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Abstract

Howard (1992) argues that the Nash bargaining solution is not Nash implementable,

as it does not satisfy Maskin monotonicity. His arguments can be extended to other

bargaining solutions as well. However, by defining a social choice correspondence that

is based on the solution rather than on its realizations, one can overcome this shortcom-

ing. We even show that such correspondences satisfy a stronger version of monotonicity

that is even sufficient for Nash implementability.
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1 Introduction

Hurwicz (1994) in contrast to large parts of the literature stresses the fundamental difference

between games and mechanisms (game forms).

The concept of a game form, that allows it to formally separate the rules of a game

from players’ individual evaluations of the outcomes, is a cardinal tool for applications of

∗Dedicated to Leo Hurwicz whose conceptual rigor and clarity has become a treasured benchmark for the

profession.
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game theory. The possibility to choose the outcome space of a mechanism (or game form)

according to the specific needs of the problem to be modelled makes implementation theory

a powerful instrument. A key role in that theory is played by the property called Maskin

monotonicity, that is a necessary property for a social choice rule to be implementable in

Nash equilibrium (see Maskin (1999)).

While many specific applications almost naturally distinguish “the” suitable mechanism,

thus outcome function, this is not the case when cooperative solutions are to be Nash im-

plemented. The aim to relate cooperative solutions of coalitional games to Nash equilibria

of non-cooperative games in strategic or extensive form goes back to Nash (1951, 1953) and

is now commonly referred to as the “Nash program”. The exact relation between the Nash

program and implementation theory has been addressed explicitly in the literature only in

the last decade. Serrano (1997) states: “The Nash program and the abstract theory of

implementation are often regarded as unrelated research agendas”, and Bergin and Duggan

(1999) write: “... because the implementation-theoretic and traditional approaches both

involve the construction of games and game forms whose equilibria have specific features,

considerable confusion surrounds the relationship between them.”

Several articles have recently tried to dispose of this confusion: Dagan and Serrano (1998),

Serrano (1997, 2005a, b), Bergin and Duggan (1999), Trockel (2002a, 2003). At the heart of

the problem lies the fact that a cooperative solution as a technical concept is distinct from a

social choice rule. Consequently, Nash implementation of a cooperative solution is literally

impossible, as it is not well defined. A crucial step in making solutions implementable is

therefore the interpretation of a solution as a social choice rule. Formally, this means the

suitable definition of a solution based social choice rule that carries the characteristic features

of the underlying solution.

While social choice rules are mappings associating certain outcomes to profiles of prefer-

ences or utility functions, solutions associate feasible (monetary or utility) payoffs of players

to certain coalitional games. A basic task is it therefore to understand the relation between

utility profiles and coalitional games. In their seminal paper, Bergin and Duggan (1999)

explain this problem by use of the notions of “effectivity” and “supportability”.

Supportability associates with a coalitional game an underlying profile of utility functions

supporting it. Effectivity associates with any utility profile a coalitional form to describe the

potential strategic effects on coalitional worths. While here and likewise in Trockel (2002a,

2003) the relation between social choice rules and solutions is formally analyzed, it is ignored

in large parts of the literature, a fact that contributes to the “confusion” mentioned above.

2



Nash in his non-cooperative foundation of the Nash bargaining solution left the support-

ability problem unsettled. Implementation in the sense of mechanism theory was not yet an

issue for him.

Howard (1992) and Moulin (1984) provided early implementations in subgame perfect

equilibria of the Nash and the Kalai-Smorodinsky solutions, respectively. They both ignored,

or better avoided, the effectivity problem by introducing solutions directly as social choice

functions defined on a space of utility profiles.

In order to implement bargaining solutions like those of Nash or Kalai-Smorodinsky one

has to generate an outcome space and to define solution based social choice rules. This

corresponds to solve in that context the supportability-effectivity problem.

There are obviously several possibilities to factorize a payoff vector function into an

outcome function and a vector of utility functions. The two extreme cases are to take

a) the outcome space as identical to the strategy space, choosing the outcome function

as the identity map and the utility functions as the payoff functions;

b) the outcome space to be the space of payoff vectors, choosing the utility functions as

projections to payoffs and the outcome function as the payoff vector function.

For different choices of outcome space and preferences on the outcome space one clearly

gets different solution based social choice rules. And Maskin monotonicity may very well

depend on the actually selected solution based social choice rule.

Howard (1992) argues that, due to a lack of Maskin monotonicity, the Nash bargaining

solution fails to be Nash implementable. That a suitably defined Nash bargaining social

choice rule is in fact Nash implementable has been demonstrated by von Damme (1986),

Naeve (1999), and Trockel (2000, 2002b).

In the next section we shall revisit the example by Howard and show that by choosing a

different outcome function we can define a Nash social choice rule that is Maskin monotonic.

We shall extend this discrete context to its convexification where our reasoning remains

true. In section 3 we provide an alternative approach to Howard’s example that allows it

to avoid the violation of Maskin monotonicity. Section 4 briefly sketches that the situation

with some other Pareto efficient solutions is similar. We particularly focus on the Kalai-

Smorodinsky solution. Again, the examples are discrete and chosen in such a way that

bargaining solutions are well defined and unique but allow for straightforward extensions

to the convexified bargaining sets. The key property for this conclusion is some symmetry
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property of the considered bargaining solutions. The concluding section 5 considers essential

monotonicity that for more than two players is sufficient for Nash implementability. For

any Pareto efficient bargaining solution we establish essential monotonicity, hence Maskin

monotonicity, of the induced solution based social choice rule in our setup.

2 Howard’s Example

We consider a bargaining problem, in which two agents negotiate over the alternatives

Q, S, V . If they do not come to an agreement the outcome is the status quo alternative Q.

The set of admissible utility profiles on A := {Q, S, V } is U := {u, u′} ≡ {(u1, u2), (u
′

1, u
′

2)}

where ui, u
′

i, i = 1, 2 are real valued (von Neumann-Morgenstern) utility functions that are

defined on A as follows:

u(Q) = u′(Q) = (q1, q2) ≡ (q′1, q
′

2) = (0, 0)

u(S) = u′(S) = (s1, s2) ≡ (s′1, s
′

2) = (1, 1)

u(V ) = (v1, v2) = (0, 2) u′(V ) = (v′

1, v
′

2) = (3/4, 2)

A bargaining solution in this framework is a mapping λ̂ : {u(A), u(B)} −→ u(A)∪ u′(A)

with λ̂(u(A)) ∈ u(A) and λ̂(u′(A)) ∈ u′(A). The Nash solution is the bargaining solution ν̂

that solves maxλ̂ λ̂1(u(A)) λ̂2(u(A)) and maxλ̂ λ̂1(u
′(A)) λ̂2(u

′(A)).

The Nash social choice rule in this model is given by the correspondence ϕ̂ν̂ : U =⇒ A

with ϕ̂ν̂(w) := argmaxa∈A w1(a) w2(a).

As depicted in Figure 1, for the profile u, we obtain ϕ̂ν̂(u) = {S} because u1(S) u2(S) =

s1 s2 maximizes the Nash product u1(a) u2(a) on A. For the profile u′ we get ϕ̂ν̂(u′) = {V }.

Indeed, now u′

1(V ) u′

2(V ) = v′

1 v′

2 = 3/2 > 1 = u′

1(S) u′

2(S).

Hence, the switch from profile u to profile u′ results in a different social optimum in A. In

particular, outcome S drops out of the Nash correspondence. However, we see no preference

reversal involving S that is induced by that switch: S remains the best outcome for player 1

and the second ranked outcome for player 2. Therefore, Maskin monotonicity is violated.

The arguments do not change when we replace A by the mixture set generated by A.

For instance, let Q, S, V be defined as (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively, and let

∆A := convex hull(A). As any point in ∆A is a convex combination of (i.e., a probability

distribution over) Q, S, V , its utility is simply the expected value of ui or u′

i (i = 1, 2),
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u1

u2

u′(A) = {q′, s′, v′}

s=s′ = ν̂(u(A))

q=q′

u′(∆A)
u(∆A)

u(A) = {q, s, v}

v′ = ν̂(u′(A))

Figure 1: Howard’s example for the Nash solution

respectively. Now, u and u′ –for convenience we denote their extensions to ∆A again by

u, u′– map ∆A onto different compact convex sets.

Next, we present an alternative to Howard’s model in which Maskin monotonicity is

satisfied.

3 Alternative model for Howard’s Example

Let B := u(A) = {(0, 0), (1, 1), (0, 2)} and B ′ := u′(A) = {(0, 0), (1, 1), (3/4, 2)} two bar-

gaining games with status quo point (0, 0) and B := {B, B ′} be the set of feasible bargaining

games. Let λ, ν : B −→ R
2 be bargaining solutions defined by

λ(B) = λ(B′) = (1, 1), ν(B) = (1, 1), ν(B ′) = (3/4, 2).

Obviously, ν is the Nash solution on B as it maximizes the Nash product on B and B ′.

Observe that B and B ′ are exactly the two bargaining problems considered in the previous

section.

Now, define the outcome space Ã to be the set of all bargaining solutions on B, i.e.,

Ã := {α : B −→ B ∪ B′ | α(B) ∈ B, α(B′) ∈ B′}.

On Ã we define profiles of utility functions ũ, ũ′ by setting for any α ∈ Ã,

ũ(α) := α(B) and ũ′(α) = α(B′).

Let Ũ := {ũ, ũ′}. The bijection between Ũ and B associating ũ with B and ũ′ with B′

provides the effectivity/supportability of Bergin and Duggan (1999) in our specific context!
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Next, we define our Nash social choice rule ϕν : Ũ =⇒ Ã by

ϕν(ũ) := argmax
α∈Ã

ũ1(α) ũ2(α) ⊇ {ν, λ}

ϕν(ũ′) := argmax
α∈Ã

ũ′

1(α) ũ′

2(α) ⊇ {ν}

Note that in particular λ 6∈ ϕν(ũ′). Thus, when switching from ũ to ũ′ the former social

optimum λ is no longer one at preferences ũ′ (see Figure 2). But, now a preference reversal

involving social optima is involved. Indeed, while at ũ we have ũ(λ) = ũ(ν) = (1, 1), we get

ũ′

1(ν) = 3/4 < 1 = ũ′

1(λ) and ũ′

2(ν) = 2 > 1 = ũ′

2(λ) at profile ũ′. Thus, ν is strictly better

than λ for player 2. Hence, Maskin monotonicity is not violated.

u1

v

u1q

=ν(B)= ũ(ν)

q′

s=λ(B)= ũ(λ)

v′ = ν(B′)= ũ′(ν)

s′ =λ(B′)= ũ′(λ)

B
′ = u

′(A)
B = u(A)

u2 u2

Figure 2: Alternative approach to Howard’s example

Note that the two examples capture the same situation; a socially desired outcome is no

longer desirable after a switch of utility profiles. But due to a different choice of the outcome

space, and hence, of the social choice rule, Maskin monotonicity may or may not be satisfied.

As we demonstrate in Section 5, the solution based choice correspondence ϕν does satisfy

Maskin monotonicity. In fact, weak and full Nash implementation of the Nash bargaining

solution based on social choice rules have been established in Trockel (2000, 2002b).

4 Further examples

Howard’s observation that the specific Nash social choice rule is not Maskin monotonic is not

limited to the Nash bargaining solution. Figure 3 illustrates an example with five physical

outcomes A = {Q, S, V, W 1, W 2} and two profiles of utility functions u, u′ given by

u(S) = u′(S) = (5/4, 3/4), u(V ) = u′(V ) = (1, 1), u(W 1) = u′(W 1) = (2, 0),

u(W 2) = (0, 6/5), u′(W 2) = (0, 2), u(Q) = u′(Q) = (0, 0)
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u2

u1

u(V )=u′(V )= κ̂(B ′)

u(S)=u′(S)= κ̂(B)

u(Q)=u(Q′)

u(W 2)

u(W 2′

)

u(W 1)=u(W 1′

)

B′ = u′(A)
B = u(A)

B′

B

Figure 3: The Kalai-Smorodinsky solution

Again, we consider the two bargaining problems B = u(A) and B ′ = u′(A). Analogously

to the definition of the Nash social choice rule in Section 2, we define the Kalai-Smorodinsky

social choice rule ϕ̂κ̂ : {u, u′} =⇒ A by ϕ̂κ̂(w) := argmaxa∈A mini=1,2
wi(a)

max
a′∈A

wi(a′)
. Immediate

calculations reveal ϕ̂κ̂(u) = {S} and ϕ̂κ̂(u′) = {V }. Again, physical outcome S is no longer

desirable, when moving from u to u′, but the ranking of outcomes in A are identical in u and

u′. So, ϕ̂κ̂ is not Maskin monotonic. As in Section 2, nothing is altered, when considering

∆A and extensions of u and u′.

By a closer inspection of Figure 3, it is straightforward that the lack of Maskin monotonicity

can be replicated for any Pareto efficient and symmetric bargaining solution.1 However, for

positive implementation results of the Kalai-Smorodinsky solution, we refer to van Damme

(1987), Haake (2000), or Trockel (1999). In the next section, we show in general that any

solution based social choice correspondence that stems from a Pareto efficient bargaining

solution is Maskin monotonic.

5 Monotonicity

Trockel (2002a) shows that any solution based social choice rule stemming from a Pareto

efficient bargaining solution does satisfy Maskin monotonicity – a necessary condition for

Nash implementability. As we demonstrate in this section a solution based social choice

correspondence in fact satisfies a stronger version of monotonicity: essential monotonicity.

Yamato (1992, Theorem 2) shows that this version is sufficient for Nash implementation,

1Roughly, one has to define u, u′ such that u′(A) is obtained from u(A) by exchanging coordinates, but

without reversing preferences over A. With an appropriate choice of utilities of S and V the solution switches

between these physical outcomes.
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when there are at least three players.2

We consider a population I := {1, . . . , n} of n players. An n-person bargaining game B

consists of a closed and convex subset of R
n – the utility possibility set – and an interior

point – the status quo point – such that the set of status quo dominating points is bounded.

Let B be a nonempty set of (admitted) bargaining games for n persons.

We define the outcome space Ã to be the set of all bargaining solutions on B, i.e., Ã :=

{α : B −→ R
n |α(B) ∈ B, B ∈ B}. By Ũ we denote the set of all (admitted) profiles of

utility functions on Ã such that there is a well defined one-to-one correspondence between

Ũ and B along the effectivity/supportability results in Bergin and Duggan (1999). To be

precise, ũ = (ũ1, . . . , ũn) ∈ Ũ if and only if there is B ∈ B such that for all α ∈ Ã we have

ũ(α) = α(B), meaning that player i evaluates bargaining solutions by the utility they assign

to him in bargaining problem B. Therefore, we henceforth identify utility functions profile

ũ with bargaining problem B or ũ′ with B′.

Let η ∈ Ã be a prespecified bargaining solution. Define a (solution based) social choice

correspondence ϕη : Ũ =⇒ Ã by ϕη(ũ) :=
{

α ∈ Ã |α(B) = η(B)
}

=
{

α ∈ Ã | ũ(α) = ũ(η)
}

.

That means, ϕη assigns to ũ ∈ Ũ all bargaining solutions in Ã that coincide with η on ũ

(i.e., on B). Put differently, when defining ϕη(ũ), the corresponding bargaining problem B

is the only relevant one. Therefore, if η is supposed to be a desirable bargaining solution,

then all solutions that coincide with η on B should be equally desirable and are therefore

collected in ϕη(ũ) as well.

For i = I, ũ ∈ Ũ and α ∈ Ã define i’s lower contour set of α at ũ by Li(ũ, α) :=
{

α′ ∈ Ã | ũi(α
′) ≤ ũi(α)

}

. A social choice correspondence F : Ũ =⇒ Ã is Maskin monotonic,

if for all i ∈ I, ũ, ũ′ ∈ Ũ , α ∈ F (ũ), Li(ũ, α) ⊆ Li(ũ
′, α) implies α ∈ F (ũ′).

Let M̃ be a subset of Ã and F : Ũ =⇒ Ã. An outcome α ∈ M̃ is F -essential for i ∈ I

in M̃ , if there exists ū ∈ Ũ with α ∈ F (ū) and Li(ū, α) ⊆ M̃ . Denote by Essi(M̃, F ) the

set of F -essential outcomes for i in M̃ . F satisfies essential monotonicity, if for all i ∈ I,

ũ, ũ′ ∈ Ũ , and all α ∈ F (ũ), Essi(Li(ũ, α), F ) ⊆ Li(ũ
′, α) implies α ∈ F (ũ′).

Theorem (Yamato(1992), Theorem 2) Suppose n ≥ 3. If F satisfies essential monotonicity,

then F is Nash implementable.

Proposition Let η ∈ Ã be a Pareto efficient bargaining solution. Then ϕη is essentially

monotonic. Hence ϕη is Nash implementable, if there are three or more players.

2See also Danilov (1992). In Yamato’s work, this condition was originally termed strong monotonicity,

but is now more frequently, and more appropriately, found under the term we use.
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Proof. We start with two immediate observations.

1. For all ũ ∈ Ũ we have η ∈ ϕη(ũ).

2. For all ũ ∈ Ũ , i ∈ I and β ∈ ϕη(ũ), Li(ũ, β) = Li(ũ, η).

Now, let ũ, ũ′ ∈ Ũ and α ∈ ϕη(ũ) be such that Essi(Li(ũ, α), ϕη) ⊆ Li(ũ
′, α) for all i ∈ I.

We need to show α ∈ ϕη(ũ′).

First, for all i ∈ I, any β ∈ ϕη(ũ) is ϕη-essential in Li(ũ, α). To see this, take ũ as utility

profile ū in the definition of essential outcomes. Then, clearly, β ∈ ϕη(ũ) and by the second

observation Li(ũ, β) ⊆ Li(ũ, α). Hence, for all i ∈ I we have

ϕη(ũ) ⊆ Essi(Li(ũ, α), ϕη) ⊆ Li(ũ
′, α).

With the first observation, η ∈ Li(ũ
′, α), and therefore ũ′

i(η) ≤ ũ′

i(α) (i ∈ I), which is

equivalent to η(B ′) ≤ a(B′), where B′ is the bargaining problem identified with ũ′. Since η

is Pareto efficient, η(B ′) = a(B′), i.e., ũ′

i(η) = ũ′

i(α) (i ∈ I), implying α ∈ ϕη(ũ′). �

It is easy to see that essential monotonicity implies Maskin monotonicity. We can there-

fore confirm the following result in Trockel (2002a), as it is a direct corollary of the Propo-

sition.

Corollary Any solution based social choice correspondence with underlying Pareto efficient

bargaining solution is Maskin monotonic.
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