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Abstract

The Maschler—Perles Solution is the unique bargaining solution
which is superadditive and satisfies the usual covariance proper-
ties. We provide two proofs for supperadditivity that do not rely
on the standard traveling time.

*The author is indebted to Diethard Pallaschke, Karlsruhe, for helpful discussions es-
sential in the genesis of this paper. This paper reflects initial results of a joint project
“Convex Geometry and Cooperative Games” between IMW, University of Bielefeld, and
the Institute of Mathematical Economics, University of Karlsruhe.
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1 The MASCHLER-PERLES Solution

The MASCHLER—PERLES bargaining solution (MASCHLER—PERLES [2|, [3],
see also [5] for a textbook presentation) is a mapping defined on 2—-dimensional
bargaining problems respecting anonymity, Pareto efficiency, and affine trans-
formations of utility. Moreover, this mapping is superadditive by which prop-
erty it is uniquely characterized.

The solution is based on the observation that every polyhedral bargaining
solution in R? is an (algebraic) sum of “elementary” bargaining problems that
are generated by a line segment (thus reflect constant transfer of utility).

By continuity with respect to the Hausdorff metric the solution may be trans-
ferred to bargaining problems with a smooth Pareto curve.

More precisely let @ = (a1, a3) > 0 € R". We introduce the unit vectors €’
as well as the vectors a’ := a;€' (i € I) and associate with a the triangle
[1* which is given by

(1.1) I* := convH ({0, a',a? }) :
The Pareto curve of this triangle is the line segment A% which is given by

(1.2) A®* := convH ({a',a’}).

A pair (0, U) with a compact, convex, and comprehensive subset ) # U C R
is interpreted as a bargaining problem where O is the status quo point
and U the feasible set. We can omit reference to the status quo point as all
concepts are covariant with “affine transformations of utility”. A bargaining
problem is polyhedral if the Pareto surface consists of line segments only
and this is equivalent to a feasible set given by

(1.3) m= > m"

keK

with a family of positive vectors
k ._
(a( ))keK , K = {1,...,K}

As it is sufficient to establish matters on a dense subset with respect to the
Hausdorff topology, we can restrict ourselves to generating vectors a*) which
have dyadic coordinates.
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A triangle TI® my be represented as (“homothetic”) sum of two of its copies
shrinked by suitable factor. In particular, we have

1o, 1 s
M = -I1°+ 1% = I13% +11
20 Ty "

M=

a-
By this operation the area V(a) := aja, = 1 area (I11%) is divided by 4, i.e.,

1
V(2a) = 4V(a).
Therefore, we may assume that all triangles involved in a representation (1.3)
have equal volume. The bargaining problems having this property again form
a dense subset of the set of all bargaining problems. Similarly, whenever we
deal with the sum of two bargaining problems, we may assume that the
summands as well as the sum are dyadic w.r. to the same dyadic basis.

Definition 1.1. We call a bargaining problem standard dyadic if the fea-
sible set is a polyhedron represented as in (1.3) with all vectors having dyadic
coordinates and generating equal volume.

It is frequently useful to assume that the enumeration of the triangles is such
(k)
that the tangents (i.e., the quotients a%—k)) are deacreasing with the index k.
a

The Maschler—Perles solution for a standard dyadic bargaining problem is
then defined inductively as follows: For K = 1 it is the midpoint of the line
segment (the Pareto curve). For K = 2 (and assuming that the two triangles
are not homothetic) it is the unique vertex of II = II" + 11®). For K > 3
it is defined by

p(T) = u(Z H“(’“))

keK

— M (H(l) + H(K)) + ) Z Ha(k)
keK —{1,K}

The last formula in fact implies uniquenes of the solution on standard dyadic
bargaining problems. For, every superadditive solution p is necessarily ad-
ditive whenever the solutions of the two summands admit of a joint normal.
In our enumeration, the first polyhedron II(Y) 4 T1(%) admits of a joint normal
with every Pareto efficient point of the second polyhedron.



* SECTION 2: SUPERADDITIVITY % 4

2 Superadditivity

The recursive definition of the Maschler—Perles solution shows uniqueness at
once. The fact that the solution is superadditive is proved by MASCHLER—
PERLES [2|, [3] using the concept of the “traveling time”. We wish to provide
two simple proofs that do not hinge on this concept.

Theorem 2.1 ( see [2], [3] ). Let IT be a dyadic polyhedron such that

(2.1) m= >

keK

holds true. Let
(2.2) IT =T+
where
(2.3) T=>Ym", v=>Ym"

kel ked
Then
(2.4 () > () + (D).

The first proof hinges on induction, thus it is close to the definition of the
solution as discussed in SECTION 1.

Proof: If II is the sum of two polyhedra (w.l.g. not homothetic) with equal
volume, then p(IT) is the unique vertex on the Pareto surface of IT while
p(T) + (V) is a non—Pareto efficient point on the line connectiong 0 and

p(I1).

In order to perform the induction step, assume that

(2.5) m="+0 Y=>mo" v=>mn"
kel ked

holds true.

15*STEP : Assume that the indices 1 and K are jointly contained in one of
the above sets, say {1, K} C I. Then, as I[I(V) 4- II'’¥) admits of joint normals
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at w(IIM + TIF)) with all other polyhedra involved, we have
(2.6)

pny = (MO Y
keK—{1,K}

_ M(H(1)+H(K)) iy Z e®
keK—{1,K}

(by Definition, see (1.4) )

keI—{1,K} ked

Vv

(by induction hypothesis)

= (Z H“(k)) + 1 (Z H““”) .
kel ked

2°dSTEP : Suppose now, that we have 1 € I and K € J. Let L denote the
largest index in I, i.e., the one wich induces the largest slope (in absolute
value) of a line segment involved in Y. Then we obtain

p = (0@ 3 e Y e
keI—{1,L} ked

" (H(l) + H(L) + Z Ha(k)) + m Z Ha(k)

ked kel—{1,L}

(by the 1**STEP as{1,K} C J + {1,L})

u (H(I) 4 H(L)) y (Z Ha(k)) tu Z 7™

ked keI—{1,L}

v

(2.7)

v

(by induction hypothesis)

— (Z H“(k)) +p OO+ ST e

ked keI—{1,L}
(by Definition applied to T, see (1.4) )
= p{T}+p{¥},
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q.e.d.
The second proof refers to the construction of the solution.

Proof: The enumeration is such that the tangent slope decreases with the

index k. Since the products agk)agk) are all equal, it follows that the enumer-

ation satisfies

(2.8) o) 2 d)” >
' oV < o2 < o)

W.lo.g we may assume that K is even (otherwise split every polyhedron
homothetically in two). Then we know that

K
2 K
(2:9) p(Il) = o’ Y a ],
k=1 k=%+41

that is, p(IT) collects the % largest vectors with respect to each coordinate.

Now with respect to T we may as well assume that |I| is even. Thus, there
is a decomposition I = Iy + I, with |I;| = |I,| such that

(2.10) p(Y) = (Z o, > aé’“’> :
keI, kel

The same holds true concerning ¥ with respect to a decomposition J = J;+
Joy. Clearly, |I1 + Jq| = |Is+ Jo| = % and hence

211)  py (V) + pq (0) = al? + alt) = alt) < alk)
1 1 1 1 1 1

kel ked, keli+J, k=1

as the last sum collects the largest & coordinates (see (2.9)),

q.e.d.
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