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Abstract

We prove that a preference relation which is continuous on every straight line

has a utility representation if its domain is a convex subset of a finite dimensional

vector space. Our condition on the domain of a preference relation is stronger than

Eilenberg (1941) and Debreu (1959, 1964), but our condition on the continuity of a
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1 Introduction

In their expected utility representation, Herstein and Milnor (1953) used a weaker notion

of continuity of a preference relation than the usual continuity. It requires that preference

relation is continuous in the parameter space. When we regard the operation of convex

combination as the mixture operation of Herstein and Milnor (1953), a preference relation

continuous in their sense is continuous on any straight line in the domain of the preference

relation. We refer to this notion of continuity as the linear continuity. By assuming the

independence axiom, Herstein and Milnor (1953) proved that every linearly continuous

preference relation has an expected utility representation. As far as only utility represen-

tation is concerned, the independence axiom is dispensable. We prove that every linearly

continuous preference relation on a convex subset of a finite dimensional vector space has

a utility representation (Theorem 1).

Eilenberg (1941) (see also Debreu (1959, 1964)) proved that every continuous prefer-

ence relation on a separable connected topological space has a continuous utility repre-

sentation. Since any convex subset of a finite dimensional vector space is separable and

connected with respect to the Euclidean topology, our condition on the domain of pref-

erence relation is stronger than Eilenberg’s theorem. On the other hand, as was shown

by Young and Young (1910), the linear continuity is strictly weaker than the usual conti-

nuity, so our condition on the continuity of preference relation is weaker than Eilenberg’s

theorem.

If a linearly continuous preference relation is not continuous, its utility representation

cannot be continuous. Thus, there may not exist a maximal element for a linearly contin-

uous preference relation in a compact set. This fact limits the application of our theorem,

but Inoue (2008) proved that if a linearly continuous preference relation is convex or

weakly monotone, it is upper semi-continuous and, therefore, it has a maximal element

in a compact set.

The main step in the proof of our utility representation theorem is to show that every

linearly continuous preference relation is countably bounded (Proposition 1), i.e., there
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exists a countable set of vectors such that any vector is preordered between some vectors

in the countable set. Since the linear continuity is equivalent to the usual continuity on

any straight line, from Eilenberg’s theorem, for any two vectors, there exists a utility func-

tion on the segment connecting those vectors. The countable boundedness of preference

relation enables us to extend this utility function on the segment to the whole space by

repeated application of Eilenberg’s theorem.

If the set of discontinuity points of a linearly continuous preference relation is small

enough, we can obtain its utility representation by direct application of Eilenberg’s theo-

rem. As an example, assume that a linearly continuous preference relation on X has only

one discontinuity point x. Since X \ {x} is still separable and connected, we can apply

Eilenberg’s theorem to X \{x} and obtain a utility function u on X \{x}. For any vector

(except x) on a straight line in X which passes through x, its utility has already been

defined. Thus, we can define u(x) by the limit of the utilities of vectors on the straight

line. Then, we obtain a utility representation on the whole domain X. Since Young and

Young’s (1910) example tells us that there exists a linearly continuous preference relation

whose discontinuity points make an uncountable dense subset of the domain, it is not

clear whether the above procedure is valid for any linearly continuous preference relation.

We prove that for any linearly continuous preference relation, the set of its discontinuity

points is small enough to apply Eilenberg’s theorem to the set of continuity points and

small enough to define the utilities of discontinuity points properly (Propositions 2-4).

It should be emphasized that this result does not mean that our utility representation

theorem is dispensable, because we rely on the utility representation when we show the

smallness of the set of discontinuity points.

The linear continuity of preference relation is defined by using the one-dimensional

Euclidean topology and, therefore, it is defined free from the topology of the domain of

preference relation. In the case of finite dimensional vector space, any Hausdorff linear

topology is equivalent to the Euclidean topology. Therefore, the linear continuity of

preference relation is of special interest when the domain of preference relation is infinite

dimensional (see the introduction of Herstein and Milnor (1953) and the notes of Chapter
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4 of Debreu (1959)). However, our utility representation theorem cannot be extended

to a nonseparable infinite dimensional topological vector space, because from Estévez

Toranzo and Hervés Beloso (1995), it follows that any nonseparable infinite dimensional

topological vector space has a continuous preference relation which cannot have a utility

representation.

This paper is organized as follows. In Section 2, we give the definition of linear continu-

ity and give an example of linearly continuous preference relation which is not continuous.

In Section 3, we prove the utility representation theorem of linearly continuous prefer-

ence relation. In Section 4, we discuss the relationship between our utility representation

theorem and Eilenberg’s theorem.

2 Linearly continuous preference relations

Let X be a nonempty convex subset of the L-dimensional vector space RL which is

equipped with the Euclidean topology.1 A preference relation % on X is a reflexive,

transitive, and complete binary relation on X. Given a preference relation %, we define

binary relations Â and ∼ on X as follows: x Â y if and only if not y % x; x ∼ y if and

only if x % y and y % x. A utility function representing a preference relation % or a

utility representation of % is a real-valued function u on X such that x % y if and only if

u(x) ≥ u(y).

In their expected utility representation, Herstein and Milnor (1953) used a weaker

continuity than the usual continuity. It requires that a preference relation is continuous

in the parameter space. As seen in Remark 1 below, this continuity geometrically means

that a preference relation is continuous on any straight line. We refer to this continuity

as linear continuity.2 For x, y ∈ X, let I(x, y) = {t ∈ R | (1 − t)x + ty ∈ X}. Since X is

1As we see below, linear continuity is defined independently from the topology on X. We equip X with

the Euclidean topology, because in Section 4 we discuss the relationship between Eilenberg’s theorem on

a Euclidean space and our utility representation theorem. Note that any Hausdorff linear topology on a

finite dimensional vector space is equivalent to the Euclidean topology.
2In decision theory, this continuity is called mixture continuity. This term is suitable when X is a set
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convex, I(x, y) is an interval which contains [0, 1].

Definition 1 A preference relation % on X is linearly continuous if for every x, y, z ∈ X,

the sets {t ∈ I(x, y) | (1 − t)x + ty % z} and {t ∈ I(x, y) | z % (1 − t)x + ty} are closed in

I(x, y) with respect to the Euclidean topology on R.

Remark 1 For x, y ∈ X, let X(x, y) be the straight line in X which passes through x

and y, i.e., X(x, y) = {(1 − t)x + ty | t ∈ R} ∩ X = {(1 − t)x + ty | t ∈ I(x, y)}. A

preference relation % on X is linearly continuous if and only if for every x, y, z ∈ X, the

sets {w ∈ X(x, y) |w % z} and {w ∈ X(x, y) | z % w} are closed in X(x, y).

Remark 2 If a preference relation % on X is continuous, i.e., for every x ∈ X, the sets

{y ∈ X | y % x} and {y ∈ X |x % y} are closed in X, then % is linearly continuous.

The inverse of Remark 2 is not true. Actually, the binary relation generated from the

function of Young and Young’s (1910) example is linearly continuous but is not continuous.

We also will give a simple example later, but first we give the definition of linear continuity

of a real-valued function and second we state the relationship of (linear) continuities

between a preference relation and its utility representation.

Definition 2 A real-valued function u : X → R is linearly continuous if for every α ∈ R

and every x, y ∈ X, the sets {t ∈ I(x, y) |u((1 − t)x + ty) ≥ α} and {t ∈ I(x, y) |α ≥

u((1 − t)x + ty)} are closed in I(x, y).

Note that even if u is a utility representation of a continuous preference relation %,

u may not be continuous. For example, the usual ordering ≥ on R is continuous and

any decreasing function on R is a utility function representing ≥, but decreasing function

may be discontinuous at some points. Therefore, the continuity of a preference relation

and the continuity of its utility representation are not equivalent. The following remark

of lotteries and we interpret (1 − t)x + ty (0 ≤ t ≤ 1, x, y ∈ X) as the mixed lottery of lotteries x and y

with the respective probabilities 1 − t and t.
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gives the relationship of (linear) continuities between a preference relation and its utility

representation.

Given a real-valued function u : X → R, a preference relation %u on X is defined by

x %u y if and only if u(x) ≥ u(y). It is clear that u is a utility representation of %u.

Remark 3 (1) If u : X → R is linearly continuous (resp. continuous at x ∈ X), then

%u is linearly continuous (resp. continuous at x).3

(2) Let % be a linearly continuous preference relation (resp. a preference relation con-

tinuous at x ∈ X) and let u be its utility representation. If u(X) is an interval, u is

linearly continuous (resp. continuous at x).

Now, we are ready to give an example which illustrates that the linear continuity is

strictly weaker than the continuity.

Example 1 A real-valued function u on R2 is defined by

u(x, y) =


2x2y

x4 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Clearly, u is continuous on R2 \{(0, 0)}. At (0, 0), u is not continuous, because u(0, 0) = 0

and u(x, x2) = 1 for any x 6= 0. Since u is continuous on R2 \ {(0, 0)}, it is continuous

on any straight line which does not pass through (0, 0). In addition, it can be easily

shown that u is continuous on any straight line passing through (0, 0). Thus, u is linearly

continuous.

We now prove that u(R2) is an interval. Since u is continuous on R2 \ {(0, 0)} and

R2\{(0, 0)} is connected, u(R2\{(0, 0)}) is an interval. From u(0, 0) = 0 ∈ u(R2\{(0, 0)}),

it follows that u(R2) = u(R2 \ {(0, 0)}). Therefore, u(R2) is an interval.

From Remark 3, %u is linearly continuous but is not continuous at (0, 0).

3A preference relation % on X is continuous at x ∈ X if for every w, y ∈ X with w Â x Â y, there

exists an open subset U of RL such that w Â x′ Â y for every x′ ∈ X ∩ U .
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Because of the lack of continuity, a linearly continuous preference relation may not

have a maximal element in a compact set (Inoue, 2008, Example 2). If a linearly contin-

uous preference relation % is convex or weakly monotone, however, it recovers the upper

semi-continuity and, therefore, it has a maximal element in a compact set (Inoue, 2008,

Theorems 1 and 3).

Following Young and Young (1910), we can construct a linearly continuous preference

relation whose discontinuity points make a dense subset of R2.

Example 2 Let Q2 = {(a1, b1), (a2, b2), . . .}, where Q is the set of rational numbers. For

every natural number n, define un : R2 → R by un(x, y) = u(x − an, y − bn), where u

is the function in Example 1. The function U(x, y) =
∑∞

n=1 2−nun(x, y) is well-defined,

because max(x,y)∈R2 |u(x, y)| = 1. Since u is linearly continuous and u is discontinuous only

at (0, 0), the function U is linearly continuous and is not continuous at any (a, b) ∈ Q2.

Since U(R2) is an interval, from Remark 3, %U is linearly continuous and is not continuous

at any (a, b) ∈ Q2.

Young and Young (1910) constructed a linearly continuous function such that the

set of its discontinuity points is an uncountable dense subset of R2. In Section 4, we

will discuss the size of the set of discontinuity points of a linearly continuous preference

relation.

3 Representation by a utility function

We prove that the linear continuity is sufficient for the utility representation.

Theorem 1 Let X be a nonempty convex subset of RL. If a preference relation % on X

is linearly continuous, then there exists a real-valued function u : X → R such that (i)

a % b if and only if u(a) ≥ u(b), (ii) u(X) is an interval, and (iii) u is linearly continuous.

Before giving a proof, we compare this theorem with related works in the literature.

Eilenberg (1941) (see also Debreu (1959, 1964)) proved that every continuous preference
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relation on a separable connected topological space can be represented by a continuous

utility function. Monteiro (1987) proved that a continuous preference relation % on a

path connected topological space X has a continuous utility representation if and only if

it is countably bounded, i.e, there exists a countable subset Y of X such that for every

x ∈ X, there exist y, z ∈ Y with y % x % z. The domain of a preference relation in

Eilenberg’s theorem and in Monteiro’s theorem may not be a vector space and even if it

is a vector space, it may not be finite dimensional. Thus, our condition on the domain of

a preference relation is stronger than their conditions. (Recall that a convex subset of RL

is separable, connected, and path connected with respect to the Euclidean topology.) On

the other hand, as we saw in the previous section, the linear continuity is strictly weaker

than the usual continuity.

In our finite dimensional topological vector space framework, as we show in the next

proposition, the countably boundedness follows from the linear continuity of a prefer-

ence relation, although it is a necessary and sufficient condition for continuous utility

representation in Monteiro’s framework.

Proposition 1 Let X be a nonempty convex subset of RL. If a preference relation % on

X is linearly continuous, then there exists a countable subset Y of X such that for every

x ∈ X, there exist y, z ∈ Y with y % x % z.

Proof of Proposition 1. We only prove that there exists an upward countable subset

Y of X such that for every x ∈ X, there exists a y ∈ Y with y % x. By a similar manner,

we can prove the existence of a downward countable subset of X. We prove by induction

on the dimension of the affine hull aff(X) of X. Let k = dim aff(X). Note that k ≤ L.

Under an appropriate affine transformation, aff(X) can be identified with Rk.4 Thus, we

may assume that X is a subset of Rk. When k = 0, the proposition is clear. When k = 1,

X is an interval. Therefore, X can be represented as a countable union of closed intervals,

say, X =
⋃∞

n=1[an, bn]. Since % is linearly continuous, there exists a maximal element for

4Note that an affine transformation maps straight lines to straight lines. Thus, the linear continuity

of a preference relation is not affected by an affine transformation.
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% on every [an, bn]. Namely, for every n, there exists a yn ∈ [an, bn] such that for every

x ∈ [an, bn], yn % x. Let Y = {y1, y2, . . .}. Then, Y satisfies the required property.

Suppose that the proposition is true for k ≤ l but not true for k = l + 1. Then, we

have:

(a) for every countable subset Y of X, there exist x1 and x2 in X such that for every

y ∈ Y , x1 Â x2 Â y.

Let pr1 : Rl+1 → R be the projection into the first coordinate, i.e., pr1(x
(1), . . . , x(l+1)) =

x(1). Since dim aff(X) = l + 1, pr1(X) is a nondegenerate interval. Therefore, pr1(X)∩Q

is a countably infinite set, where Q is the set of rational numbers. Hence, we may write

pr1(X)∩Q = {q1, q2, . . .}. Since for every n, the set X ∩ ({qn} ×Rl) is a convex set with

at most dimension l, by the induction hypothesis, we have:

(b) for every n, there exists a countable subset Yn of X ∩ ({qn}×Rl) such that for every

x ∈ X ∩ ({qn} × Rl), there exists a y ∈ Yn with y % x.

Let Y =
⋃∞

n=1 Yn. Then, Y is countable and, therefore, from (a), it follows that:

(c) there exist x∗
1 and x∗

2 in X such that for every y ∈ Y , x∗
1 Â x∗

2 Â y.

Since pr1(X) is nondegenerate, there exists a w ∈ X such that w(1) 6= x
∗(1)
1 . From the

linear continuity of %, we have:

(d) there exists a t0 ∈ [0, 1[ such that for every t ∈ [t0, 1], (1 − t)w + tx∗
1 Â x∗

2.

Since t0 < 1 and w(1) 6= x
∗(1)
1 , there exists a t∗ ∈ [t0, 1] such that (1− t∗)w(1) + t∗x

∗(1)
1 ∈ Q.

Therefore, for some n∗, (1 − t∗)w(1) + t∗x
∗(1)
1 = qn∗ . By (b), there exists a y∗ ∈ Y

such that y∗ % (1 − t∗)w + t∗x∗
1. On the other hand, from (c) and (d), it follows that

(1 − t∗)w + t∗x∗
1 Â x∗

2 Â y∗, which is a contradiction. This completes the proof of

Proposition 1.

Once we know that a preference relation is countably bounded, we can prove Theorem

1 by applying Eilenberg’s (1941) theorem repeatedly. The formal proof is as follows:
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Proof of Theorem 1. From Proposition 1, there exist two countable sets {y1, y2, . . .}

and {z1, z2, . . .} with · · · % y2 % y1 % z1 % z2 % · · · such that for every x ∈ X, there

exists n with yn % x % zn. Since [y1, z1] = {(1 − t)y1 + tz1 | 0 ≤ t ≤ 1} is separable

and connected, and % is continuous on [y1, z1], from Eilenberg’s (1941) theorem (see also

Debreu (1959, 1964)), there exists a continuous utility function u on [y1, z1]. Note that

u([y1, z1]) is a bounded interval, because u is continuous on [y1, z1] and [y1, z1] is connected

and compact. Let y′
1 (resp. z′1) be a maximal (resp. minimal) element on [y1, z1]. Since

for every x ∈ X with y′
1 % x % z′1, there exists a wx ∈ [y1, z1] with x ∼ wx, we can extend

u to the set {x ∈ X | y′
1 % x % z′1} by defining u(x) = u(wx). If yn Â y′

1 for some n, u

has not been defined on a subinterval [yn, v[= {(1 − t)yn + tv | 0 ≤ t < 1} of [yn, y
′
1] such

that u(v) has already been defined. Note that v ∼ y′
1. Again, from Eilenberg’s theorem,

there exists a continuous function un on [yn, v] with un(v) = u(v) = u(y′
1). Note that

un([yn, v]) is a bounded closed interval. Let y′
n be a maximal element on [yn, v]. Since

for every x ∈ X with y′
n % x % y′

1, there exists a wx ∈ [yn, v] with x ∼ wx, we can

define u(x) = un(wx). Thus, we have extended u to the set {x ∈ X | y′
n % x % z′1}. Note

that, by construction of u, u({x ∈ X | y′
n % x % z′1}) is a bounded closed interval. By

repeating this argument, we can extend u to the whole space X, because % is countably

bounded. By construction, u is a representation of % and u(X) is an interval. Therefore,

from Remark 3, u is linearly continuous. This completes the proof of Theorem 1.

4 Relationship with Eilenberg’s (1941) theorem

We discuss the relationship between our utility representation theorem (Theorem 1) and

Eilenberg’s (1941) theorem. Let X be a nonempty convex subset of RL and let % be

a linearly continuous preference relation on X as in Theorem 1. Also, let D = {x ∈

X |% is not continuous at x}. Suppose that D is small enough in the following two senses.

First, X \ D is connected. Second, every discontinuity point is linearly accessible from

the set X \ D of continuity points, i.e., for every x ∈ D, there exists a y ∈ X and a

sequence (xn)n in (X \ D) ∩ [x, y] such that xn → x. Then, from the connectedness of

10



X \D, we can apply Eilenberg’s theorem to X \D and obtain a continuous utility function

u on X \ D. Since u is continuous on X \ D and X \ D is connected, u(X \ D) is an

interval. By using the fact that every discontinuity point is linearly accessible from the set

of continuity points, we can extend the function u to the whole space X with preserving

that the extended function u is a utility representation of % and u(X) is an interval.

Therefore, from Remark 3, the utility function is linearly continuous. Hence, if the set

D of discontinuity points is small enough, from Eilenberg’s theorem, we can obtain the

utility representation of a linearly continuous preference relation.

In Proposition 2, we prove that every discontinuity point is linearly accessible from

the set of continuity points. In Proposition 3, we prove that the set X \ D of continuity

points is connected. Finally, in Proposition 4, with the help of Propositions 2 and 3 and

Eilenberg’s theorem, we prove that every linearly continuous preference relation can be

represented by a linearly continuous utility function.

It should be emphasized that Proposition 4 does not mean our utility representation

theorem (Theorem 1) is dispensable, because we essentially rely on the utility representa-

tion theorem when we show the smallness of the set of discontinuity points. Actually, in

the proof of Lemma 2 below, we use our utility representation theorem in order to apply

Kershner’s theorem. Kershner (1943) characterized the set of discontinuity points of a

unicontinuous function which is weaker than a linearly continuous function. In the proof

of Kershner’s theorem, the following facts are used: the set of discontinuity points of

any real-valued function is a Fσ-set; a continuous function on a compact set is uniformly

continuous. Our utility representation theorem enables us to use Kershner’s theorem.

We give the precise statements of Kershner’s theorem (Kershner, 1943, Theorem 6)

and Kuratowski-Ulam theorem (Kuratowski and Ulam, 1932; Kuratowski, 1966, pp. 246-

247; Oxtoby, 1971, Theorem 15.1) which play the important roles in the following. Let

k ≥ 2. A real-valued function u on a rectangle
∏k

j=1[a
(j), b(j)] is unicontinuous if for every

i ∈ {1, . . . , k} and every (x̄(1), . . . , x̄(i−1), x̄(i+1), . . . , x̄(k)) ∈
∏

j 6=i[a
(j), b(j)], the function

[a(i), b(i)] 3 x(i) 7→ u(x̄(1), . . . , x̄(i−1), x(i), x̄(i+1), . . . , x̄(k)) ∈ R is continuous. Note that a

linearly continuous function on a rectangle is unicontinuous. For every i ∈ {1, . . . , k},

11



define prk
−i : Rk → Rk−1 by prk

−i(x
(1), . . . , x(k)) = (x(1), . . . , x(i−1), x(i+1), . . . , x(k)).

Kershner’s theorem Let u be a unicontinuous function on
∏k

j=1[a
(j), b(j)] with k ≥ 2 and

a(j) < b(j) for every j ∈ {1, . . . , k}. Let D = {x ∈
∏k

j=1[a
(j), b(j)] |u is not continuous at x}.

Then, for every i ∈ {1, . . . , k}, prk
−i(D) is of the first category in

∏
j 6=i[a

(j), b(j)].

Kuratowski-Ulam theorem Let T1 and T2 be topological spaces such that T2 has a

countable base. If D ⊂ T1 × T2 is of the first category in T1 × T2, there exists a P ⊂ T1 of

the first category in T1 such that for every x ∈ T1 \ P , the set Dx is of the first category

in T2, where Dx is the x-section of D, i.e., Dx = {y ∈ T2 | (x, y) ∈ D}.

The first lemma is a variation of Kuratowski-Ulam theorem.

Lemma 1 Let k ≥ 2 and D ⊂ Rk be of the first category in Rk. Let x0, y0 ∈ Rk with

x0 6= y0. Let {v1, . . . , vk−1} be an orthonormal basis of (span{x0 − y0})⊥. Then, for

every ε > 0, there exists a P ⊂] − ε, ε[ of the first category in R such that for every

t ∈]− ε, ε[\P the set D ∩ co({x0} ∪ Y ε
tv1

) is of the first category in aff({x0} ∪ Y ε
tv1

), where

Y ε
tv1

= {y0 + tv1 +
∑k−1

i=2 sivi | si ∈] − ε, ε[, i = 2, . . . , k − 1}.

In Figure 1, the set co({x0} ∪ Y ε
tv1

) with k = 3 is drawn. Note that aff({x0} ∪ Y ε
tv1

) =

span{y0 + tv1 − x0, v2, . . . , vk−1} + {x0}.

Proof of Lemma 1. Since a countable union of sets of the first category in R is of the

first category in R, it suffices to prove that if D is nowhere dense in Rk, then for every

ε > 0, there exists a P ⊂ [−ε, ε[ of the first category in R such that for every t ∈]−ε, ε[\P ,

the set D∩co({x0}∪Y ε
tv1

) is nowhere dense in aff({x0}∪Y ε
tv1

). Let D be nowhere dense in

Rk. Since the closure of D is also nowhere dense in Rk, we may assume that D is closed.

Let G = Rk \D. Then, G is an open dense subset of Rk. Let {Vn |n ∈ N} be a countable

base for ] − ε, ε[k−2×]0, 1[ such that Vn 6= ∅ for every n ∈ N. For every n ∈ N, let

Gn = {t ∈] − ε, ε[ | there exists (s2, . . . , sk−1, α) ∈ Vn with
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y0 − εv1

y0

y0 + tv1

y0 + εv1

y0 + tv1 + εv2

y0 + tv1 − εv2

x0

co({x0} ∪ Y ε
tv1

)

Figure 1: co({x0} ∪ Y ε
tv1

) when k = 3

αx0 + (1 − α)(y0 + tv1 +
k−1∑
i=2

sivi) ∈ G}.

Claim 1 For every n ∈ N, Gn is open.

Proof of Claim 1. Let n ∈ N and t ∈ Gn. Then, there exists (s2, . . . , sk−1, α) ∈ Vn

with αx0 + (1 − α)(y0 + tv1 +
∑k−1

i=2 sivi) ∈ G. Define g :] − ε, ε[→ Rk by g(t̂) = αx0 +

(1 − α)(y0 + t̂v1 +
∑k−1

i=2 sivi). Since g is continuous, g−1(G) is open and, therefore, from

t ∈ g−1(G) ⊂ Gn, it follows that Gn is open.

Define h :] − ε, ε[k−1×]0, 1[→ Rk by h(t, s2, . . . , sk−1, α) = αx0 + (1 − α)(y0 + tv1 +∑k−1
i=2 sivi).

Claim 2 h is an open mapping.

Proof of Claim 2. Note that the family of all sets such that ]t, t[×
∏k−1

i=2 ]si, si[×]α, α[⊂]−

ε, ε[k−1×]0, 1[ forms a base for ]−ε, ε[k−1×]0, 1[. Note further that h(]t, t[×
∏k−1

i=2 ]si, si[×]α, α[) =

int(co{αx0 + (1 − α)(y0 + tv1 +
∑k−1

i=2 sivi) |α ∈ {α, α}, t ∈ {t, t}, si ∈ {si, si}, i =

2, . . . , k − 1}). Thus, h is an open mapping.
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Claim 3 For every n ∈ N, Gn is dense in ] − ε, ε[.

Proof of Claim 3. Let n ∈ N. Let U be a nonempty open subset of [−ε, ε[. Then,

U × Vn is a nonempty subset of ] − ε, ε[k−1×]0, 1[. From Claim 2, h is an open mapping

and, therefore, h(U × Vn) is nonempty and open. Since G is dense in Rk, we have

h(U × Vn) ∩ G 6= ∅. Thus, there exist t ∈ U and (s2, . . . , sk−1, α) ∈ Vn such that αx0 +

(1 − α)(y0 + tv1 +
∑k−1

i=2 sivi) ∈ G. Hence, t ∈ Gn and, therefore, Gn ∩ U 6= ∅. Thus, Gn

is dense in ] − ε, ε[.

Let P =] − ε, ε[\
⋂∞

i=1 Gn. By Claims 1 and 3, for every n ∈ N, Gn is open dense in

]−ε, ε[ and, therefore, P is of the first category in R. Let t ∈
⋂∞

n=1 Gn =]−ε, ε[\P . Define

ht :]−ε, ε[k−2×]0, 1[→ Rk by ht(s2, . . . , sk−1, α) = αx0+(1−α)(y0+tv1+
∑k−1

i=2 sivi). Note

that ht(
∏k−1

i=2 ]si, si[×]α, α[) = ri(co{αx0 + (1 − α)(y0 + tv1 +
∑k−1

i=2 sivi) |α ∈ {α, α}, si ∈

{si, si}, i = 2, . . . , k − 1}), where ri(C) stands for the relative interior of the set C. Thus,

if we restrict the range of ht to aff({x0}∪Y ε
tv1

) = span{y0 + tv1 − x0, v2, . . . , vk−1}+ {x0},

ht is an open mapping. Note also that the family of all sets ht(
∏k−1

i=2 ]si, si[×]α, α[) with∏k−1
i=2 ]si, si[×]α, α[⊂]−ε, ε[k−2×]0, 1[ forms a base for ri(co({x0}∪Y ε

tv1
)). Since {Vn |n ∈ N}

is a base for ]− ε, ε[k−2×]0, 1[, {ht(Vn) |n ∈ N} is a base for ri(co({x0} ∪ Y ε
tv1

)). Since t ∈⋂∞
n=1 Gn, for every n ∈ N, there exists (s2, . . . , sk−1, α) ∈ Vn with ht(s2, . . . , sk−1, α) ∈ G.

Therefore, ht(Vn)∩G 6= ∅ for every n ∈ N. This means that G∩ri(co({x0}∪Y ε
tv1

)) is dense

in ri(co({x0} ∪ Y ε
tv1

)). Thus, D ∩ ri(co({x0} ∪ Y ε
tv1

)) is nowhere dense in aff({x0} ∪ Y ε
tv1

).

Since the relative boundary of co({x0} ∪ Y ε
tv1

) is nowhere dense in aff({x0} ∪ Y ε
tv1

), D ∩

co({x0} ∪ Y ε
tv1

) is nowhere dense in aff({x0} ∪ Y ε
tv1

). This completes the proof of Lemma

1.

Corollary 1 Let k ≥ 2. Let D ⊂ Rk be of the first category in Rk. Let x0, y0 ∈ Rk with

x0 6= y0. Then, for every ε > 0, there exists a y′ ∈ Rk such that y′ 6= x0, ‖y′ − y0‖ < ε,

and D ∩ [x0, y
′] is of the first category in [x0, y

′], where ‖ · ‖ is the Euclidean norm.

Proof of Corollary 1. Let {v1, . . . , vk−1} be an orthonormal basis of (span{x0 − y0})⊥.

Let ε > 0. By Lemma 1, there exists a t1 ∈]−ε/(k−1), ε/(k−1)[ such that D∩co({x0}∪
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Y
ε/(k−1)
t1v1

) is of the first category in aff({x0}∪Y
ε/(k−1)
t1v1

) = span{y0+t1v1−x0, v2, . . . , vk−1}+

{x0}. If k ≥ 3, we can apply Lemma 1 again to D ∩ co({x0} ∪ Y
ε/(k−1)
t1v1

) and, therefore,

there exists a t2 ∈] − ε/(k − 1), ε/(k − 1)[ such that D ∩ co({x0} ∪ Y
ε/(k−1)
t1v1,t2v2

) is of the

first category in aff({x0} ∪ Y
ε/(k−1)
t1v1,t2v2

), where Y
ε/(k−1)
t1v1,t2v2

= {y0 + t1v1 + t2v2 +
∑k−1

i=3 sivi | si ∈

] − ε/(k − 1), ε/(k − 1)[, i = 3, . . . , k − 1}. Note that aff({x0} ∪ Y
ε/(k−1)
t1v1,t2v2

) = span{y0 +

t1v1 + t2v2 −x0, v3, . . . , vk−1}+{x0}. Hence, by applying Lemma 1 repeatedly, there exist

t1, . . . , tk−1 ∈] − ε/(k − 1), ε/(k − 1)[ such that D ∩ co({x0} ∪ Y
ε/(k−1)
t1v1,...,tk−1vk−1

) is of the

first category in aff({x0}∪Y
ε/(k−1)
t1v1,...,tk−1vk−1

), where Y
ε/(k−1)
t1v1,...,tk−1vk−1

= {y0 +
∑k−1

i=1 tivi}. Thus,

D ∩ [x0, y0 +
∑k−1

i=1 tivi] is of the first category in [x0, y0 +
∑k−1

i=1 tivi]. By the definition of

{v1, . . . , vk−1}, we have x0 6= y0 +
∑k−1

i=1 tivi. In addition,∥∥∥∥∥y0 +
k−1∑
i=1

tivi − y0

∥∥∥∥∥ =

∥∥∥∥∥
k−1∑
i=1

tivi

∥∥∥∥∥ ≤
k−1∑
i=1

|ti|‖vi‖ =
k−1∑
i=1

|ti| < (k − 1)
ε

k − 1
= ε.

This completes the proof of Corollary 1.

Lemma 2 Let L ≥ 2. Let X be a nonempty convex subset of RL with aff(X) = RL and %
be a linearly continuous preference relation on X. Let D = {x ∈ X |% is not continuous at x}.

Then,

(1) for every rectangle A =
∏L

j=1[a
(j), b(j)] ⊂ X with a(j) < b(j) for every j ∈ {1, . . . , L},

and every i ∈ {1, . . . , L}, the set prL
−i(D∩A) is of the first category in

∏
j 6=i[a

(j), b(j)],

(2) D is of the first category in aff(X).

Proof of Lemma 2. By Theorem 1, there exists a utility representation u of % such

that u : X → R is linearly continuous and u(X) is an interval. Thus, from Remark 3, it

follows that D = {x ∈ X |u is not continuous at x}. Since u is unicontinuous on A, by

Kershner’s theorem, we obtain (1).

We now prove (2). Note that int(X) can be represented as a countable union of

rectangles, say, int(X) =
⋃∞

n=1

∏L
j=1[a

(j)
n , b

(j)
n ] with a

(j)
n < b

(j)
n for every j ∈ {1, . . . , L}

and every n ∈ N. For every n ∈ N, since D ∩
∏L

j=1[a
(j)
n , b

(j)
n ] ⊂ [a

(1)
n , b

(1)
n ] × prL

−1(D ∩∏L
j=1[a

(j)
n , b

(j)
n ]), from (1), it follows that D ∩

∏L
j=1[a

(j)
n , b

(j)
n ] is of the first category in RL.
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Therefore, D∩int(X) =
⋃∞

n=1(D∩
∏L

j=1[a
(j)
n , b

(j)
n ]) is of the first category in RL. Since X is

convex, the boundary bd(X) of X is nowhere dense in RL. Since D ⊂ (D∩int(X))∪bd(X),

D is of the first category in RL.

Proposition 2 Let X be a nonempty convex subset of RL and % be a linearly continuous

preference relation on X. Let D = {x ∈ X |% is not continuous at x}. Then, for every

x, y ∈ X and every ε > 0, there exists a y′ ∈ X such that y′ 6= x, ‖y′ − y‖ < ε,

and D ∩ [x, y′] is of the first category in [x, y′]. In particular, every x ∈ D is linearly

accessible from X \ D, i.e., for every x ∈ D, there exists a y ∈ X and a sequence (xn)n

in (X \ D) ∩ [x, y] such that xn → x.

Proof of Proposition 2. Let k = dim aff(X). If k ≤ 1, then D = ∅ and, therefore, the

statement is clear. Let k ≥ 2. Under an appropriate affine transformation, aff(X) can

be identified with Rk. Thus, we may assume that X is a subset of Rk. Let x, y ∈ X and

ε > 0. Then, there exists a z ∈ int(X) with z 6= x and ‖z − y‖ < ε/2. Since z ∈ int(X),

there exists an ε1 ∈]0, ε] with {w ∈ Rk | ‖w − z‖ < ε1/2} ⊂ X. By Lemma 2, D is of the

first category in Rk and, therefore, by Corollary 1, there exists a y′ ∈ Rk such that y′ 6= x,

‖y′ − z‖ < ε1/2, and D ∩ [x, y′] is of the first category in [x, y′]. From ‖y′ − z‖ < ε1/2, it

follows that y′ ∈ X. Since ‖y′ − y‖ ≤ ‖y′ − z‖ + ‖z − y‖ < ε1/2 + ε/2 ≤ ε, we obtained

the required result.

Lemma 3 Let k ≥ 2 and A =
∏k

j=1[a
(j), b(j)] with a(j) < b(j) for every j ∈ {1, . . . , k}. Let

D ⊂ A. If for every i ∈ {1, . . . , k}, the set prk
−i(D) is of the first category in

∏
j 6=i[a

(j), b(j)],

then A \ D is connected.

Proof of Lemma 3. We prove by induction on k. Let k = 2. Suppose, to the contrary,

that A \ D is not connected. Then, there exist open subsets U and V of R2 such that

U ∩ (A \ D) 6= ∅, V ∩ (A \ D) 6= ∅, U ∩ V ∩ (A \ D) = ∅, and U ∪ V ⊃ A \ D.

Claim 4 There exist x∗ ∈ U ∩ A, y∗ ∈ V ∩ A, and i ∈ {1, 2} such that x∗(i) = y∗(i) 6∈

pri(D), where pri(z
(1), z(2)) = z(i).
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Proof of Claim 4. By assumption, pr1(D) = pr2
−2(D) is of the first category in [a(1), b(1)].

Thus, pr1(D)×[a(2), b(2)] is of the first category in A = [a(1), b(2)]×[a(2), b(2)]. Since U ⊂ R2

is open and U ∩A 6= ∅, we have int(U ∩A) 6= ∅. By Baire’s category theorem, U ∩A is of

the second category in A and, therefore, we can pick x̄ ∈ (U ∩ A) \ (pr1(D) × [a(2), b(2)]).

Similarly, we can pick ŷ ∈ (V ∩A) \ ([a(1), b(1)]× pr2(D)). We consider two distinct cases.

Case 1. V ∩ ({x̄(1)} × [a(2), b(2)]) 6= ∅.

In this case, we can pick ȳ ∈ V ∩ ({x̄(1)} × [a(2), b(2)]). Then, ȳ ∈ V ∩ A, x̄ ∈ U ∩ A, and

ȳ(1) = x̄(1) 6∈ pr1(D). Therefore, we obtained the desired property in Case 1.

Case 2. V ∩ ({x̄(1)} × [a(2), b(2)]) = ∅.

From x̄(1) 6∈ pr1(D), it follows that {x̄(1)} × [a(2), b(2)] ⊂ A \ D ⊂ U ∪ V . Thus, we

have {x̄(1)} × [a(2), b(2)] ⊂ U . Let x̂ = (x̄(1), ŷ(2)). Then, x̂ ∈ U ∩ A, ŷ ∈ V ∩ A, and

x̂(2) = ŷ(2) 6∈ pr2(D). Therefore, we obtained the desired property in Case 2. This

completes the proof of Claim 4.

Let x∗ and y∗ be those of Claim 4 with x∗(1) = y∗(1) 6∈ pr1(D). Then, {x∗(1)} ×

[a(2), b(2)] ⊂ A \D. We have x∗ ∈ U ∩ ({x∗(1)}× [a(2), b(2)]), y∗ ∈ V ∩ ({x∗(1)}× [a(2), b(2)]),

U∩V ∩({x∗(1)}×[a(2), b(2)]) ⊂ U∩V ∩(A\D) = ∅, and U∪V ⊃ A\D ⊃ {x∗(1)}×[a(2), b(2)],

but this contradicts that {x∗(1)} × [a(2), b(2)] is connected. Thus, A \ D is connected if

k = 2.

Assume now that the lemma is true for k = l − 1 but not for k = l. Then, there exist

open subsets U and V of Rl such that U∩(A\D) 6= ∅, V ∩(A\D) 6= ∅, U∩V ∩(A\D) = ∅,

and U ∪ V ⊃ A \ D.

Claim 5 For every x(1) ∈ [a(1), b(1)], either U ∩ ({x(1)} ×
∏l

j=2[a
(j), b(j)]) 6= ∅ or V ∩

({x(1)} ×
∏l

j=2[a
(2), b(j)]) 6= ∅ holds.

Proof of Claim 5. Suppose, to the contrary, that there exists an x(1) ∈ [a(1), b(1)] such
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that U ∩ ({x(1)} ×
∏l

j=2[a
(j), b(j)]) = ∅ and V ∩ ({x(1)} ×

∏l
j=2[a

(j), b(j)]) = ∅. Since

U ∪ V ⊃ A \ D, we have {x(1)} ×
∏l

j=2[a
(j), b(j)] ⊂ D. Then, prl

−1(D) =
∏l

j=2[a
(j), b(j)].

This contradicts that prl
−1(D) is of the first category in

∏l
j=2[a

(j), b(j)]. This completes

the proof of Claim 5.

By Claim 5, we may assume that V ∩ ({b(1)} ×
∏l

j=2[a
(j), b(j)]) 6= ∅. Let α = sup{t ∈

[a(1), b(1)] |U ∩ ({t} ×
∏l

j=2[a
(j), b(j)]) 6= ∅}. Since U ∩ A 6= ∅, the right-hand set defining

α is nonempty.

Claim 6 There exists a nondegenerate subinterval I of [a(1), b(1)] such that for every t ∈ I,

U ∩ ({t} ×
∏l

j=2[a
(j), b(j)]) 6= ∅ and V ∩ ({t} ×

∏l
j=2[a

(j), b(j)]) 6= ∅.

Proof of Claim 6. We consider two distinct cases.

Case 1. U ∩ ({α} ×
∏l

j=2[a
(j), b(j)]) 6= ∅.

In this case, since U is open, we have α = b(1). Since both U and V are open, there

exists an ε > 0 such that for every t ∈]b(1) − ε, b(1)], U ∩ ({t} ×
∏l

j=2[a
(j), b(j)]) 6= ∅ and

V ∩ ({t} ×
∏l

j=2[a
(j), b(j)]) 6= ∅. Thus, Claim 6 holds in Case 1.

Case 2. U ∩ ({α} ×
∏l

j=2[a
(j), b(j)]) = ∅.

By Claim 5, we have V ∩ ({α} ×
∏l

j=2[a
(j), b(j)]) 6= ∅. Since V is open, there exists an

ε1 > 0 such that for every t ∈]α−ε1, α], V ∩({t}×
∏l

j=2[a
(j), b(j)]) 6= ∅. From the definition

of α, there exists a t∗ ∈]α − ε1, α] ∩ [a(1), b(1)] such that U ∩ ({t∗} ×
∏l

j=2[a
(j), b(j)]) 6= ∅.

Since U is open, there exists an ε2 > 0 such that for every t ∈]t∗ − ε2, t
∗ + ε2[, U ∩ ({t}×∏l

j=2[a
(j), b(j)]) 6= ∅. The interval ]α − ε1, α]∩]t∗ − ε2, t

∗ + ε2[∩[a(1), b(1)] is nondegenerate

and has the desired property. Thus, Claim 6 holds in Case 2. This completes the proof

of Claim 6.

By assumption, for every i ∈ {2, . . . , l}, prl
−i(D) is of the first category in

∏
j 6=i[a

(j), b(j)].
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Thus, by Kuratowski-Ulam theorem, for every i ∈ {2, . . . , l}, there exists a Pi ⊂ [a(1), b(1)]

of the first category in [a(1), b(1)] such that for every x(1) ∈ [a(1), b(1)] \ Pi, (prl
−i(D))x(1) =

prl−1
−i (Dx(1)) is of the first category in

∏
2≤j≤l:j 6=i[a

(i), b(i)], where Ex(1) is the x(1)-section of

set E. Since
⋃l

i=2 Pi is of the first category in [a(1), b(1)], we can pick x∗(1) ∈ I \
⋃l

i=2 Pi,

where I is the nondegenerate interval obtained in Claim 6. From x∗(1) 6∈
⋃l

i=2 Pi, it

follows that for every i ∈ {2, . . . , l}, the set prl−1
−i (Dx∗(1)) is of the first category in∏

2≤j≤l:j 6=i[a
(j), b(j)]. By the induction hypothesis,

∏l
j=2[a

(j), b(j)] \ Dx∗(1) is connected.

Since x∗(1) ∈ I, we have U ∩ ({x∗(1)} ×
∏l

j=2[a
(j), b(j)]) 6= ∅ and V ∩ ({x∗(1)} ×∏l

j=2[a
(j), b(j)]) 6= ∅. This implies that Ux∗(1)∩

∏l
j=2[a

(j), b(j)] 6= ∅ and Vx∗(1)∩
∏l

j=2[a
(j), b(j)] 6=

∅. Since U and V are open subsets of Rl, Ux∗(1) and Vx∗(1) are open subsets of Rl−1 and,

therefore, we have int(Ux∗(1) ∩
∏l

j=2[a
(j), b(j)]) 6= ∅ and int(Vx∗(1) ∩

∏l
j=2[a

(j), b(j)]) 6= ∅.

Hence, by Baire’s category theorem, Ux∗(1) ∩
∏l

j=2[a
(j), b(j)] and Vx∗(1) ∩

∏l
j=2[a

(j), b(j)] are

of the second category in
∏l

j=2[a
(j), b(j)]. From x∗(1) 6∈ P2, it follows that prl−1

−2 (Dx∗(1)) is of

the first category in
∏l

j=3[a
(j), b(j)]. Since Dx∗(1) ⊂ [a(2), b(2)]× prl−1

−2 (Dx∗(1)), the set Dx∗(1)

is of the first category in
∏l

j=2[a
(j), b(j)]. Therefore, Ux∗(1)∩(

∏l
j=2[a

(j), b(j)]\Dx∗(1)) 6= ∅ and

Vx∗(1)∩(
∏l

j=2[a
(j), b(j)]\Dx∗(1)) 6= ∅. In addition, Ux∗(1)∩Vx∗(1)∩(

∏l
j=2[a

(j), b(j)]\Dx∗(1)) = ∅

and Ux∗(1) ∪ Vx∗(1) ⊃
∏l

j=2[a
(j), b(j)] \ Dx∗(1) . This contradicts that

∏l
j=2[a

(j), b(j)] \ Dx∗(1)

is connected. Thus, A \ D is connected when k = l. This completes the proof of Lemma

3.

Proposition 3 Let X be a nonempty convex subset of RL and % be a linearly continuous

preference relation on X. Let D = {x ∈ X |% is not continuous at x}. Then, X \ D is

connected.

Proof of Proposition 3. Let k = dim aff(X). If k ≤ 1, then D = ∅ and, therefore,

X \ D is connected. Let k ≥ 2. Under an appropriate affine transformation, aff(X) can

be identified with Rk. Thus, we may assume that X is a subset of Rk. Suppose, to the

contrary, that X \ D is not connected. Then, there exist open subsets U and V of Rk

such that U ∩ (X \D) 6= ∅, V ∩ (X \D) 6= ∅, U ∩ V ∩ (X \D) = ∅, and U ∪ V ⊃ X \D.

Claim 7 There exists a rectangle A =
∏k

j=1[a
(j), b(j)] such that a(j) < b(j) for every
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j ∈ {1, . . . , k}, A ⊂ X, U ∩ A 6= ∅, and V ∩ A 6= ∅.

Proof of Claim 7. Let x ∈ U ∩ (X \ D) and y ∈ V ∩ (X \ D). Since V is open, by

Proposition 2, there exists a y′ ∈ V ∩ int(X) such that y′ 6= x and D∩ [x, y′] is of the first

category in [x, y′]. Since y′ ∈ int(X) and X is convex, we have ]x, y′] ⊂ int(X). Define

t∗ = sup{t ∈ [0, 1] | (1 − t)x + ty′ ∈ U}. Since x ∈ U and U is open, t∗ > 0 follows. Let

z = (1 − t∗)x + t∗y′. Then, z ∈ int(X) and, therefore, there exists an r > 0 such that

A :=
∏k

j=1[z
(j) − r, z(j) + r] ⊂ X. By the definition of t∗, we have U ∩ A 6= ∅. We prove

that V ∩A 6= ∅. Suppose, to the contrary, that V ∩A = ∅. Since y′ ∈ V , we have t∗ < 1.

Again, by the definition of t∗, {(1 − t)x + ty′ | t ∈]t∗, 1]} ∩ U = ∅. Since V ∩ A = ∅, we

have {(1 − t)x + ty′ | t ∈]t∗, 1]} ∩ A ∩ (U ∪ V ) = ∅. From U ∪ V ⊃ X \ D, it follows that

{(1− t)x+ ty′ | t ∈]t∗, 1]}∩A ⊂ D. Since {(1− t)x+ ty′ | t ∈]t∗, 1]}∩A is a nondegenerate

segment in [x, y′], this contradicts that D ∩ [x, y′] is of the first category in [x, y′]. Then,

we have proved that V ∩ A 6= ∅. This completes the proof of Claim 7.

By Lemma 2, for every i ∈ {1, . . . , k}, the set prk
−i(D ∩ A) is of the first category in∏

j 6=i[a
(j), b(j)]. Thus, by Lemma 3, A \D is connected. Since U and V are open, we have

int(U ∩ A) 6= ∅ and int(V ∩ A) 6= ∅, and, therefore, from Baire’s category theorem, both

sets U ∩ A and V ∩ A are of the second category in A. By Lemma 2, D is of the first

category in Rk. Hence, U ∩ (A \ D) 6= ∅ and V ∩ (A \ D) 6= ∅. In addition, we have

U ∩ V ∩ (A \ D) ⊂ U ∩ V ∩ (X \ D) = ∅ and U ∪ V ⊃ X \ D ⊃ A \ D. This contradicts

that A \ D is connected. Thus, X \ D is connected.

Proposition 4 Let X be a nonempty convex subset of RL and % be a linearly continuous

preference relation on X. Then, by using Propositions 2 and 3, from Eilenberg’s (1941)

theorem (see also Debreu (1959, 1964)), it can be shown that there exists a real-valued

function u : X → R such that (i) a % b if and only if u(a) ≥ u(b), (ii) u(X) is an interval,

and (iii) u is linearly continuous.

Proof of Proposition 4. Let D = {x ∈ X |% is not continuous at x}. Then, from

Proposition 3, X \D is connected. Since X \D is also separable, from Eilenberg’s (1941)
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theorem (see also Debreu (1959, 1964)), there exists a continuous function u on X \ D

such that a % b if and only if u(a) ≥ u(b). Since u is continuous on X \ D and X \ D is

connected, u(X \ D) is an interval. We may assume that u(X \ D) is bounded.5

Let x ∈ D. If there exist a and b in X \ D with a % x % b, from the con-

nectedness of X \ D and the continuity of % on X \ D, there exists a wx ∈ X \

D with wx ∼ x. In this case, u(x) is defined by u(x) = u(wx). Let Y = {x ∈

X | there exists a wx ∈ X \ D with wx ∼ x}. Then, u has been defined on Y . By con-

struction, u(Y ) is a bounded interval, and for every a, b ∈ Y , a % b if and only if

u(a) ≥ u(b).

By the definition of Y , for every x ∈ X \ Y = D \ Y , either (i) x Â a for every

a ∈ X \ D, or (ii) a Â x for every a ∈ X \ D. For x ∈ D \ Y with x Â a for every

a ∈ X \ D, u(x) is defined by u(x) = supa∈X\D u(a) and for x ∈ D \ Y with a Â x for

every a ∈ X \ D, u(x) is defined by u(x) = infa∈X\D u(a). Then, u has been defined in

the whole space X. Note that u(X) is an interval. It remains to prove that u is a utility

representation of %. Before proving that, we prove the following claim.

Claim 8 Let x ∈ D \ Y .

(1) If x Â y (resp. y Â x) for some y ∈ X, then there exists an a ∈ X \ D with a Â y

(resp. y Â a).

(2) If x Â y (resp. y Â x) for some y ∈ Y , then there exists an a ∈ X \ D with

x Â a Â y (resp. y Â a Â x).

(3) If x Â y for some y ∈ D \ Y , then x Â a Â y for every a ∈ X \ D.

Proof of Claim 8.

(1) We only prove the case where x Â y for some y ∈ X. By Proposition 2, there exists

a z ∈ X and a sequence (xn)n in (X \ D) ∩ [x, z] such that xn → x. Since % is

5Since Tan−1 : R →] − π/2, π/2[ is strictly monotone, continuous, and bounded, Tan−1 ◦ u is also a

continuous utility function on X \ D such that Tan−1 ◦ u(X \ D) is a bounded interval.
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linearly continuous, the set {t ∈ I(x, z) | (1 − t)x + tz Â y} is open in I(x, z) and,

therefore, xn Â y for sufficiently large n. Since xn ∈ X \ D for every n, we have

proved (1).

(2) We only prove the case where x Â y for some y ∈ Y . By (1), there exists an

a ∈ X \ D with a Â y. Since y ∈ Y , there exists a wy ∈ X \ D with x Â wy ∼ y.

Since x ∈ D \ Y , this implies that x Â b for every b ∈ X \D. Therefore, x Â a Â y.

(3) Let x, y ∈ D \ Y with x Â y. By (1), there exist a, b ∈ X \D with a Â y and x Â b.

Since x, y ∈ D \ Y , this implies that x Â a Â y for every a ∈ X \ D.

This completes the proof of Claim 8.

Now we are ready to prove that u is a utility representation of %. It suffices to prove

that (a) x ∼ y implies u(x) = u(y), and (b) x Â y implies u(x) > u(y). Let x and

y in X with x ∼ y. Note that in this case, either x, y ∈ Y or x, y ∈ D \ Y holds.

If x, y ∈ Y , it is clear that u(x) = u(y). If x, y ∈ D \ Y and if x ∼ y Â a (resp.

a Â x ∼ y) for every a ∈ X \ D, by definition u(x) = supa∈X\D u(a) = u(y) (resp.

u(x) = infa∈X\D u(a) = u(y)). Therefore, x ∼ y implies u(x) = u(y).

Let x and y in X with x Â y. If x, y ∈ Y , then it is clear that u(x) > u(y). If

x ∈ D \Y and y ∈ Y , then from Claim 8(2), there exists a b ∈ X \D such that x Â b Â y.

Thus, u(x) = supa∈X\D u(a) ≥ u(b) > u(y). By a similar manner, we can prove the case

where x ∈ Y and y ∈ D \ Y . If x, y ∈ D \ Y , from Claim 8(3), x Â a Â y for every

a ∈ X \D. From Claim 8(2), there exist a, b ∈ X \D such that x Â b Â a Â y. Therefore,

u(x) = supz∈X\D u(z) ≥ u(b) > u(a) ≥ infz∈X\D u(z) = u(y). Therefore, x Â y implies

u(x) > u(y). Hence, u is a utility representation of %.

Since u(X) is an interval, from Remark 3, u is linearly continuous.
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