks to the definition of G´
k , the same bound applies for all E1 P NkpEq.

We now turn to investigate the jump terms. To this end, we fix one S P S̊k,
S Ă E and let E1 P NkpEq with S “ E X E1. Let φS P H1

0 pωkpSqq be Verfürth’s
face bubble function. Note that extending φS by zero to Ω, we have φS P V8 since
ωkpSq Ă Ω´. For each q P Pr´1pSq, there exists some extension q̃ P Pr´1pωkpSqq
such that

hdE }∇q̃φS}L8pωkpSqq À }q̃φS}2ωkpSq À hE

ˆ
S

|q|2 ds.(4.4)

Noting that rr∇vss P Pr´1pSq, we have, by the equivalence of norms on finite dimen-
sional spaces, that

ˆ
S

rr∇vss2 ds À
ˆ
S

rr∇vss2 φS ds

“ B8ru8 ´ v, Črr∇vssφSs ´
ˆ
ωkpSq

pf ` ΔvqČrr∇vssφS dx

À ››∇pwpu8 ´ vq››
ωkpSq

›››∇Črr∇vssφS
›››
ωkpSq

`
ˆ
S`

rru8 ´ vss tt∇Črr∇vssφSuu ds

` ` }f ` Δv}2E ` }f ` Δv}2E1
˘ 1

2

›››Črr∇vssφS
›››
ωkpSq

.
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Similarly, as for the element residual, we have that
ˆ
S`

rru8 ´ vss tt∇Črr∇vssφSuu ds

À
´ ÿ

S1PS`,S1ĂωkpSq
h´1` rru8 ´ vss2

¯ 1
2

´ˆ
S

hE rr∇vss2 ds
¯ 1

2

,

using (4.4). Again with (4.4), we obtainˆ
S

hE rr∇vss2 ds À ››∇pwpu8 ´ vq››2
ωkpSq `

ÿ
S1PS`,S1ĂωkpSq

ˆ
S

h´1` rru8 ´ vss2 ds

` h2E }f ` Δv}2E ` h2E1 }f ` Δv}2E1 .

Finally applying the bound (4.3) to E,E1 P NkpEq, we have proved the first asser-
tion.

The second assertion follows, then, by summing over all E P G´
k together with

an observation from [MSV08], which we sketch here in order to keep this work
self-contained. Let M :“ maxt#NkpEq : E P G´

k u be the maximal number of

neighbours, then G´
k can be split into M2 ` 1 subsets G´

k,0, . . . ,G´
k,M2 such that for

each j, we have that E1, E P G´
k,j with E ‰ E1 implies that NkpEq X NkpE1q “ H.

Consequently, we have

ÿ
EPG´

k

››∇pwpu8 ´ vq››2
ωkpEq ď

M2ÿ
j“0

ÿ
EPG´

k,j

››∇pwpu8 ´ vq››2
ωkpEq

ď pM2 ` 1q ››∇pwpu8 ´ vq››2
Ω´

k

.

Together with similar estimates for the jump terms and the oscillations the second
assertion follows from the first one. �

Theorem 23. Let u8 the solution of (3.3) and uk P Vk be the DGFEM approxi-
mation from (2.6) on Gk for some k P N. Then,

|||u8 ´ uk|||k Ñ 0 as k Ñ 8.

Proof. Thanks to Lemma 20, Lemma 19 and Lemma 21, we have that

lim
kÑ8 |||u8 ´ uk|||2k À lim

kÑ8 |||u8 ´ vk|||28 `
ÿ

EPGkzG3`
k

Ekpvk, Eq2

“ lim
kÑ8

ÿ
EPGkzG3`

k

Ekpvk, Eq2,

where vk :“ Πku8. Using Lemma 11, we haveˇ̌
Ωz`

Ω´
k Y Ω3`

k

˘ˇ̌ ď ˇ̌
ΩzpΩ´

k Y Ω``
k qˇ̌ ` |Ω``

k zΩ3`
k |

ď ˇ̌
Ω‹

k

ˇ̌ ` |Ω`zΩ3`
k | Ñ 0,

as k Ñ 8. Indeed, for k P N, it follows from Lemma 10 and #G`
k ă 8, that there

exists K “ Kpkq, such that G`
k Ă G3`

K , i.e. |Ω`zΩ3`
K | ď |Ω`zΩ`

k | Ñ 0 as k Ñ 8.

Thanks to monotonicity we conclude that |Ω`zΩ3`
k | Ñ 0 as k Ñ 8. We next show

that this implies ÿ
EPGkzpG´

k YG3`
k q

Ekpvk, Eq2 Ñ 0.

Lemma 19 implies that |||u8 ´ vk|||8 Ñ 0 and, thus, the interior residual and the
gradient jumps part of the estimator vanish due to uniform integrability. Moreover,
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it follows from Proposition 12 thatˆ
SpGkzpG´

k YG3`
k qq

h´1
k rrvkss2 ds À

ˆ
SpGkzG3`

k q
h´1
k rru8ss2 ds` |||u8 ´ vk|||2k

ď
ˆ
SpG`zG3`

k q
h´1` rru8ss2 ds` |||u8 ´ vk|||2k .

The last term on the right-hand side of the above estimate vanishes thanks to
Lemma 19. Again, letting K “ Kpkq, such that G`

k Ă G3`
K , we haveˆ

SpG`zG3`
Kpkqq

h´1` rru8ss2 ds ď
ˆ
SpG`zG`

k q
h´1` rru8ss2 ds Ñ 0, as k Ñ 8.

Thanks to monotonicity, we thus conclude
´
SpG`zG3`

k q h
´1` rru8ss2 ds Ñ 0, as k Ñ 8.

On the remaining elements G´
k , it follows from Proposition 22 thatÿ

EPG´
k

Ekpvk, Eq2 À |||u8 ´ vk|||28 `
ÿ

EPG´
k

oscpNkpEq, fq2.

The first term on the right-hand side vanishes due to Lemma 19. For the second term
we observe that | ŤtωkpEq : E P G´

k u| À |Ω´
k |, depending on the shape regularity of

G0 and, therefore, it vanishes since›››hkχΩ´
k

›››
L8pΩq

Ñ 0 as k Ñ 8,(4.5)

thanks to Lemma 11. �

5. Proof of the main result

We are now in the position to prove that the error estimator vanishes, following
the ideas of [MSV08]. This in turn implies that the sequence of discontinuous
Galerkin approximations produced by ADGM indeed converges to the exact solution
of (2.1).

Lemma 24. We have that

EkpG´
k q Ñ 0, as k Ñ 8.

Proof. Thanks to Proposition 22, we haveÿ
EPG´

k

ˆ
E

h2k|f ` Δuk|2 dx`
ˆ

BEXΩ

hk rr∇ukss2 ds

À |||u8 ´ uk|||28 `
ÿ

EPG´
k

oscpNkpEq, fq2.

The right-hand side vanishes thanks to Theorem 23 and (4.5).
It remains to prove thatˆ

SpG´
k q
h´1
k rrukss2 ds Ñ 0, as k Ñ 8.

By definition, Ω´
k Ă ΩzΩ`

k and, thanks to Lemma 16(5), we have that Πku8 P
CpΩzΩ`

k q. Therefore, we concludeˆ
SpG´

k q
h´1
k rrukss2 ds “

ˆ
SpG´

k q
h´1
k rruk ´ Πku8ss2 ds ď |||uk ´ Πku8|||k Ñ 0

as k Ñ 8; see Lemma 19 and Theorem 23. �

Lemma 25. We have that

lim
kÑ8 EkpG‹

kq “ 0.
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Proof. We conclude from the lower bound (Proposition 6) thatÿ
EPG‹

k

ˆ
E

h2k|f ` Δuk|2 dx`
ˆ

BE
hk rr∇ukss2 ds

À
ÿ

EPG‹
k

}u´ uk}2ωkpEq ` ››∇u´ ∇pwuk
››2
ωkpEq ` oscpNkpEq, fq2

À
ÿ

EPG‹
k

!
}u}2ωkpEq ` }u8 ´ uk}2ωkpEq ` }u8}2ωkpEq

` }∇u}2ωkpEq ` ››∇pwu8 ´ ∇pwuk
››2
ωkpEq ` ››∇pwu8

››2
ωkpEq

` oscpNkpEq, fq2
)
.

This vanishes as k Ñ 8 thanks to Theorem 23 and Lemma 11, together with the
uniform integrability of the terms involving u and u8. Note that

ˇ̌ ŤtωkpEq : E P
G‹
kuˇ̌ À |Ω‹

k|, with the constant depending on the shape regularity of G0.
It remains to prove ˆ

SpG‹
kq
h´1
k rrukss2 ds Ñ 0, as k Ñ 8.

To this end, we observe thatˆ
SpG‹

kq
h´1
k rrukss2 ds “

ˆ
SpG‹

kq
h´1
k rruk ´ Πku8ss2 ds`

ˆ
SpG‹

kq
h´1
k rrΠku8ss2 ds

ď 1

σ̄
|||uk ´ Πku8|||2k `

ˆ
SpG‹

kq
h´1
k rrΠku8ss2 ds.

As in the proof of Lemma 24, we have that the first term vanishes as k Ñ 8.
Thanks to Lemma 10, there exists �pkq ě Kpkq ě k such that G`

k Ă G``
Kpkq and

G`
Kpkq Ă G``

�pkq. Consequently, we have that rrΠ�u8ss |S “ 0 for all S P Gk; see

Lemma 16(5). Therefore, we conclude from Lemma 19 that

σ

ˆ
SpG‹

kq
h´1
k rrΠku8ss2 ds “ σ

ˆ
SpG‹

kq
h´1
k rrΠku8 ´ Π�u8ss2 ds

À |||Πku8 ´ u8|||2k ` |||u8 ´ Π�u8|||2� Ñ 0,

as k Ñ 8. �

Lemma 26. We have

EkpG``
k q Ñ 0 as k Ñ 8.

Proof. Step 1: By definition, elements in G``
k will not be subdivided, i.e. we have

that Mk Ă GkzG``
k ; compare with (2.9). As a consequence of Lemmas 24 and 25,

we conclude from (2.8) for all E P G``
k that

EkpEq ď lim
kÑ8gpEkpMkqq “ lim

kÑ8gpEkpG´
k Y G‹

kqq Ñ 0,(5.1)

as k Ñ 8. We shall reformulate the above element-wise convergence in an integral
framework, in order to conclude EkpG``

k q Ñ 0 as k Ñ 8 via a generalised version of
the dominated convergence theorem. To this end, we shall consider some properties
of the error indicators.

Step 2: Thanks to the definition of G``
k , we have for all E P G``

k , that ωkpEq “
ω�pEq “: ωpEq and NkpEq “ N�pEq “ NpEq for all � ě k. Therefore, we obtain by
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the lower bound, Proposition 6, that

EkpEq2 À |||uk ´ u|||2NpEq ` oscpNpEq, fq2
À |||uk ´ u8|||2NpEq ` }u8}2NpEq ` }u}2H1pωpEqq ` }f}2ωpEq
“: |||uk ´ u8|||2NpEq ` C2

E .

(5.2)

Arguing as in the proof of Proposition 22, we can conclude from the local estimate
that ÿ

EPG``
k

C2
E À |||u8|||28 ` }u}2H1pΩq ` }f}2L2pΩq ă 8(5.3)

independently of k.
Step 3: We shall now reformulate EkpG``

k q in integral form. Note that thanks to

Lemma 10, we have that G` “ Ť
kPN0

G`
k “ Ť

kPN0
G``
k , and also that the sequence

tG``
k ukPN0 is nested. For x P Ω`, let

� “ �pxq :“ mintk P N0 : there exists E P G``
k such that x P Eu.

Then, we define

εkpxq :“ Mkpxq :“ 0 for k ă �,

and

εkpxq :“ 1

|E|E
2
kpEq, Mk :“ 1

|E|
´

|||uk ´ u8|||2NpEq ` C2
E

¯
for k ě �.

Consequently, for any k P N0, we have

EkpG``
k q2 “

ˆ
Ω`

εkpxqdx.

Moreover, thanks to the fact that the sequence tG``
k ukPN0

is nested, we conclude
from (5.1) that

lim
kÑ8 εkpxq “ lim

kÑ8
1

|E|E
2
kpEq “ 0.

It follows from (5.2) and (5.3) that Mk is an integrable majorant for εk.
Step 4: We shall show that the majorants tMkukPN0

converge in L1pΩ`q to

Mpxq :“ 1

|E|C
2
E , for x P E and E P G`.

Then the assertion follows from a generalised majorised convergence theorem; see
[Zei90, Appendix (19a)]. In fact, by the definition of Mk, we have that

}Mk ´M}L1pΩ`q “
ÿ

EPG``
k

}Mk ´M}L1pEq `
ÿ

EPG`zG``
k

}M}L1pEq .

The latter term vanishes since it is the tail of a converging series (compare with (5.3))
and for the former term, we have, thanks to Theorem 23, thatÿ

EPG``
k

}Mk ´M}L1pEq “
ÿ

EPG``
k

|||uk ´ u8|||2NpEq À |||uk ´ u8|||k Ñ 0

as k Ñ 8. �

Proof of Theorem 9. We have

G``
k Y G‹

k Y G´
k “ Gk.

Therefore, the claim follows from Lemmas 24, 25, and 26 together with Proposi-
tion 5. �
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[Kos94] I. Kossaczký, A recursive approach to local mesh refinement in two and three dimen-

sions, J. Comput. Appl. Math. 55 (1994), 275–288.

[KP03] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous

Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41

(2003), no. 6, 2374–2399 (electronic).

[KP07] , Convergence of adaptive discontinuous Galerkin approximations of second-

order elliptic problems, SIAM J. Numer. Anal. 45 (2007), no. 2, 641–665 (electronic).

[KS16] C. Kreuzer and M. Schedensack, Instance optimal Crouzeix-Raviart adaptive finite

element methods for the Poisson and Stokes problems, IMA J. Numer. Anal. 36 (2016),

no. 2, 593–617.
[KS11] C. Kreuzer and K. G. Siebert, Decay rates of adaptive finite elements with Dörfler

marking, Numer. Math. 117 (2011), no. 4, 679–716.

[Mau95] J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflec-
tion, SIAM J. Sci. Comput. 16 (1995), 210–227.

[MNS00] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of

adaptive FEM, SIAM J. Numer. Anal. 38 (2000), 466–488.

[MNS02] , Convergence of adaptive finite element methods, SIAM Review 44 (2002),

631–658.

[MSV08] P. Morin, K. G. Siebert, and A Veeser, A basic convergence result for conforming

adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737.

[NSV09] R. H. Nochetto, K. G. Siebert, and A. Veeser, Theory of adaptive finite element meth-

ods: an introduction, Multiscale, nonlinear and adaptive approximation, Springer,

Berlin, 2009, pp. 409–542.

[RWG99] B. Rivière, M. F. Wheeler, and V. Girault, Improved energy estimates for interior
penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Com-

put. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076

[Sie11] K. G. Siebert, A convergence proof for adaptive finite elements without lower bound,

IMA J. Numer. Anal. 31 (2011), no. 3, 947–970.

[Ste07] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Com-

put. Math. 7 (2007), no. 2, 245–269.

[SZ90] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satis-

fying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493.

[Tra97] C. T. Traxler, An algorithm for adaptive mesh refinement in n dimensions, Computing

59 (1997), 115–137.

[Ver96] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement
techniques, Adv. Numer. Math., John Wiley, Chichester, UK, 1996.

[Ver13] , A posteriori error estimation techniques for finite element methods, Numeri-

cal Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.

[Zei90] E. Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag,

New York, 1990, Nonlinear monotone operators, Translated from the German by the

author and Leo F. Boron.

[ZGHS11] L. Zhu, S. Giani, P. Houston, and D. Schötzau, Energy norm a posteriori error esti-
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