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Abstract

A Cephoid is a Minkowski sum of finitely many prisms in R".
We discuss the concept of duality for Cephoids. Also, we show
that the reference number uniquely defines a face. Based on these
results, we exhibit two graphs on the outer surface of a cephoid.
The first one corresponds to a maximal face and its reference
system. The second graph describes the generalized tentacles.
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1 Introduction

A cephoid is a sum of prisms. Given a vector a = (ay,...,a,) > 0 € R",
we write e’ for the i unit vector and @' := ae’ (i € I :={1,...,n}).
We call TI* := convH ({0,a',...,a"}) a prism. The (outward) surface is
the simpler A® := convH ({a',...,a"}); its subsimplices are denoted by
A% := convH((a™);cs) for 0 # J C I.

Thus, if a* = (a®)K | = (a®™)iex is a family of positive vectors, then
the algebraic or Minkowski sum

K

(1.1) =0 .= Zna(’” _. ZH(k)

k=1 keEK

IT is called a cephoid. Cephoids have been introduced in [3], see also [5],[4].
Throughout this paper we assume that a cephoid is nondegenerate, see 3|
for the details.

79

The outer surface (“Pareto surface”“cephoidal surface” ) of a cephoid II is
denoted by OII. In order to describe the maximal faces of 011, it is appropriate
to recall the “Coincidence Theorem” ([3|). It states the following. Given some
maximal face F of OII, one can construct a simplex as the convex hull (or
“maximum”) of suitably “adjusted” (i.e. by taking positive multiples) subfaces

k
\/ CZAEI()’“)'

keK

CZA.(IIC(),C) written

The sets J*®) are called the reference sets, the collection J = (J(k))
keK

is the reference system of F. The reference system defines F' uniquely,
the adjustment coefficients cj are determined uniquely up to a positive
multiple. The set

L := {l e I|lappears in at least two sets J*)}

is called the adjustment set. It serves to determine the normal of F' as
follows.We write L*®) = LN J® and

(1.2) L := {(k,l)‘leL, J(k)al} - {(k,l)‘le[,(k)}

and obtain the linear adjustment system which is the homogeneous linear
system of equations in variables (¢, A;), ((k,l) € L), given by

(1.3) ca™ =N ((k,1) € L).

As has been shown in [3], this system (depending on F') has a unique solu-
tion (up to a positive constant) (c¥, A}), the first ingredients of which yield
the adjustment coefficients. Moreover, the normal n* of F is obtained by
computing

* oL * (k)
(1.4) aj = maxca (tel)
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and

1 1
(1.5) nt = <__>
aq a

Finally, note that the linear functional & — n*x attains its maximum relative
to I1(F) = 178 exactly on Aff()k). “Adjustment” means that the maximal value

of this functional relative to cfI1*) (which is attained exactly on czA.(]k()k))

equals some common value t* for all £ € K — which is why n* is indeed the

normal to
(k)
\/ A G-
keK

Within this paper we start out by introducing a notion of duality of cephoids.
Based on this we exhibit the bijection between reference vectors and maximal
faces. Then we continue to explore the structure of faces as well the one of
cephoidal surfaces.
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2  Duality

As we have seen, a cephoid is provided by a family of positive vectors or,
equivalently, by a positive matrix, the rows of which represent the various
prisms. The dual cephoid, very simply, is provided by the transposed matrix.
More precisely, we supply the following definition.

Definition 2.1. Let a® = (a,(cke)K) be a family of positive vectors and I1 =

" =3,k 112" be the cephoid generated. Put d,(j) = agk)(i €l, ke K).
We call the family

(2.1) (@) e
the dual famaily and the cephoid
(2.2) n=n=>%m"

the dual cephozd.

More detailed, (H, ﬁ) constitutes a dual pair. Yet, it is convenient to speak of
the “primal” and “dual” cephoid despite the fact that each is “the dual” of the
other one. If the “primal” family a® is regarded as a matrix , then the “dual”
family is represented by the transposed matrix (d,(z))z-e 1kek- Throughout this
presentation we assume nondegeneracy for the primal and dual cephoid
simultaneously.

Definition 2.2. Let F' be a mazimal face of Il and let § = <J(k)> be
keK
the reference system. Define, for i € I

(2.3) JV = {keK‘ieJ(’“)}.
Then we call
N O]
(2'4) 3 o (J )ieI
the dual reference system.

Clearly we have, for any k € K

(2.5) J® = {ieI‘keJ(i)},

so (d,d) again constitute a dual pair. In fact, we may introduce the set
(2.6) T = {(k,i)|ie J®Yy={(,k)| ke Ty

which yields both families simultaneously as cuts in coordinate directions.
As a consequence, we have

(2.7) n—[—K—l:Z|J(k)|:|J|:Z|j(1)| .

keK el
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Definition 2.3.
L = {k € K | k is in at least two different j(i)}

(2.8) = {k e K |J® contains at least two different indices z}

- {k e K ||J®| > 2}
is the dual adjustment set. The analogous property of the primal adjust-
ment set reads now
L = {ieI‘iis in at least two of the J(k)}
(2.9) »
_ {ieI‘|J(’)| 22}.
Recalling the notation
(2.10) L = {(k,l) ‘z erL, J® 5 z} - {(k,l) ‘z e L<k>} ,
we obtain the dual version
L : { ‘SGL J } = {(i,s)‘sei(i)}

(walies] 39]22)

(2.11)

Now we are in the position to formulate

Theorem 2.4. Let a® and its dual be in general position. Let F be a maximal
face of 11 with reference system J. Let

(€ A7) = (& A @kver
be a solution of the linear adjustment system corresponding to F. Then
(2.12) F o= Y AU
icl

is a mazimal face of II with adjustment set L and normal c*.

Proof:

Let n* denote the normal of F'; then we know that the function x — n*x
attains its maximal value — say t, — relative to the simplex A®) exactly on
the subsimplex Af]k()k). Moreover, the joint maximal value t* is attained on
every czA.(]k()k) (with a suitable choice of ¢}, say ¢} = i—k)

Consequently, we have

n*ca®)i = ((k,Z) S ‘]])
g { ) ¢ J)
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which can as well be written

(2.13) nta®er {: t ((k,?)GJI%

Equivalently we have

_(i = t* ((k,1
CZa,(C)n: { - (( )

which is also

. — * F(2)
(2.14) cnrgir | = P (k€ {(i))
<t (k¢d7) .
Now, equation (2.14) shows that, for each i € I, the function y — c*y
(4)

N . . (i
attains its maximal value t* relative to njA
is normal to

(2.15) A= \/ma?.

el

exactly on n;Zf;L) Thus, c*

2ndSTEP : Since J¥) £ () for all k € K, there is, for any k € K, some i € T
such that i € J%® holds true. Therefore

UTY = Ulrek|ica®} -k
il i€l
(i)
JO
K — 1, that is, the simplex A has maximal dimension. Moreover, we have
for the dimension of the spanning subsimplices

Now, as A is spanned by n*A we conclude that the dimension is dim A =

(2.16)

. —(4) (i _
Sdim A0 =Y (I -1)= ) -n=@m+K-1)-n=K-1,
iel iel iel
where the second equation follows from |I| = n and the third one from
equations (2.7). Also, we use 7; := |j(1)|.

3"iSTEP : The function y — c*y takes its maximal value relative to AW

exactly on Zf;%i); this value is ;— for i € I. Therefore it is seen that

(2.17) F =AY
icl
as specified in (2.12) is a face of IT with normal c*.

We show that |j(i) N J_(j)| < 1 for all i # j. Assume that, on the contrary,

we have r, s € JY A J? for some r # s. In view of (2.13) we obtain the
following equations:

* (1) x __ * (1) *
N, ap’°Cp = Ngag ' Cy
* (2) * * (2) *
n.a,’c; = nay’ .c,
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Dividing both equations we obtain

(1)

ar’cy a5 cj
a§«2)c’§ agZ)c’Q* ’
that is,
V) V)
0@ NOR

contradicting nondegeneracy.

Consequently, all subsimplices Z}(i) are located in pairwise orthogonal sub-
spaces. This implies

(2.18) dim (ZZ%) = Y dimAY), = K1,

icl il
meaning that F is indeed maximal.
q.e.d.

Remark 2.5. The set L is the adjustment set for F. We write L := |L|.

That is, whenever s € L, say s € T T for suitable i',i" € I then the
vertex

(2.19) n5a" ) =nyat

/

"
. . =) =l )
is common to the subprisms n:,H“_(_,) and 1, H“_(_”). Now recall that, for
JV J

i € I'\ L, the set J ) consists of just one element. Therefore, using (2.7)

and writing r; = |j(i)|, we obtain
I ES W NI
(2.20) ieL iel ieI\L iel i€l F=1

= m+K-1)—(n—L)=K+L-1
or
(2.21) S =Kk +L-1=Y" LW,
icL ke K
the last equation is derived from [3|, Section 3, (3.11).

The analogue equation connecting the primal reference sets with the dual
adjustment sets in size is based in the definition L9 =LnJg" (i € I)and
reads

(2.22) SI® =n+L-1=3"|LY).

keL iel
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Remark 2.6. Recall that the linear adjustment system with respect to the
face F' is given by

(2.23) cra™ =N ((k,1) € L).

Clearly, the dual linear adjustment system is the linear system of equa-
tions in variables (e, jie)

(2.24) an; = p, ((i,s) € ).

As in the primal case, every solution n* induces the normal of the dual face.
Indeed, define

(2.25) @ = maxn*a™* = maxnial,
icl icl

then the vector @* defines the simplex A , i.e., A = A% and hence

1
(2.26) == (ke K)
ag

defines the normal ¢* to the dual face F. This way we see that the adjustment
coefficients of the primal face constitute the normal of the dual face and vice
versa. In particular, the system (2.24) directly serves to compute the normal
of the face. Using only primal terms, we write this system

227) aPn = p «@@eIxK¢6J®JJ®|2@

Corollary 2.7. Let (IL II) be a dual pair. Let F and F be adjacent mazimal
faces of I1. Then the dual faces F and F are adjacent.

Proof: Let J = (J(k)) and j = (J(k)> be the reference systems
keK keK

to F and F respectively. By the Neighborhood Theorem there are indices

ko,lo € K as well as p, ¢ € I such that p ¢ J*) ¢ ¢ j(ko)

(2.28) T =g Uy, T = g0 (g

~(k
while for all indices k € K, k # kg, [y the reference sets J®) and J( ) coincide.
are equal. Inspection of Definition 2.2 shows that

=0 - =0 -
(2.29) T =TV 0k}, T =3\ (1)

—(i SO -
while for all ¢ # p,q the reference sets JD and J coincide. From this it

follows that F' and F are adjacent. q.e.d.

Note however that the complete p.o. structure of OII is not preserved during
the transition to the dual. The following example enlightens vividly the
relevant aspects.
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Example 2.8. Consider in particular the case that K = 2, i.e., K = {1, 2},
thus we have II = II* + I1°. We know that the cephoidal surface OII is
completely described by a permutation or ordering < such that all maximal
faces are of the shape

<io _ b
F™ = Afijizioy T Adilio=i-
The reference system for F~% is thus

{0, 30} = ifi < i} filio < 13}
Consequently, we find for the corresponding dual reference system
(2.30) JV = ke K|iec gy

the following: whenever i < iy, then obviously

(2.31) JY = {1},

and whenever 7 < 7, then

(2.32) JV = {2}

holds true. For ¢ = 7, we obtain
(2.33) JY =1{1,2}
so that the dual face to F~% is

(2.34) F=>"aW+Al) +) a®

<10 10<1

Thus, the Pareto or cephoidal surface of IT is a linear curve with line segments
being the translates of the various A{l 2 If 79 is the first w.r.t. <, then the

face
F = {12} +Za
i#o
is the “uppermost” line segment, i.e., the first in the ordering induced by the
slope when we begin with the smallest slope (in absolute value). Thus, it is
seen that < represents as well the ordering of the line segments within the
cephoidal surface of the dual cephoid.

In particular, consider Example 4.4. of [3] which treats a case with n = 4. A
sketch of the canonical representation is provided by Figure 2.1. Assuming
that the translate of A% occupies the first vertex of the sum (i.e., 2e'),
and the translate of AP the second one, the left hand version of Figure 2.1

corresponds to the ordering < = (2341). The 3-dimensional faces are given
by

F* = AS+ A,

F% = A%+ A?
(2.35) » 2 e

F¥ = A, + A}
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Figure 2.1: The sum of two prisms for n =4

The ordering < represents the neighborhood structure of the four faces si-
multaneously indicating the unique extremal vector ¢’ = a’ + b’ assigned to
a face. If we start with F~? containing ¢?, then the unique neighbor is F~?
containing ¢?® etc.. Thus, while running through the extremals ¢’ according
to < one also passes from one face to its neighbor.

The same situation occurs with respect to the dual cephoid II. The dual
face to F=? i.e., generated by the reference system J = {{2}, {2341} } is F~*

which is given by 3
d = {{2h {12}, {2}, {2}}

ie.,
=<2 1 2 3 4
F :MQ%+A%}+A%A1Q%

this is a translate of Ag)?} by means of a? + a®? + a2, Similarly,

+ A%+ A

=<3 (1)
Fo=A 2y T A

2
() + A

{1}

is a translate of +A§?1)2}. The further two dual faces are.

+ A% A 4 Al

=<4 (1)
Fo=A o TAL T Any

{2}

and 1 (1) (@) (3) (4)
=<1l A1 2 3 4
F = A{m} + A{1} + A{1} + A{1} .
The cephoidal surface OII is sketched together with its canonical representa-
tion in Figure 2.2. When we start in the uppermost face and run through

the faces according to <, then we pass all faces in downwards direction.

Example 2.9. Next we discuss an example with n = 4, K = 3 named
“The Marriage of a Windmill and a Circle”. The canonical representation
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2
\ Al ®)
\A{m}
(@)
Az
p
A(l)
{12)
@ A A@) Q)
Afzy Argy Aprgy Ay
-

Figure 2.2: The dual surface and its canonical representation

is given by Figure 2.3. We use a, b, ¢ for the primal family assuming that
A@ corresponds to “blue”, A(® corresponds to “red”, and A corresponds
to “green”.

The maximal faces as indicated are defined by the following reference sets:

Figure 2.3: The Marriage of a windmill and a circle
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Name — J@ JO g
Al {1234} {2} {1}
rl@ 1934} {2} {12}
r@® 1134} {23} {1}
AL gy {1234} {1}
(2.36) r®@ oy {234} {14}
r®@ 114} {123} {1}
Al (3} {3} {1234}
r@® 31 {23} {124}
ref@ 134} {2} {124}
B@®)e)  f34} {23} {14}

The dual cephoid is the sum of 4 prisms in 3 dimensions, we denote the dual
family by @(!). The canonical representation is given by the following sketch.

Figure 2.4: The Dual Marriage

The maximal faces are listed in the same order as its primal counterparts
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and indicated accordingly. We obtain the following list.

Name
Al@)
(a)(e)

[(a)(b)

(2.37)

j(l) 7(2)
{13} {12}
{3} {123}
{13} {2}
{23} {2}
{3} {2}
{123} {2}
{3} {3}
{3} {23}
{3} {23}
{3} {2}

O A~~~ A~

7(3)

{1}
{1}
{12}

{2}
{2}
{2}

{123}
{12}
{1}

{12}

7(4)
{1}
{1}
{1}

{12}
{123}

{1}
{3}
{3}
{13}

{13}
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3 The Reference Vector

Given a maximal face .
k
F =) A.(I<)k>
k=1

of a cephoid II, we write r, := |J®| (k € K) and call r = (ry,...,7x)
the reference vector of F. We are going to show that the reference vector
uniquely defines the face. To this end, we list the main properties of such a
vector.

Definition 3.1. Let n, K € N. A vector r = (ry,...,rx) € NE is said to
be a (K,n)-reference code if

(3.1) 0<r,.<n (ke K)

and

M=
-

(3.2) < K+4+n-1

k=1
holds true. A reference code v is maximal if an equation prevails in (3.2).

Theorem 3.2. Let a* = {a(k)}keK be a nondegenerate family of positive

vectors in R™. Then, for every mazimal (K,n)-reference code r there exists
a unique mazimal face F of Il =73, I®*) with reference system

(k)
(3.3) {J }keK
with
(3.4) T =7, (ke K),

i.e., T 18 the reference vector of F.

Proof: 1*STEP : For n = 2 the Theorem is obvious. For K = 2 the
Theorem follows from Theorem 4.2 of 3] , see also Remark 4.3. of [3]. Of
course, the case K = 2 follows as well by duality as explained in the previous
section.

Now we proceed by induction.
2"dSTEP :

First of all assume K <n — 1. Let F be a maximal face and let

K

— (k)

F =2 A
k=1
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be the representation via the reference system. Also, let L be the set of
adjustment indices. As L = |L| < n — 2, there are at least two indices, say
1 and n, that do not belong to L. As a consequence F|g, , and F|g,_, are
maximal faces of the families a®*|r,_, and a*|g,_, respectively. The reference
codes are (rq,...,rx — 1,...,rg) and (ry,...,7 — 1,...,7x) with suitable
k,l € K. By induction, these reference codes uniquely determine the refer-
ence systems

G A G

of two faces of the restrictions of IT to Rf~! and RI™™ respectively. Hence
the reference system
{7}
keK

of F is uniquely determined by 7. This shows, that there is at most one face
corresponding to a reference code, provided K < n — 1 holds true.

keK

But for K > n we know that every maximal face is the sum of at most n — 1
subfaces of the A®) plus a number of vertices from the remaining ones. In
other words, every face is r—full for some r < n — 1 (see [3]) By the above
argument, with respect to the n — 1 faces that yield reference sets of size
at least 2, these reference sets are uniquely defined. The remaining vertices,
however, are uniquely defined as well.

Thus, a reference code defines a face uniquely, if at all.

3"diSTEP :

On the other hand, given a family a® and the cephoid II generated, let
F(K,n) be the set of maximal faces of II. Let II|_,, be the cephoid generated
by the family a|g, , of vectors projected onto Ry_, and let F(K,n — 1)
denote the family of its maximal faces.

Similarly, let TI(-%) = f:_ll 1) be the sum of the first K — 1 prisms
and let F(K —1,n) denote the system of maximal faces of this cephoid. The
induction hypothesis applies to both cephoids constructed.

Now, let F € F(K,n) and let r be its reference vector. First of all, as-
sume that 7 = 1 is the case, that is, F consists of a face F() of T1(=%)
plus a vertex of A¥). By induction, the face F~) is uniquely defined by
(r1,...,7x—1) and the remaining vertex of A’ is uniquely defined as well.
On the other hand, every face II¢"%) together with a suitable and unique
vertex of A% yields a face in F(K — 1,n). Thus, F(K — 1,n) and the set

{F e F(K,n)|rg=|JE)| = 1} are bijectively mapped into each other in
a canonical way.

4*BSTEP :

Next, let F' € F(K,n) be such that rx = |JU| > 2 is true. By induction,
there is a unique maximal face, say F* € F(K,n — 1) of II|gr-» that corre-
sponds to the reference vector (r1,...,rx —1). By the first step, we conclude
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that

(3.5) \ {3"(1(, n) \ )| > 2} \ < |F(K,n—1)|

holds true. But by Theorem 6.10 of [3] we know that
|F(K,n)| = |FIK-1,n)] +| F(K,n—-1).|

Then, necessarily, equation prevails in formula (3.5) and hence there is indeed
for every maximal code r a maximal face that has r as its reference vector.

q.e.d.

Corollary 3.3. Let a® {a(k)}keK be a nondegenerate family of positive vec-

tors in R™. Then, for every k € K and every i € I there is a bijection P
which maps

{Fes(rn|a® =2}

on
FENK,n—1) := {F ‘ F is a mazimal face of a'|]R,\{,,-}}

This bijection is obtained by associating with any maximal face F with ref-
erence code T, Tx > 2, the mazimal face on OIICYD = QJII | R\ defined
via r — eF.

Corollary 3.4. Let Il = ), I*) be a nondegenerate cephoid. There is
a bijection of F = {F|F is a mazimal face of 11} onto the set of mazimal
(K, n)-reference codes, i.e., the set of vectors satisfying (3.1) and (3.2).
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4 The Reference Graph

So far we have discussed necessary conditions for maximal face: properties
of the reference system, of the adjustment set and the way the adjustment
set or the corresponding linear adjustment system determines the normal,
provided we are given a maximal face.

Now we investigate sufficient conditions: suppose we are given a® = (a(l), el a(K)) =
(a(’“))keK generating the cephoid

m=m=> 10"

with [I® = [1°“(k € K). Given a family of subsets of I, say

= (J(k)) keK

we may assign to every index set J®) the simplex

k (k) ak)
AE]()k) = Afla&) = conv <{a(k)’l}l€_](k)) C A" =AW,

What kind of conditions will ensure that these subsimplices are the sum-
mands of a maximal face

k
(41) F=3 Af,
keK

of the cephoid II?

In order to specify these conditions it is first of all necessary to exhibit some
further properties of a reference system associated to a face. On the other
hand we want to treat some of those properties in a more general way. We
start out by a definition that lists the obvious requirements.

9= (1) en

be a family of subsets of I. J is called an admissible system if the following
conditions are satisfied:

Definition 4.1. Let

1. UJ(k) =TI

keK
2.3 1 JJ®) = Y G = K+n—1.
keK keK

3. For any two different indices k,1 € K the sets J® and JY contain at
most one common index.
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4. For every index k € K there exists an index k' € K with k # k' and
(g9 na®) ] =1

Thus, the reference system of a face of a cephoid is clearly admissible.

For every admissible system J we denote by L C I the set of indices that
appear in at least two of the members J® of the family. L is called the set
of eritical indices (corresponding to J). Accordingly,

(4.2) L, = LNnJ®

defines the critical system

(4.3) L= <L<k))keK

The critical system obviously inherits the defining properties from its parental
admissible system, i.e., we have:

1. U L® = r
keK

2. For any two different indices k, k' € K the sets L™ and L™ contain
at most one common index.

3. For every index k € K there exists an index k' € K with k£ # £’ and
(E9nL®) | =1,

We use this a motivation to define abstract systems £ with these properties.

Definition 4.2. Let L C I and let

- (),

be a system of subsets of L. We say that L 1s L—admassible if the conditions
1.,2., and 3. are satisfied.

Thus, the critical system of an admissible set is L-admissible with respect
to the set L of critical indices.
We wish to associate a graph to an admissible L-system as follows.

Definition 4.3. The (undirected) associated graph generated by an admis-
sible L—system L s the pair

(4.4) (£,€)

given as follows. The nodes of the graph are the elements of the family L. An
edge or arc of the graph is a pair E = (Ly, Ly) such that Ly N Ly # () holds
true. Colloquially we say that Ly and Ly are connected if E = (Ly, Ly) is
an edge.
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As graph as defined above may have cycles, i.e., in our case a sequence of
nodes L*) L*2)  L%*7) guch that , for any ¢ € {1,...,T — 1} the nodes
L% and L%+ are connected and L*Y) = L¥*7) ig the case. We call a cycle
proper if the same index [ € L is involved in each edge, i.e., if

(4.5) L% L) = (7}

holds true for some | € L and all t € {1,...,T — 1}. Otherwise we call the
cycle timproper.

Now we are in the position to proceed with a refinement of our above defini-
tion.

Definition 4.4. An L-admissible family of index sets

L= <L(k)) keK

15 called a pre—adjustment system if the following conditions are satisfied:

~

. L := |L| < K —1 holds true.

YW = YL = K+L-1.

keK keK

\S)

3. There are at least two indices k*, k° such that |L*| = |L*"| = 1 holds
true. That is, the associated graph has at least two boundary nodes.

4. The associated graph (L, &) is connected.

5. The associated graph (L, &) has no improper cycles.

An admissible family of index sets

J= (J(k)) keK

1s called a pre—reference system if the critical set L induces a critical
system L that is a pre—adjustment system. The corresponding linear pre—
adjustment system is the linear system of equations formed in analogy to
(1.3) of section 1.

A reference system resulting from a maximal face has the properties listed
above. Indeed, a reference system induces a set L of adjustment indices as
well as an adjustment system which is L-admissible. The associated graph
is called the adjustment graph. Now we have

Lemma 4.5. Let F be a mazimal face of a cephoid II = TI*". Then the
adjustment graph has no improper cycles.



* SECTION 4: THE REFERENCE GRAPH % 21

Proof: If the graph has an improper cycle, then the linear adjustment system
admits of the trivial solution only. More precisely, let (w.l.o.g)

L(l), L(2), o L(”), LW
constitute an improper cycle. Then we find indices [, s, ..., [, such that
LeLYNL® L,beLWnL®W, ... I, e L™ nLY

holds true. Consider the following subsystem of the linear adjustment system,
given by

clagll) = )\ll
cgagf) = A
Cgaf) = )‘lz
(4.6) ..
Cﬁagle = )\ln—l
c,iagf) = )\ln
c,iagi) = )\ln'
This is a system with 2x variables and 2k equations. If we write a;;, = agl_k)
just for the moment, the coefficient matrix is
1 K k+1 2K
ai 1
az1 1
22 : 1
(4.7) @z -
Qrr—1 - 1
Qrore : 1
A1k : 1

We claim that the matrix (4.7) has full rank. To see this, subtract an a;,—
multiple of the last column from the first column and, thereafter, omit the
last column and the last row. Next, add an {%-multiple of column & to
column 1. Then, the last row contains the entry a,, only. Hence (4.7) has
full rank if and only if the following matrix (4.8)

1 k—1 K 2(k —1)
ar 1
Qa1 S |
29 : 1
(4.8) 23 1
Q12 - 1
Ar—1k—-1 - 1
AUrrr—1 . 1

Urr
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has full rank. By induction, we see that (4.7) has full rank indeed.

q.e.d.

Lemma 4.6. Let F be a mazimal face of a cephoid II = TI*". Then the
adjustment graph is connected.

Proof: The proof runs quite analogously to the one of the previous Lemma
4.5. If the adjustment graph can be decomposed into two disjoint graphs, the
each part admits of an independent solution of the linear adjustment system.
Hence the solutions span a linear space of dimension at least two — in which
case the normal is not uniquely defined up to a constant. A precise version
is found in Theorem 2.4. of [5]. q.e.d.

Lemma 4.7. Let F be a mazimal face of a cephoid II = TI*". Then the
adjustment graph has at least two boundary nodes.

The proof is obvious because the adjustment graph has no improper cycles.

Corollary 4.8. Let a® be a family of positive vectors. Let F be a mazimal
face of the corresponding cephoid I1. Then the reference system defining F' is
a pre—reference system. The adjustment system is a pre—adjustment system.

Clearly, to any pre-adjustment system that arises from a pre-reference sys-
tem we may associate the polyhedron

(4.9) Fp o= Y A%

keEK

Now we have

Theorem 4.9. Let Jp = (J(k)) be a family of subsets of I. Then
keK

(4.10) F=Y A%,

keK
18 a maximal face of 11 if and only if the following holds true.

1. J is a pre—adjustment system.

2. The solution (¢*, \*) to the linear pre-adjustment system of equations

satisfies
1) agal” = (k) )
> o (k1) ¢ L),
Proof: The inequalities in item 2 ensure that the vector n* = (%, cen i)
constructed via
(4.12) af = gcrg}?cﬁzgk) (i€

constitutes a linear function that achieves its maximum relative to A®) ex-

actly on A_(Ik()k), thus is a normal to II and, clearly, the normal to F. q.e.d.
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5 Adjacent Faces: The Normal Cone

The Neighborhood Theorem (3.5. of [3]) describes the shape of the (n — 2)-
dimensional subface that is the intersection of two adjacent faces. Based on
the duality theory we formulate a generalization. Thereafter we discuss some
properties of the normal cone of the (n — 2)-dimensional intersection of two
adjacent maximal faces.

Theorem 5.1. Let I be a cephoid and let F, F be adjacent maximal faces
(i.e., with (n — 2)-dimensional intersection) with reference systems § and
J. Then there erist indices p,q € K, p # q, and ig,1, € I, ig # i1, with
1o € L, iy € L, such that the following holds:

J® = TV (k#p,q)
(5.1) J» = J7U {ig)
3(4) _ j(q) U{Zl}

Proof:
1StSTEP : As F and F are neighbors, the intersection is a face

(5.2) FNF = Y A®

JENT
keK
with dimension n — 2, hence

Z g0 ATY ] 2ot K.
ke K

As the corresponding sums for the two faces yield n — 1 + K we must neces-
sarily find p, ¢ such that

g0 = (007" oty = 770t
(5.3) ~

5@ _ (J(q) mj@) Ul = JOU)
say,

@) j(Q)
(5.4) 12 ...t 1 S5 ...T
12 ...1 S ... T 4.

2"dSTEP : Now p = ¢ is not possible as we would have |J®| = |j(p)|-

This would imply equal reference vectors for both faces, hence they would
coincide. So we know p # q.

3"ISTEP : Now assume that ig ¢ L and i ¢ L is the case. Then we
have . = L. As the system L determines F uniquely, it would follow
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that F = F holds true. On the other hand, assume e.g. iy € L,4; ¢ L.
Then we have . C L. Now the linear adjustment system of equations is
again uniquely attached to L. It follows that all equations corresponding to
[ appear in the system attached to IL as well. But both system must have
maximal dimension, i.e., generate a solution space of dimension 1. Evidently,
the two systems have the same solution space, in which case the normals
coincide. Hence again we would find F = F, which cannot happen. Hence
1o € L, 1; € L is true indeed.

Finally we check ig # 4;. Consider the reference system of the dual faces,
ie.,

JY = (ke K|ie J®} .

Clearly we have

=(i :(1)
JY = T (o)
_Z' 7(11)
(5.5) JO = F u{p}
J = T ulgh.

Therefore we may repeat the argument of the 2MSTEP: if ig = g, then

the reference vector of the dual faces F and F would coincide, which is not
possible.

q.e.d.

Obviously formula (5.5) is dual to formula (5.1). For completeness it is useful
to state the full consequences.

Theorem 5.2. Let II be a cephoid and let F, F be adjacent mazximal faces
with reference systems J and J. Then the dual faces are adjacent as well.
With the notation in Theorem 5.1, the reference system of the dual faces is
given by (5.5).

Corollary 5.3. Let II be a cephoid and let F, F be adjacent mazimal faces
(i.e., with (n — 2)—dimensional intersection) with reference systems J and J.
Let iy, i, and p,q be given by Theorem 5.1. Let L = {(i,s) € I x K, i €
K, |K,| > 2}. Then the normal cone to the intersection

F* = FNF

spans the two—dimensional subspace of R"™ obtained by the projection of the
solutions of

(56)  ani=p, ((i,s) €L, (is) # (io,p)) if [T >3,

or

(5.7) @i =p, ((s) €L, (iys) # (io,p), (is,0) if [JP| = {io. s}
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The proof is obvious in view of Remark 2.6. Note that with respect to the
equations (2.24), for |J®| = 2 one has to cancel two equations and the
variable f,, while otherwise one has just to cancel one equation.

Corollary 5.4. If |J(p)| =2, and J?¥) = {ig,i9}, then either i € L or
ig - le.

For, ig has to appear in some j(s) with |j(s)| > 2.

Corollary 5.5. Let F' be a mazimal face of a cephoid 11 with reference system
J and normal n. For some p € K, let |JP| > 2 and let ig € JP) iy ¢ L.
Define

* L (k) (»)
(5'8) F = Z AJ(k) + A;(p)\{io}'

keK—p

Then F* C 9N and the second extremal to the normal cone of F* is

n* = n—n;e".

Proof: Check that n* obeys the equations of Corollary 5.3. specified for F*
respectively.

q.e.d.

Theorem 5.6. Let F be a maximal face of a cephoid IT with reference system
J. For somep e K, let |JP| > 2 and let ig € JP N L. Let

. K) A
(5.9) Fro= ) ARG AT

keK—p
Then there is some mazimal face F of I1 such that

F* = FNF.

Proof: The normal cone to F* is described by Corollary 5.3. Let m be
the second extremal of this cone. By the nondegeneracy assumption, this
extremal can either have exactly one zero coordinate n; (in which case F™* is
located in the corresponding AI1¢-?), or else it is positive. In the latter case
the theorem is verified.

Hence, whenever s # p and |J(s)| > 2, then i, > 0, for otherwise the equation
(5.10) a7 =q, (ieJ®),

would result in two zero coordinates of 7 at least. If |J®| > 3, then the
same argument holds true for p: we would have at least two equations of the
type (5.10), namely for i € j{p) = {ie J® £ io}. Therefore, it remains
to study the case suggested by equations (5.7), where i5 is the second index
in J®. Now, if ni, = 0, then F* would be located in 9I1(-%), contradicting
the fact that iy € L and nondegeneracy. If, on the other hand n;, = 0 holds
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true, then it is seen at once that m satisfies the equations of Corollary 5.3
with respect to

oL (k) (»)
F* = ) AT + AT oy
keK—p

which again contradicts nondegeneracy. Hence, n is indeed positive and
hence the normal of an adjacent face,

q.e.d.

Theorem 5.7. Let r be a reference vector and let F be the unique corre-
sponding face. Then, for every k € K with ry > 2, there erists uniquely
some k € K, k % k, such that the face F corresponding to ¥ = r+e*—eF
18 adjacent to F.

Proof: We know that J® N L # () for every k € K. Hence, whenever
|J(k)| > 2, we can pick some ig € J® that satisfies the conditions of Theorem
5.6. Applying Theorem 5.6 we find at once that the reference vector of the
adjacent face F' has the required property.

q.e.d.
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6 Generalized Tentacles

Within this section we describe the generalized version of the tentacle system
(see Corollary 4.6 of [3]). The tentacle system exhibited in [3] refers to the
prisms involved in the construction of a cephoid. For each such prism a
translate appears on the Pareto surface 0II. This translate is the center of a
system of arms connecting it with each boundary JIl | gy via a system of
cylinders.

Now we shall show that every maximal face generates a tentacle system.
By this we mean a well defined system of maximal faces connected by the
adjacency relation.

For a start, we fix some maximal face F' identified by its reference vector 7.
Also, we specify a fixed member of the family a®, say a*. Of course, any
other element of K could play the role of K.

Definition 6.1. Let a® be a nondegenerate family of positive vectors, let F
be a mazximal face of II and r the corresponding reference vector. Suppose
that rx > 2 holds true.

1. The reference vectors
(6.1) r—e+e" (ke K)
are called the tentacle—codes or T—codes of F'.

2. The corresponding mazimal faces 5% qre called the tentacle—faces
T—faces of F.

3. The n — 2 dimensional face of ONI") := Ol | gy corresponding to
the reference vector r — eX is denoted by P'(F).

4. An n — 2-dimensional subface F° of a T face with reference vector
r — e’ is called a cylinder basis.

Our aim is to show that the family of T—faces constitute a simple connected
graph without circles which terminates exactly on the (n — 2)-dimensional
boundary of OII.

Lemma 6.2. There are K different T-faces including F = F~5 5 For
any i € I, o117 s the outer surface of the cephoid generated by a* | 1—i and
there exists a T—face F of I1 such that FNRIMD C o119 is a cylinderbasis.

Proof: The first statement is obvious. The second one follows from the
Coincidence Theorem (Theorem 3.1. of [3]), item 2 (d) and by Corollary 3.3
as P!(F) is the desired cylinderbasis on the boundary o1,

q.e.d.
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Lemma 6.3. Let F~* be a T-face. Then the number of (n—2)-dimensional
subfaces of F~XF that are cylinder bases is at least 2. More precisely, the
number of such subfaces is

rk > 2, forl=K, ie., for F=F K
rn+1 > 2, forl#K

(6.2)

~(k
Proof: Consider the case [ # K. Let {J( )} denote the reference system
keK

K+l =) .50
of F~™ ™. Then |J | = r;+1 > 2 holds true. For every iq € J = the system

(6.3) {3(“} 7Y
ke K—I

constitutes a reference system defining an (n — 2)—dimensional subface of
F~5+ which obviously is a cylinder basis.

q.e.d.

Lemma 6.4. Let F %" be o T-face and let F be an (n — 2)—dimensional
subface that is a cylinder basis. If 1o € I 1s not an adjustment index in the
reference system of F~5% and 1o does not appear in the reference system of
F (cf. formula (6.3)), then F C o) je., F = Pio(F) is the image
of F in OTI-) ynder the bijective mapping established in Corollary 3.3.

Proof: If an index iy does not appear in the reference system of an (n — 2)—
dimensional subface, then there is no summand of any II*) contributing
to the ig—coordinate, hence this coordinate vanishes for all elements of F'.
q.e.d.

Lemma 6.5. Let F = F 5tk gqnd F = F 54 e different T—faces. Let

_ K - K
J(K), f ) denote the reference set corresponding to TIU) | If|J(K)\f )| > 2

K), = _ N
or |f : \ J(K)| > 2 holds true, the F' and F are not neighbors.

Proof: Obvious by the Neighborhood Theorem (Theorem 3.5 of [3]).
q.e.d.

Definition 6.6. The T—graph of F (with respect to K ) is the graph
T = (V,E) with nodes V = {T-faces} and edges E = {cylinder bases
common to two T—faces}.

Note that two nodes are connected by an edge if the cylinder basis is a joint
(n — 2)—dimensional subface of both faces. A T—face is called terminal if,
for some i € I, the intersection F' N OII¢? is a cylinder basis. F N oI is
called the i — th boundary cylinderbasis.

Theorem 6.7. The T—graph T of F (w.r.t. K) is a simple connected graph
without cycles, that is, a tree. For every ig € I there is a unique path from
F to a terminal node which contains the boundary cylinder basis P'(F).
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Proof: 1stSTEP :
Let

K

k

F = E:AS@
k=1

with 7, = |J®| (k € K) and rx > 2. First of all we consider the case that
io € J) holds true. Then the (n — 1)-dimensional subface

K-1

Tio (k) (K)

F = > AGL+ A%,
k=1

is a cylinder basis. This basis is a boundary basis if igc ¢ L. If so, we are
done.

2"ISTEP :

If F is not a boundary basis, then i, € L. According to Theorem 5.6 and
Theorem 5.7, there is an adjacent face, say F = F 7" The reference
system at position K consists of the index set JE)\ {ig} and at position «
of, say, J® U {i;}. In view of the Neighborhood Theorem, we have i, € L.

3"dSTEP :

If it so happens that ig € J(”“), then we proceed as in the first step. We
remove 7y from J(’j\) an add a suitable index to some J©. We have again
reached a T—face F' with the number of appearances of iy reduced by 1.

4*BSTEP :

Suppose that ig € J* does not hold. Then we focus on iy € J™ N L as
specified in the 3"“STEP. We can remove i, (and possibly further indices)
from J* and add another index to some J® and so on. If there are more

indices feasible besides 7, then two or more paths will branch off at the node
reflected by F'.

The path can never return to F' because any other path leaving F' is char-
acterized by a missing index iy # iy instead of ig. No face with missing
index 79 is a neighbor to a face with missing index iy by Lemma 6.5. By
a similar argument, the path cannot return to another face met during the
construction.

Of course, when our path branches off, then we can follow all branches.

As there are only finitely many T-vectors, we must eventually reach some

face F with a reference vector 7 that is a T—code and yields %,, =r,+1at
some coordinate v with ig € J”. Then we can again reduce the number of
appearances of i by one.

5thSTEP :
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Obviously we can proceed in this way, reducing the appearances of iy step
by step until iy ¢ L is the case. Then we have found a face with cylinder
basis P. The path constructed in the T—graph connects F and P.

6'*"STEP :

On the other hand, we may consider some P*(F) which corresponds to a

unique face of HR?\{i}' This face can be uniquely extended to a face F* of
IT (the set L is the same for both and characterizes both faces). Starting
the procedure explained above, we can connect P'(F) with every PY(F) for
it € I,it # i. Thus the T-graph has boundary nodes at each 9I1¢-?, all of
them being connected without loops and circles.

q.e.d.

Example 6.8. The cephoid “FourFour” is a sum of four prisms in four di-
mensions. It is given by the matrix

701 502 303 104
205 116 1007 128
139 110 611 512
67 230 444 777

(6.4) A =

Figure 6.1 shows the canonical representation within the simplex 4A¢®.

Figure 6.1: The canonical representation of FourFour

In the following we describe maximal faces by their reference systems. Con-
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sider the block without yellow edges

_ blue red green yellow
(6.5) BY: 12 13 24 2

the reference vector of which is (2,2,2,1). We choose the cylinder bases
suggested by the reference vector (2,1,2,1). The block BY has the square P?
as the cylinder basis at 91" (the left front side of the tetrahedron). The
adjacent face is the cylinder that consists of a green triangle and a blue line
segment; it is given by

blue red green yellow

grb .
(6'6) 4 12 3 234 2

Note that the intersection BYNZ9" has the correct reference code (2,1,2,1).

At Z9" the path has two branches, the boundary basis P* at the lower
subsimplex is part of the cylinder. If we follow the second path, we reach
block without red. This one is difficult to recognize, it consists of three line
segments of blue, green, and yellow color and is described by

blue red green yellow

(6:7) B 19 3 s w
The final face is the cylinder consisting of a blue triangle and a green line
segment. It is described by

blue red green yellow

b,gr .
(6.8) Zm 123 3 34 4

This cylinder has subfaces P! (at the right front side) and P? (at the rear
side of the tetrahedron), thus we have found all P*, i € K.
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Figure 6.2 shows the “tentacle” described by the above sequence. The four
maximal faces have been isolated from Figure 6.1. The basis in each face
consists of a square with blue and green parallel sides.

Figure 6.2: The Tentacle of Example 6.8
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