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Jan Prüser1

Forecasting US inflation using Markov 
Dimension Switching

 
Abstract
This study considers Bayesian variable selection in the Phillips curve context by using 
the Bernoulli approach of Korobilis (2013a). The Bernoulli model, however, is unable to 
account for model change over time, which is important if the set of relevant predictors 
changes over time. To tackle this problem, this paper extends the Bernoulli model by 
introducing a novel modeling approach called Markov Dimension Switching (MDS). 
MDS allows the set of predictors to change over time. The MDS and Bernoulli model 
reveal that the unemployment rate, the Treasury bill rate and the number of newly built 
houses are the most important variables in the generalized Phillips curve. Furthermore, 
these three predictors exhibit a sizeable degree of time variation for which the Bernoulli 
approach is not able to account, stressing the importance and benefit of the MDS 
approach. In a forecasting exercise the MDS model compares favorably to the Bernoulli 
model for one quarter and one year ahead inflation. In addition, it turns out that the 
performance of MDS model forecasting is competitive in comparison with other models 
found to be useful in the inflation forecasting literature.
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1. Introduction

The Phillips curve has served as an important tool in macroeconomics for explaining and

forecasting inflation in the U.S. over the past five decades. In the original Phillips curve,

inflation depends on lags of inflation and the unemployment rate. In order to obtain a

better understanding and potentially more precise forecasts, a large literature extends the

Phillips curve with additional explanatory variables. Influential papers include Stock and

Watson (1999), Atkeson and Ohanian (2001), Ang et al. (2007), Stock and Watson (2007)

and Groen et al. (2013). Forecasting inflation is crucial, e.g., for central banks, but at

the same time challenging. One difficulty arises from the problem of which additional

variables to include in the Phillips curve. While the original Phillips curve is likely to

miss some important predictors, an augmented Phillips curve with too many predictors

bears the risk of overfitting the data, leading to imprecise out-of-sample predictions. This

raises the question of how to find the relevant predictors.

This paper addresses this question by following Korobilis (2013a) and considers Bayesian

variable selection in the Phillips curve context. Korobilis (2013a) provides an algorithm

for stochastic variable selection. The key idea is to introduce an indicator for each pre-

dictor, which determines if a variable is included in the model. Each indicator is drawn

from a Bernoulli distribution in a Gibbs sampler scheme. By doing so, it is possible to

calculate variable inclusion probabilities to assess the importance of single predictors in

determining inflation. However, a potential drawback is that the set of indicators is as-

sumed to be constant over time. Thus, the Bernoulli approach is unable to account for

model change over time, which is desirable if the set of relevant predictors changes over

time. The importance of changing predictors over time is documented by, inter alia, Stock

and Watson (2010), who find that most predictors for inflation improve forecast perfor-

mance only in some specific time periods. Therefore, it may be empirically important for

predictors to change over time. Conventional hypothesis testing approaches designed for

constant parameter models are also not capable to allow for this, as they only test whether

a restriction holds for all time periods or never.1 The main contribution of this paper is to

tackle this problem by introducing a novel modeling approach called Markov Dimension

Switching (MDS). The MDS model can be seen as an extension of the Bernoulli model.

In the MDS model each indicator follows a Markov-switching process and thus allows for

changing predictors over time. Hence, this approach allows for the calculation of time-

varying variable inclusion probabilities to shed light on the question which variables are

1Furthermore, the Bayesian methods used in this paper have the advantage that they allow for a formal
treatment of model uncertainty. Using hypothesis tests to select a parsimonious model ignores model
uncertainty, as the selected model is assumed to be the one which generated the data. Treating one
model as if it were the “true” model and ignoring the huge number of other potential models may be
seen as problematic.
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important in determining inflation at different times.

Both the Bernoulli and the MDS approach are used to assess the importance of the

predictors for one quarter and one year inflation. Most important predictors turn out to

be the unemployment rate, the Treasury bill rate and the number of newly built houses.

All three variables show a sizeable degree of time variation, which the Bernoulli approach

can not account for, highlighting the benefit and importance of the proposed MDS ap-

proach of this paper. Furthermore, this paper investigates the forecasting performance

of both approaches. It turns out that the MDS approach exhibits a better forecasting

performance than the Bernoulli approach for one quarter and one year inflation. An ad-

ditional finding is that the forecasting performance of the MDS approach is competitive

in comparison with a range of other plausible approaches.

The remainder of this paper is organized as follows. Section 2 lays out and discusses

the econometric framework. Section 3 presents the empirical findings and the last section

concludes.

2. Markov Dimension Switching

The Phillips curve serves as a starting point and motivation for many models that forecast

inflation. In the original Phillips curve, inflation depends only on the unemployment rate

and lags of inflation. Including additional predictors, as Stock and Watson (1999) among

many others do, leads to the so-called generalized Phillips curve

πt+h = α +

p−1∑
j=0

φjπt−j + xtβ + εt+h, (1)

where xt is a 1×q vector of exogenous predictors, πt+h = log(Pt+h)−log(Pt), Pt denotes

the price level and εt ∼ N(0, σ2
t ). The number of parameters may be large relative to

the number of observations, as in many macroeconomic applications. Estimation of the

Phillips curve in this case may cause imprecise estimation and overfitting (i.e., the model

fits the noise in the data, rather than finding the pattern useful for forecasting). Both,

imprecise estimation and overfitting translate into inaccurate out-of-sample predictions.

Hence, it is important to identify the truly relevant predictors out of a set of many po-

tentially relevant predictors. To do so, this paper follows Korobilis (2013a) and considers

Bayesian variable selection in the Phillips curve context by introducing m = q + p + 1

indicators γ = (γ1, . . . , γm). The model can now be written as

πt+h = (zt � γ)θ + εt+h, (2)
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where zt = (1, πt, . . . , πt−p+1,xt), θ = (α, φ0, . . . , φp−1,β
′)′ and � denotes elementwise

multiplication. Hence, if γi = 1, the ith variable is included in the model and if γi = 0, it is

not. By sampling the indicators from their posterior, all 2m possible variable combinations

can be considered and estimated in a stochastic manner. A potential drawback, however,

is that the indicators are constant over time. Thus, a predictor is either included or

excluded from the model for all periods, which is undesirable if the set of predictors

changes over time. To address this problem, this paper introduces MDS to allow the

indicator variables to change over time. In the MDS each indicator variable γi follows a

first-order Markov-switching process Si,t and therefore γ now has a time index t:

πt+h = (zt � γt)θ + εt+h, (3)

where γt = (S1,t, . . . , Sm,t). Each Markov switching process Si,t can take on the value one

or zero and is characterized by a 2 × 2 transition matrix μi, where μkj,i = Pr(Si,t+1 =

j|Si,t = k), k = 0, 1 and j = 0, 1.2 If Si,t = 1, the ith variable is included in the model at

period t and if Si,t = 0, it is not. Therefore, the means of the posterior draws of Si,t can

be interpreted as a time varying variable inclusion probability in this modeling context.

2.1. Gibbs Sampler

This section describes the Gibbs Sampler, which allows to draw from the posterior distri-

bution of the Bernoulli and the MDS model.

1. Sample θ from

• the following density

θ|γ1:T , z1:T , π1+h:T+h, σ
2
1+h:T+h ∼ N(θ,Ω), (4)

with

θ = Ω

(
V (θ̂OLS)θ̂OLS +

T∑
t=1

(zt � γt)
′σ−2

t+hπt+h

)
,

Ω =

(
V (θ̂OLS) +

T∑
t=1

(zt � γt)
′σ−2

t+h(zt � γt)

)−1

.

For the prior, the OLS estimate of the full model is used. When one variable

is omitted from the model for the full sample period, the parameter of this

2The Markov mixture modeling approach used here allows that the probability of switching depends on
the current state of the stochastic process, which is not the case for i.i.d. mixture models, but may
be useful to model dependence over time. The i.i.d. case is however nested as a special case of the
Markov mixture approach.
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predictor is drawn from the prior. In order to obtain reasonable draws in this

case, the OLS estimate of the model seems to be a useful choice. Then the

mean of the posterior of θ is the weighted average of the OLS estimate of

the full model and the OLS estimate using only a subset of the predictors.

While the OLS estimate of the full model likely has a higher variance as it is

likely to include irrelevant predictors, the OLS estimate based on the sparse

data matrix is more likely to suffer from omitted variables bias. Hence, the

posterior addresses the classic bias variance trade-off in a convenient way by

placing weights on both estimates in a data-driven way.

• or sample θ using the algorithm of Carter and Kohn (1994), conditioning on

γ1:T , π1+h:T+h, z1:T and σ2
1+h:T+h, by writing the model in state space form as

πt+h = (zt � γt)θt + εt+h, (5)

θt = θt−1 + ηt, (6)

where ηt ∼ N(0,W ) and W = 0.

Setting the covariance matrix W to zero leads to constant coefficients (i.e.,

θt = θ).3 However, writing the model in state space form, the Kalman filter

can be applied to estimate θ (see Appendix A for details). In the MDS model,

the Kalman filter has the crucial advantage that it is initialized with some

prior, which receives less weight with each iteration. Thus, the OLS estimate

of the full data matrix z1:T can be used as a prior for the Kalman filter to give

reasonable estimates when one variable is omitted from the model. But, as this

initial condition receives less weight with each iteration, the filter converges to

a potentially more precise estimate based on the sparse data matrix and this

may lead to more accurate out-of-sample predictions.

2. Sample γt:

• If γi is constant, sample it from

γi|γ−i, π1+h:T+h, z1:T ,θ, σ
2
1+h:T+h ∼ Bernoulli

(
l1i

l1i + l0i

)
, (7)

with

l1i = exp

(
−1

2

T∑
t=1

(
πt+h − (zt � γ [γi=1])θ

σ2
t+h

)2
)
p(γi = 1),

3It would be conceptually straightforward to allow for time variation in the coefficients by estimating the
covariance matrix W . However, in the empirical application of this paper, I discovered convergence
issues when estimating the MDS or Bernoulli model with time varying coefficients. Considering MDS
in a framework with time varying parameters, however, would be interesting for future research.
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l0i = exp

(
−1

2

T∑
t=1

(
πt+h − (zt � γ [γi=0])θ

σ2
t+h

)2
)
p(γi = 0),

where p(γi = 1) = 0.5.

• In the MDS model Si,t is sampled for t = 1, . . . , T conditioning on γ−i,1:T ,

π1+h:T+h, z1:T , θ, σ
2
1+h:T+h and the transition probabilities of the ith Markov

process μi, using the algorithm of Chib (1996) (see Appendix B for details).

The transition probabilities of the ith Markov process are drawn from a Beta

distribution

μ11,i|Si,1:T ∼ Beta(u11 + n11, u10 + n10), (8)

μ00,i|Si,1:T ∼ Beta(u00 + n00, u01 + n01), (9)

where njk counts the number of transitions from state j to k and u11 = u00 =

u10 = u01 = 1.

3. Sample σ−2
t :

• In the case of homoscedastic errors where σ2
t = σ2, sample from the density

σ−2|θ, π1+h:T+h, z1:T ,γ1:T ∼ Gamma(a, b−1), (10)

where a = T + a0 and b = b0 +
∑T

t=1(πt+h − (zt � γt)θ)
2.

The hyperparameters a0 and b0 are set to zero.

• In the case of heteroscedastic errors, sample conditioning on θ, π1+h:T+h, z1:T ,

γ1:T , using the algorithm of Kim et al. (1998) by assuming that

log(σt) = log(σt−1) + ξt, (11)

where ξt ∼ N(0, ζ) and ζ is sampled from

ζ−1|σ2
1+h:T+h ∼ Gamma(a, b−1), (12)

where a = T + κ1 and b = κ2 +
∑T+h

t=1+h(log(σt)− log(σt−1))
2.

The hyperparameters κ1 and κ2 are set to 3 and 0.0001.

2.2. Comparison with existing literature

A growing literature works with Bayesian priors in models with many parameters, which

shrink some of the parameters towards zero to ensure parsimony. For example, Bańbura

et al. (2009) find that shrinking parameters leads to improved forecasts in large VAR
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models. There is also an increasing number of papers applying shrinkage by using hierar-

chical priors, such as the lasso prior introduced by Park and Casella (2008). Hierarchical

priors have the advantage that the priors introducing the shrinkage depend on unknown

parameters which are estimated from the data, resulting in data-driven shrinkage. For

example, Korobilis (2013b) shows that hierarchical shrinkage is useful for macroeconomic

forecasting using many predictors. In a Phillips curve context, Belmonte et al. (2014) use

the lasso prior in a time varying parameter (TVP) model. The lasso prior in their model

automatically decides which parameter is time varying, constant or shrunk towards zero.

This approach may be well suited to model structural changes in the Phillips curve while

avoiding overfitting.

Fewer papers deal with model change over time as opposed to parameter change (which

empirically can only poorly approximate model change by allowing coefficients to be es-

timated as being approximately zero). Chan et al. (2012) consider dimension switching

in a TVP framework using the algorithm of Gerlach et al. (2000). However, in their

forecasting study, they only consider models with no predictor, a single predictor or all m

predictors. In other words, γ can only take on m+ 2 values and not 2m as this would be

computationally infeasible for the algorithm they used. To consider all variable combi-

nations, dynamic model averaging (DMA) can be applied, using approximations in form

of so called forgetting factors (sometimes also called discount factors) as proposed by

Raftery et al. (2010). Koop and Korobilis (2012) find that DMA leads to substantial im-

provements in forecasting inflation over simple benchmark models and more sophisticated

approaches. DMA assigns time varying weights over the set of 2m possible TVP models.4

In contrast to DMA or hierarchical shrinkage, the MDS model has the advantage that

through the indicator variables the likelihood contains information about the relevance of

every predictor at each point in time and thereby may lead to more efficient estimates.

In the DMA approach each model is estimated independently and does not use the infor-

mation of the time varying weights. For example, at the beginning of the sample most

weight may be placed on models with only a few predictors and at the end of the sample

more weight may be assigned to model with a large set of predictors. However, each indi-

vidual model is estimated using the same set of predictors for the whole sample ignoring

this information. However, it would be useful to take this information into account when

estimating the parameters and this is exactly what the MDS model does. In the hierarchi-

cal shrinkage approach some parameters are shrunk towards zero (i.e., the corresponding

variables are irrelevant), but this information is only contained in the prior and not in the

likelihood function. Furthermore, this approach cannot account for model change over

time, as it shrinks the parameters towards zero for all time periods or never.

4In the empirical application, only the intercept and the first lag are always included.
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Moreover, in contrast to DMA, the MDS model does not need approximations. It can

easily be estimated using Gibbs sampling and thereby take full parameter uncertainty into

account. Another potential drawback is that in the DMA approach all model combinations

have to be estimated in a deterministic fashion, while MDS uses a stochastic search

algorithm. The stochastic search is still feasible when the model space is too large to

be assessed in a deterministic manner by visiting only the most probable models in a

stochastic manner. Despite the potential advantages of MDS, the assumption of constant

parameters may appear restrictive. However, this assumption is less restrictive than it

seems, as the time varying inclusion probabilities introduce a time varying data based

shrinkage on the coefficients. Therefore, MDS addresses overfitting concerns and allows

for model change over time.

3. Forecasting Inflation

3.1. Data

This study forecasts core inflation as measured by the Personal Consumption Expenditure

(PCE) deflator for 1978Q2 through 2016Q4. The period from 1992Q1 to 2016Q4 is used to

evaluate the out-of-sample forecast performance. A wide range of variables is considered

as potential predictors, reflecting the major theoretical explanations of inflation as well

as variables which have been found to be useful in forecasting inflation in other studies.

The following predictors are used:

• DJIA: the percentage change in the Dow Jones Industrial Average.

• EMPLOY: the percentage change in employment.

• HSTARTS: the log of housing starts.

• INFEXP: University of Michigan survey of inflation expectations.

• MONEY: the percentage change in the money supply (M1).

• OIL: the percentage change of Spot Crude Oil Price: WTI

• PMI: the change in the Institute of Supply Management (Manufacturing): Purchas-

ing Managers Composite Index.

• CONS: the percentage change in real personal consumption expenditures.

• GDP: the percentage change in real GDP.

• INV: the percentage change in Real Gross Private Domestic Investment (Residen-

tial)
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• SPREAD: the spread between the ten year and three month Treasury bill rates.

• TBILL: three month Treasury bill (secondary market) rate.

• UNEMP: unemployment rate.

The variables are obtained from the “Real-Time Data Set for Macroeconomists” database

of the Philadelphia Federal Reserve Bank and from the FRED database of the Federal

Reserve Bank of St. Louis. All predictors are real time quarterly data so that all forecasts

are made using versions of the variables available at the respective time. Furthermore, all

data are seasonally adjusted if necessary. If not stated otherwise, all models considered

in the next section include four lags of quarterly inflation as additional predictors. This

is consistent with quarterly data.

3.2. Out-of-sample Results

In the forecasting study different models are compared. In a first step, MDS and Bernoulli

models are considered in which the first lag of inflation and the intercept are always in-

cluded and all other variables are allowed to be omitted from the model. In order to

assess whether the MDS or the Bernoulli approach is useful to avoid overfitting, their

forecasting performance is compared with an AR(1) model with intercept and a multiple

regression model containing all variables. All these models are applied with a constant

and a stochastic variance specification and the MDS model is estimated using the condi-

tional posterior of a regression model and using the Kalman filter for the model in state

space form, as described in the Gibbs Sampler.

In a second step the forecasting performance of the MDS model is compared with dif-

ferent modeling approaches which have been found useful to forecast inflation in previous

studies, namely DMA proposed by Koop and Korobilis (2012), hierarchical shrinkage in

TVP-models proposed by Belmonte et al. (2014) and the unobserved components model

with stochastic volatility (UC-SV) proposed by Stock and Watson (2007). For DMA,

three forgetting factors have to be set by the researcher. The first controls the amount of

time variation in the coefficients, the second the amount of time variation of the volatility

and the third controls the amount of time variation of the model probabilities (see Koop

and Korobilis (2012) for details). Setting these forgetting factors to one leads to the spe-

cial case of constant coefficients, constant variance and a constant model probabilities.

Values close to one are typically used in the literature because of overfitting concerns. In

this paper, two cases are considered with all three forgetting factors set either to 0.95 or

to 0.99. Moreover, dynamic model selection (DMS) is considered next to DMA in the

forecasting comparison. In the TVP-model with hierarchical shrinkage the specification

of the hierarchical gamma prior is crucial, see Belmonte et al. (2014) for details. In the
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application the shape and scale parameter of the inverse gamma prior is set to 0.1 leading

to a relatively non-informative prior. As a special case of this model, the lasso prior by

Park and Casella (2008) in a regression model with constant coefficients is also considered

using the same hierarchical inverse gamma prior. Furthermore, the last two models are

estimated using the same two specifications for the variance as for the MDS models. Fi-

nally, for the UC-SV model the same stochastic variance specification for the two system

variances of the state space model is used as for all other models (see Stock and Watson

(2007) for details).5

In order to evaluate the forecast performance, the root mean squared forecast error

(RMSFE) and the mean absolute forecast error (MAFE) as standard forecast metrics are

used. However, these only evaluate the point forecasts and ignore the rest of the predictive

distribution. This is the reason why the predictive likelihood may be preferable to evalu-

ate the forecast performance. The predictive likelihood is the predictive density for πt+h

(given data through time t) evaluated at the actual outcome and as a forecast metric has

the advantage of evaluating the forecasting performance of the entire predictive density.

Furthermore, the predictive likelihood can also be used for model selection. Therefore,

the mean of the log predictive likelihood is used as an additional forecast metric. For a

motivation and detailed description of the predictive likelihood see Geweke and Amisano

(2010).

Table 1 presents results for the one quarter and one year ahead forecasting performance.

Overall, it turns out that the MDS models forecast quite well. For the one quarter ahead

forecasts the full model including all predictors forecasts quite poorly, overfitting the data.

The variable selection in the Bernoulli model seems to be useful in avoiding overfitting as

its forecasting performance in terms of point forecasts is very similar to the parsimonious

AR(1) model and even delivers a slightly higher predictive likelihood. Further forecasting

improvements can be achieved by considering dynamic variable selection in the form of

MDS. The MDS models forecast better than the Bernoulli models, both in terms of point

forecasts and in terms of the predictive likelihood as a forecasting metric. Only the DMA

and DMS approach show a similar or better forecasting performance depending on the

forecasting metric, all other models do worse. Especially the UC-SV yields poor forecasts.

Moreover, hierarchical shrinkage in TVP and constant coefficient regression produce less

precise forecasts than the Bernoulli or MDS models. The specification of the variance

turns out to be less important. An exception is the TVP regression model, which fore-

casts poorly with a constant variance specification, as the time varying coefficients falsely

fit the time varying volatility rather than finding a pattern useful for forecasting in this

case.

5Note that Stock and Watson (2007) do not estimate the system variances but rather set them to 0.2.
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Table 1: Forecasting performance for one quarter and one year inflation

h = 1 h = 4
Model Variance RMSFE MAFE PL RMSFE MAFE PL
MDS constant 0.62 0.41 3.67 2.48 1.61 2.38
MDS stochastic 0.62 0.41 3.65 2.39 1.63 2.57
MDS (Kalman) constant 0.62 0.41 3.78 1.33 0.84 3.08
MDS (Kalman) stochastic 0.61 0.41 3.74 1.34 0.88 3.00
Bernoulli constant 0.65 0.45 3.61 2.22 1.63 2.08
Bernoulli stochastic 0.66 0.45 3.60 2.23 1.63 2.08
AR(1) constant 0.64 0.45 3.44 2.16 1.55 2.33
AR(1) stochastic 0.63 0.45 3.10 2.15 1.55 2.28
Full model constant 0.66 0.47 3.24 2.22 1.65 2.05
Full model stochastic 0.67 0.47 3.19 2.22 1.65 2.06
LASSO constant 0.66 0.46 3.48 2.22 1.64 2.19
LASSO stochastic 0.65 0.46 3.49 2.22 1.62 2.28
TVP-shrink constant 1.41 1.00 2.29 3.58 2.32 2.08
TVP-shrink stochastic 0.66 0.48 3.32 2.43 1.67 2.45
UC-SV stochastic 2.41 1.92 -1.96 3.51 2.59 -1.94
DMA (0.95) stochastic 0.58 0.40 3.61 2.22 1.49 2.29
DMA (0.99) stochastic 0.58 0.39 3.60 2.22 1.52 2.24
DMS (0.95) stochastic 0.58 0.42 3.73 2.23 1.58 1.80
DMS (0.99) stochastic 0.58 0.39 3.60 2.22 1.54 2.25

The table shows the RMSFE and MAFE in percentage points and the mean log predictive
likelihood (PL).

While the estimation method for the MDS models was not important for the one quar-

ter ahead forecasts, it turns out to be very important for the one year ahead forecasts.

Estimating the model using the Kalman filter leads to huge forecasting improvements.

This finding indicates the benefit of putting more weight on the potentially more efficient

estimate based on the sparse data matrix. All other models have difficulties beating the

simple AR(1) model for one year ahead forecasts. Only the DMA and DMS approach

are competitive. However, the MDS model using the Kalman filter is the clear winner in

terms of RMSFE, MAFE and mean predictive likelihood for one year ahead forecasts.

3.3. Full sample results

The calculation of variable inclusion probabilities is interesting from an economic per-

spective, but may also provide an explanation why MDS models provide better inflation

forecasts than the Bernoulli models. Figures C.1 and C.2 display the inclusion probabil-

ities of the MDS model estimated using the conditional posterior of a regression model,

the MDS model estimated using the Kalman filter and the Bernoulli model for the full

sample. The results are shown with the stochastic variance specification, but the con-

stant variance specification gives very similar results, as it was of minor relevance for the
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forecasting performance. Overall, the Bernoulli approach assigns higher inclusion prob-

abilities to the variables than the MDS models. This may be one reason why the MDS

models deliver better forecasts. Another reason may be that the inclusion probabilities

show a sizeable degree of time variation, for which the Bernoulli approach cannot account.

This demonstrates the usefulness of the MDS model over the Bernoulli model.

In many cases the Bernoulli model and the MDS model deliver similar results. In

some cases the MDS model even assigns a roughly constant inclusion probability to a

variable. In other cases the MDS model also assigns a high probability to one variable,

but the probability changes over time. For one quarter inflation HSTARTS, UNEMP and

TBILL turn out to be important in all approaches. However, for INEXP, OIL and CONS

the different approaches provide conflicting results. For one year inflation HSTARTS,

UNEMP and TBILL turn out to be important as well but now show a greater degree

of time variation. Again, the different approaches come to conflicting results for INEXP

and CONS, while they now agree for OIL. The other variables are associated with a high

degree of uncertainty as their inclusion probability is often close to 50%.

4. Conclusion

This study uses the generalized Phillips curve to forecast inflation. While the original

Phillips curve is likely to miss some important predictors, a generalized Phillips curve

which uses too many predictors may lead to overfitting the data and to imprecise out-

of-sample predictions. Thus, this paper aims to assess which variables are important in

determining inflation by using the Bernoulli model. The Bernoulli model, however, is

unable to account for model change over time. In order to be able to account for the

possibility that the set of predictors changes over time, this paper introduces the Markov

Dimension Switching (MDS) approach. In the MDS approach the set of predictors is

allowed to change over time. The empirical application shows that the most important

variables in the generalized Phillips curve are the unemployment rate, the Treasury bill

rate and the number of newly built houses. Furthermore, these three predictors show a

sizeable degree of time variation for which the Bernoulli approach is not able to account,

highlighting the importance and benefit of the MDS approach. This is also confirmed

in a forecasting exercise, where the MDS model delivers more precise forecasts than the

Bernoulli model for one quarter and one year ahead inflation. In addition, the paper

demonstrates that the forecasting performance of the MDS model is competitive in com-

parison with a range of other plausible alternatives. Taken together, the paper presents

a battery of theoretical and empirical arguments for the potential benefits of the MDS

approach.
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Bańbura, M., Goammpme, D., and Reichlin, L. (2009). Large Bayesian Vector Auto

Regressions. Journal of Applied Econometrics, 25(1):71–92.

Belmonte, M., Koop, G., and Korobilis, D. (2014). Hierachical Shrinkage in Time-Varying

Parameter Models. Journal of Forecasting, 33(1):80–94.

Carter, C. K. and Kohn, R. (1994). On Gibbs Sampling for State Space Models.

Biometrika, 81(3):541–553.

Chan, J. C., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2012). Time Varying

Dimension Models. Journal of Business & Economic Statistics, 30(3):358–367.

Chib, S. (1996). Calculating Posterior Distributions and Modal Estimates in Markov

Mixture Models. Journal of Econometrics, 75(1):79–97.

Gerlach, R., Carter, C., and Kohn, R. (2000). Efficient Bayesian Inference in Dynamic

Mixture Models. Journal of American Statisitcal Association, 95(451):819–828.

Geweke, J. and Amisano, G. (2010). Hierachical Markov Normal Mixture Models with

Application to Financal Asset Returns. Journal of Applied Econometrics, 26(1):1–29.

Groen, J., Paap, R., and Ravazzolo, F. (2013). Real-Time Inflation Forecasting in a

Changing World. Journal of Business & Economic Statistics, 31(1):29–44.

Hamilton, J. (1989). A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle. Econometrica, 57(2):357–384.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic Volatility: Likelihood Inference

and Comparison with ARCH Models. The Review of Economic Studies, 65(3):361–393.

Koop, G. and Korobilis, D. (2012). Forecasting Inflation Using Dynamic Model Averaging.

International Economic Review, 53(3):867–886.

Korobilis, D. (2013a). VAR Forecasting Using Bayesian Variable Selection. Journal of

Applied Econometrics, 28(2):204–230.

Korobilis, D. (2013b). Hierachical Shrinkage Prior for Dynamic Regressions with Many

Predictors. International Journal of Forecasting, 29(1):43–59.

15



Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of American Statisitcal

Association, 103(482):681–686.
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Appendix A. Gibbs sampling in state space models

Given the model in state space form in (5) and (6) a standard Kalman filter delivers

θt|t−1 = θt−1|t−1

P t|t−1 = P t−1|t−1 +W

Kt = P t|t−1(zt � γt)
′[(zt � γt)P t|t−1(zt � γt)

′ + σ2
t+h]

−1

θt|t = θt|t−1 +Kt[πt+h − (zt � γt)θt|t−1]

P t|t = P t|t−1 −Kt(zt � γt)P t|t−1.

The Kalman Filter is initialized with θ0|0 = θ̂OLS and P 0|0 = V (θ̂OLS). Given W = 0

the algorithm of Carter and Kohn (1994) corresponds to draw θ from a normal distribution

with mean θT |T and variance P T |T .

Appendix B. Gibbs sampling in Markov switching models

This paper considers Markov switching for each variable. Each Markov switching process

St can take on the value one or zero and is characterized by a 2 × 2 transition matrix

μ where μkj = Pr(St+1 = j|St = k), k = 0, 1 and j = 0, 1.6 In order to draw St for

t = 1, . . . , T first the Hamilton filter, proposed by Hamilton (1989), is used followed by

the simulation smoother of Chib (1996):

1. Initialize the Hamilton filter using steady state probabilities:

Pr(S0 = 0) =
1− μ11

2− μ11 − μ00

,

Pr(S0 = 1) =
1− μ00

2− μ11 − μ00

.

2. Given Pr(St−1 = k|ψt−1), where ψt−1 denotes the information set at time point t−1,

calculate Pr(St = j|ψt−1) as

Pr(St = j|ψt−1) =
1∑

k=0

μkjPr(St−1 = k|ψt−1).

6For a simplified notation the index i is omitted and the general case of a two state Markov process is
considered.
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3. Given ψt update the probabilities as

Pr(St = j|ψt) =
f(yt|St = j, ψt−1)Pr(St−1 = j|ψt−1)∑1
j=0 f(yt|St = j, ψt−1)Pr(St−1 = j|ψt−1)

,

where f(yt|St = j, ψt−1) denotes the likelihood function of the dependent variable.

4. Sample ST using Pr(St = T |ψT ).

5. Sample ST−1, . . . , S1 sequentially using

Pr(St = 1|St+1, ψt) =
Pr(St+1|St = 1)Pr(St = 1|ψt)∑1
j=0 Pr(St+1|St = j)Pr(St = j|ψt)

,

where Pr(St+1|St = j) denotes the transition probability and Pr(St = j|ψt) is saved

from step 3.
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Appendix C. Figures

1980 1990 2000 2010
0

0.5

1
DJIA

1980 1990 2000 2010
0

0.5

1
EMPLOY

1980 1990 2000 2010
0

0.5

1
HSTARTS

1980 1990 2000 2010
0

0.5

1
INFEXP

1980 1990 2000 2010
0

0.5

1
MONEY

1980 1990 2000 2010
0

0.5

1
OIL

1980 1990 2000 2010
0

0.5

1
PMI

1980 1990 2000 2010
0

0.5

1
CONS

1980 1990 2000 2010
0

0.5

1
GDP

1980 1990 2000 2010
0

0.5

1
INV

1980 1990 2000 2010
0

0.5

1
SPREAD

1980 1990 2000 2010
0

0.5

1
TBILL

1980 1990 2000 2010
0

0.5

1
UNEMP

Markov

Bernoulli

Markov Kalman

Figure C.1: Variable inclusion probabilities for one quarter inflation.
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Figure C.2: Variable inclusion probabilities for one year inflation.
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