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Judgment aggregation functions and ultraproducts∗

Frederik Herzberg†‡§

Abstract

The relationship between propositional model theory and social decision making
via premise-based procedures is explored. A one-to-one correspondence between
ultrafilters on the population set and weakly universal, unanimity-respecting, sys-
tematic judgment aggregation functions is established. The proof constructs an
ultraproduct of profiles, viewed as propositional structures, with respect to the ul-
trafilter of decisive coalitions. This representation theorem can be used to prove
other properties of such judgment aggregation functions, in particular sovereignty
and monotonicity, as well as an impossibility theorem for judgment aggregation in
finite populations. As a corollary, Lauwers and Van Liedekerke’s (1995) represen-
tation theorem for preference aggregation functions is derived.
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1 Introduction

Ultrafilters have an almost four-decades long history of successful application in the
theory of preference aggregation. Initiated by Fishburn (1970) and Hansson (1971,
Postscript 1976), a seminal contribution was made by Kirman and Sondermann (1972)
whose results motivated numerous other papers in this area; see Monjardet (1983) for
a survey.

A quarter-century later, Lauwers and Van Liedekerke (1995) provided an axiomatic
foundation for the ultrafilter method in the theory of preference aggregation: They con-
structed a one-to-one correspondence between preference aggregation functions satis-
fying Arrovian axioms and ultrafilters on the population set. The bijection is given by
the restriction of the ultraproduct1 — with respect to the ultrafilter of decisive coalitions
— of the family of individual preference orderings to the original set of alternatives.

∗I would like to thank Dr. Daniel Eckert and Dr. Franz Dietrich for helpful comments on a previous
version of this paper.
†Department of Mathematics, University of California, Berkeley, CA 94720-3840, United States of

America.E-mail address:herzberg@math.berkeley.edu
‡Institut für Mathematische Wirtschaftsforschung, Universität Bielefeld, Universitätsstraße 25, D-33615

Bielefeld, Germany.E-mail address:fherzberg@uni-bielefeld.de
§This work was supported by a research grant from the German Academic Exchange Service (DAAD).
1Ultraproducts were first studied extensively by Łoś (1955). Expositions of ultraproducts can be found in

model-theoretic monographs such as Chang and Keisler (1973). The existence of non-principal ultrafilters
(i.e. non-dictatorial large coalitions) on infinite sets was established by Ulam (1929) and Tarski (1930), under
the assumption of the Axiom of Choice. (Strictly speaking, the Ultrafilter Existence Theorem only needs the
Boolean Prime Ideal Theorem, which is a weaker set-theoretic axiom than the Axiom of Choice, as Halpern
and Levy (1971) have shown. See also Halpern (1964) and Banaschewski (1983) for related results.)
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Ultrafilters have now also entered the theory of judgment aggregation, through pa-
pers by Gärdenfors (2006), Daniëls (2006), Dietrich and Mongin (2007), Eckert and
Klamler (2008),2 and some of the results in this article have already been discovered,
via different methods, by Dietrich and Mongin (2007) (see Remark 12 below). It is
not surprising that the ultrafilter method is an appealing tool in judgment aggregation
theory, since ultrafilters are a means of relating the propositional logical structure of
the electorate’s agenda with the algebraic structure of the voting coalitions.

In this paper, we use the methodology of Lauwers and Van Liedekerke (1995) to
find an axiomatisation of the relation between propositional model theory and social
decision making via premise-based procedures in general, and between judgment ag-
gregation functions and ultrafilters in particular. We prove that a given judgment ag-
gregation function maps profiles to ultraproducts of profiles — with respect to the ul-
trafilter of decisive coalitions — if and only if it satisfies the axioms of weak univer-
sality, respect for unanimous decisions as well as systematicity. This correspondence
between ultrafilters and certain judgment aggregation functions will be used to prove
several other properties of these aggregation functions, as well as an impossibility the-
orem for judgment aggregation in finite populations. We show that the main theorem
of Lauwers and Van Liedekerke (1995) is contained in our results.

In fact, even the converse is true: Many of our results could also be obtained in
a lengthy indirect argument via suitable corollaries of the findings of Lauwers and
Van Liedekerke (1995) through replacing the binary preference predicate on alterna-
tives by a unary truth predicate on propositions. However, the technical translation
effort required would be substantial, and the resulting arguments would therefore ulti-
mately not be significantly shorter than the direct derivation in this paper; furthermore,
it would conceal the simplicity of the ultraproduct construction for propositional struc-
tures and would thus detract from the very intuitive corresepondence between judgment
aggregation functions (ultraproducts) and families of decisive coalitions (ultrafilters).

The paper is self-contained and only assumes basic familiarity with propositional
logic on the part of the reader.

2 Judgment sets

Where possible, we follow the terminology of List and Puppe (2007) and the notation
of Eckert and Klamler (2008).

Let N be a finite or infinite set, thepopulation set. Its elements are also called
individuals. Consider a setY of at least two propositional variables, and letZ be
the set of all propositions, in the sense of propositional calculus, with propositional
variables fromY . Z is calledagendaand should be conceived as the agenda of a
premise-based procedure of social decision making. LetT be a consistent subset ofZ
(i.e. T 6` ⊥), called the population’s(unanimous) theory. The setX =

⋃
p∈Y {p,¬p}

is called thebasis of the agenda.
A fully rational judgment setin X givenT is a subsetA ⊂ X which iscompletein

X (i.e. for allp ∈ Y eitherp ∈ A or¬p ∈ A) andconsistentwith T (i.e. A ∪ T 6` ⊥).
The set of fully rational judgment sets inX givenT shall be denoted byD.

2Eckert (2008) argues that this recent interest is only a rediscovery, as the very first application of the
ultrafilter method in social choice theory is in fact due to Guilbaud (1952) (English translation (2008) by
Monjardet), who proved an Arrow-like theorem for the aggregation of logically interconnected propositions.
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Through Henkin’s (1949) method3, everyA ∈ D can be uniquely extended to a set
j(A) such that

• j(A) extendsA in Z, i.e. A ⊆ j(A) ⊂ Z,

• j(A) is complete inZ, i.e. for allp ∈ Z eitherp ∈ j(A) or¬p ∈ j(A),

• j(A) is consistent, i.e.j(A) 6` ⊥, and

• j(A) containsT , i.e. T ⊂ j(A).

j(A) is obtained as the maximally consistent superset ofA ∪ T . In particular,A
itself is consistent.j(A) will be called thejudgment completion(or conclusive com-
pletion) of A. From the perspective of propositional model theory,j(A) corresponds
to an interpretation ofZ.

The following observations aboutj are almost trivial, but will be helpful later on.
Herein, we denote by− the negation operator onX, defined via−p = ¬p and−¬p =
p for all p ∈ Y .

Remark 1 (Inverse ofj). A = j(A) ∩X for all A ∈ D. Hence,j is injective.

Proof. By definition,A ⊆ j(A) andA ⊆ X, henceA ⊆ j(A) ∩ X. If there existed
somep ∈ j(A) ∩ X \ A, then also−p ∈ A ⊆ j(A) sinceA is complete inX. This
contradicts the consistency ofj(A).

Remark 2 (Decuctive closedness).For everyA ∈ D, the setj(A) is decuctively
closed, i.e.∀p ∈ Z (j(A) ` p ⇒ p ∈ j(A)).

Proof by contraposition.If p 6∈ j(A), thenj(A) 3 ¬p asj(A) is complete. Butj(A)
is also onsistent. Therefore,j(A) 6` p.

The following Remark 3 corresponds to Tarski’s (1933) definition of truth:

Remark 3 (à la Tarski). For all p, q ∈ Z andA ∈ D:

1. ¬p ∈ j(A) if and only ifp 6∈ j(A).

2. p ∧ q ∈ j(A) if and only if bothp ∈ j(A) andq ∈ j(A).

3. p ∨ q ∈ j(A) if and only ifp ∈ j(A) or q ∈ j(A).

Proof. Let p, q ∈ Z andA ∈ D.

1. “⇒”. j(A) is consistent. “⇐”. j(A) is complete.

2. j(A) is deductively closed by Remark 2.

3. Combine De Morgan’s laws with the first two parts of the Remark.

Remark 4. Through writingA(p) = 1 instead ofp ∈ A, one could also viewA as a
mapA : Y → 2 such that

T ∪A−1{1} ∪ (¬A−1{0}) 6` ⊥
(wherein¬B is shorthand for

{¬p : p ∈ A−1{0}} for anyB ⊆ Z, and2 = {0, 1}).
Every such mapA can be extended to a homomorphism of Boolean algebrasj(A) :
Z → 2 such thatT ⊆ j(A)−1{1}.

3The method of extending a consistent set of propositions to a maximally consistent set was used in
Henkin’s (1949) famous proof of the completeness proof of first-order logic.
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3 Coalitions and judgment aggregation functions

The elements ofDN are referred to asprofiles. For anyp ∈ Z andA ∈ DN , the
p-supporting coalition inA is denoted byA(p) := {i ∈ N : p ∈ j (A(i))}.4 In this
section, we study the properties of the mapA : p 7→ A(p).

First, the mapA : p 7→ A(p) allows us to translate the Boolean operations on
coalitions into logical operations on propositions inZ:

Remark 5. For all A ∈ DN , the mapA : DN → P(N), p 7→ A(p) is a Boolean
algebra homomorphism:

1. A(>) = N andA(⊥) = ∅.
2. ∀p ∈ Z A(¬p) = N \A(p).

3. ∀p, q ∈ Z A(p ∧ q) = A(p) ∩A(q), A(p ∨ q) = A(p) ∪A(q).

Proof. 1. For alli ∈ N , j (A(i)) is complete and consistent, hence> ∈ j (A(i))
and⊥ 6∈ j (A(i)).

2. For alli ∈ N , j (A(i)) is complete and consistent, hence¬p ∈ j (A(i)) if and
only if p 6∈ j (A(i)).

3. For alli ∈ N , j (A(i)) is deductively closed (Remark 2), hencep, q ∈ j (A(i))
if and only if p ∧ q ∈ j (A(i)). This provesA(p ∧ q) = A(p) ∩ A(q). The
formulaA(p ∨ q) = A(p) ∪A(q) follows via De Morgan’s laws combined with
the already established parts 1 and 2 of the Remark.

Almost needless to say, the whole population supports its unanimous theory, re-
gardless of the population’s profile.

Remark 6. For all p ∈ Z with T ` p and everyA ∈ DN , one hasA(p) = N .

Proof. Letp ∈ Z with T ` p, letA ∈ DN , and leti ∈ N . Sincej (A(i)) is deductively
closed (Remark 2) and containsT , we must havep ∈ j (A(i)).

This implies that the mapA : p 7→ A(p) is well-defined on equivalence classes
with respect to provable logical equivalence underT :

Remark 7. For all p, q ∈ Z with T ` (p ↔ q) and everyA ∈ DN , one hasA(p) =
A(q).

Proof. Let p, q ∈ Z with T ` (p ↔ q) andA ∈ DN . By Remark 6,A(p ↔ q) = N .
Combining this with the definition ofp ↔ q (i.e. p ↔ q = (¬p ∨ q) ∧ (p ∨ ¬q)) and
Remark 5, we obtain

N = A((¬p ∨ q) ∧ (p ∨ ¬q)) = ((N \A(p)) ∪A(q)) ∩ (A(p) ∪ (N \A(q))) ,

which via De Morgan’s laws can be simplified to

∅ = (A(p) \A(q)) ∪ (A(q) \A(p)) .

The right-hand side is the symmetric difference betweenA(p) andA(q) This proves
A(p) = A(q).

4We may assumeN ∩ Z = ∅ to avoid amiguity.
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An aggregation functionis a mapf from a subsetDf of DN to D.
Consider now the following axioms:

(A1) Universality. Df = DN .

(A1’) Weak Universality. There existp, q ∈ Y andA1, A2, A3 ∈ D such that

– p, q ∈ A1,

– p,¬q ∈ A2,

– ¬p, q ∈ A3, and

– {A1, A2, A3}N ⊆ Df .

(A2) Respect for Unanimity. For allA ∈ Df and for allp ∈ Z, if p ∈ j ◦ f (A), then
A(p) 6= ∅.

(A3) Systematicity. For allA,A′ ∈ Df and for allp, p′ ∈ Z with A(p) = A′(p′), one
hasp ∈ j ◦ f (A) if and only if p′ ∈ j ◦ f

(
A′

)
.

Remark 8. If there existp, q ∈ Y such thatp∧q, p∧¬q and¬p∧q are each consistent
with T , then (A1) implies (A1’).

Finally, the set ofdecisive coalitionsis

Ff := {A(p) : A ∈ Df , p ∈ Z, p ∈ j ◦ f (A)} .

Remark 9. LetA ∈ Df andp ∈ Z, and supposef satisfies (A3). Then,A(p) ∈ Ff if
and only ifp ∈ j ◦ f (A).

Proof. “⇒”. If p 6∈ j ◦ f (A), then (A3) yields thatp′ 6∈ j ◦ f
(
A′

)
for all p′ ∈ Z and

A′ ∈ Df satisfyingA(p) = A′(p′). HenceA(p) 6∈ Ff . “⇐”. Definition of Ff .

4 Ultrafilters and ultraproducts

In this section, we review ultrafilters and define ultraproducts of profiles. We define an
ultrafilter onN as a collectionG of subsets ofN which is

• non-trivial, i.e.∅ 6∈ G,

• maximal, i.e. for allU ⊆ N , eitherU ∈ G or N \ U ∈ G, and

• closed under finite intersections, i.e.U ∩ U ′ ∈ G for all U,U ′ ∈ G.

These properties ensure that there is a one-to-one correspondence between ultra-
filters onN and{0, 1}-valued finitely additive measures onP(N): Given any such
measureµ, the corresponding ultrafilter is just the collection of sets ofµ-measure1.

Often, ultrafilters are defined as being also closed under supersets, thus being spe-
cial filters5 per definitionem. This part of the definition is, in fact, redundant, as was
stressed e.g. by Lauwers and Van Liedekerke (1995):

Remark 10. Every ultrafilterG is closed under supersets, i.e. ifU ′ ⊇ U ∈ G, then
U ′ ∈ G. Hence, ultrafilters are filters.

5A filter on N is a non-trivial collection of subsets ofN which is closed under finite intersections and
supersets.
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Proof by contraposition.If U ′ 6∈ G, thenN \ U ′ ∈ G asG is maximal, and thus
∅ = U ∩ (N \ U ′) ∈ G sinceG is∩-closed. HenceG is trivial, contradiction.

Another useful property of filters and hence ultrafilters is the following:

Remark 11. Let G be a filter. For allU,U ′ ⊆ N , one hasU,U ′ ∈ G if and only if
U ∩ U ′ ∈ G.

Proof. “⇒”. G is closed under intersections. “⇐”. G is closed under supersets.

In the context of social choice, filters formalise the notion of a large coalition. Ul-
trafilters do this in a maximal way, by postulating that every set of individuals is either
a large coalition or the complement of a large coalition. For this reason, every ultra-
filter on a setN can be used to define, starting from a sequence of models (referred
to asfactors), a new model with the property that a proposition holds in that model if
and only if it holds for a large coalition of factors. This new model is known as anul-
traproduct. In propositional logic, models can be identified with maximally consistent
sets. Given that fullly rational judgment sets can be completed to maximally consistent
sets viaj, we will define ultraproducts forN -sequences of fully rational judgment sets
— in other words profiles.

The ultraproduct
∏

A/G of a profileA ∈ DN with respect to an ultrafilterG onN
is defined as

∏
A/G :=

∏

i∈N

A(i)/G := {p ∈ X : {i ∈ N : p ∈ A(i)} ∈ G} .

The following lemma corresponds to the famous Łoś’s (1955) theorem on ultra-
products in model theory of first-order predicate logic:

Lemma 1 (à la Łós). For all A ∈ DN and every ultrafilterG onN :

1.
∏

A/G = {p ∈ X : A(p) ∈ G}.
2.

∏
A/G ∈ D. In particular,T ⊆ j (

∏
A/G).

3. j (
∏

A/G) = {p ∈ Z : A(p) ∈ G}.
Proof. 1. Letp ∈ X andi ∈ N . SinceA(i) = j (A(i))∩X by Remark 1, we have

p ∈ A(i) ⇔ p ∈ j (A(i)) ∩X ⇔ p ∈ j (A(i)) . (1)

Hence{i ∈ N : p ∈ A(i)} = {i ∈ N : p ∈ j (A(i))} = A(p). Therefore,
p ∈ ∏

A/G if and only if A(p) ∈ G.

2. We verify:

• Completeness inX. If p ∈ Y , the maximality of the ultrafilter ensures
that either{i ∈ N : p ∈ A(i)} ∈ G or {i ∈ N : p 6∈ A(i)} ∈ G. In the
former case,p ∈ ∏

A/G amd we are done. In the latter case, note thatp 6∈
A(i) holds if and only if¬p ∈ A(i) by the consistency and completeness
of A(i), hence{i ∈ N : ¬p ∈ A(i)} ∈ G, and therefore¬p ∈ ∏

A/G.
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• Consistency withT . Suppose
∏

A/G ∪ T ` ⊥. Since proofs of propo-
sitional logic have finite length, there is a finite setI ⊆ ∏

A/G ∪
T such that alreadyI ` ⊥. Now, I ∩ T ⊆ T ⊆ j (A(i))
for all i ∈ N , hence{i ∈ N : p ∈ j (A(i))} = N ∈ G for all
p ∈ I ∩ T . On the other hand, for allp ∈ I ∩ ∏

A/G, one has
{i ∈ N : p ∈ j (A(i))} = {i ∈ N : p ∈ A(i)} ∈ G by equivalence (1),
so{i ∈ N : p ∈ j (A(i))} ∈ G.
In summary,{i ∈ N : p ∈ j (A(i))} ∈ G holds for allp ∈ I. However,G
is closed under finite intersections, hence

⋂
p∈I {i ∈ N : p ∈ j (A(i))} ∈

G. SinceG is non-trivial, there exists somei ∈ N such thatI ⊆ j (A(i))
and thus, by choice ofI, j (A(i)) ` ⊥, a contradiction.

Thus,
∏

A/G ∈ D and thereforeT ⊆ j (
∏

A/G).

3. We have to prove that for allp ∈ Z,

p ∈ j
(∏

A/G
)
⇔ A(p) ∈ G.

We shall give an inductive proof in the complexity ofp ∈ Z.

(a) p ∈ X. By Remark 1, one hasp ∈ j (
∏

A/G) ⇔ p ∈ ∏
A/G, but we also

know thatp ∈ ∏
A/G ⇔ A(p) ∈ G by part 1 of the present Lemma.

(b) p = ¬q. By applying Remark 3, the induction hypothesis, the maximality
of the ultrafilterG, and Remark 5 successively, we obtain the following
chain of equivalences:

¬q ∈ j
(∏

A/G
)
⇔ q 6∈ j

(∏
A/G

)
⇔ A(q) 6∈ G

⇔ N \A(q) ∈ G ⇔ A(¬q) ∈ G.

(c) p = q ∧ r. By applying Remark 3, the induction hypothesis, Remark 11,
and Remark 5 successively, we obtain

q ∧ r ∈ j
(∏

A/G
)
⇔ q, r ∈ j

(∏
A/G

)
⇔ A(q), A(r) ∈ G

⇔ A(q) ∩A(r) ∈ G ⇔ A(q ∧ r) ∈ G.

5 Representation of judgment aggregation functions

This section contains the main results of this article. Lemma 2, Theorem 1 and Theo-
rem 2 translate the findings by Lauwers and Van Liedekerke (1995) into the context of
judgment aggregation.

For the rest of this paper, letf be a judgment aggregation functionf : Df → D,
whereDf ⊆ DN .

Lemma 2. If f satisfies the axioms (A1’), (A2) and (A3), thenFf is an ultrafilter.

In abstract terms, we construct a maph : P(N) → 2 such that

h : U 7→
{

1, ∃A ∈ DN ∃p ∈ Z U = A(p)
0, else
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and prove thath is a Boolean algebra homomorphism whilsth−1{1} = Ff .
In our proof, we have to verify all filter and ultrafilter axioms, i.e. including su-

perset closedness, because the proof of the intersection closedness depends on superset
closedness. Lauwers and Van Liedekerke (1995) omitted this part of the proof — not
because of Remark 10 (since their proof of the intersection closedness is dependent on
superset closedness), but apparently as an exercise for the reader.

Proof of Lemma 2.Let us writeF for Ff .

1. Non-triviality (i.e. ∅ 6∈ F). For allU ∈ F , axiom (A2) yieldsU 6= ∅.
2. Maximality (i.e. U ∈ F or N \ U ∈ F for all U ⊆ N ). Let U ⊆ N . Due to

axiom (A1’) and deductive closedness, there exists someA ∈ Df such that

• p ∧ ¬q ∈ j (A(i)) for all i ∈ U , and

• ¬p ∧ q ∈ j (A(i)) for all i ∈ N \ U .

Then, for alli ∈ N , one has¬ ((p ∨ q) ∧ ¬(p ∧ q)) 6∈ j (A(i)) asj (A(i)) is
consistent. Therefore,A (¬ ((p ∨ q) ∧ ¬(p ∧ q))) = ∅ and thus by axiom (A2)
one gets¬ ((p ∨ q) ∧ ¬(p ∧ q)) 6∈ j◦f (A). Hence, by completeness ofj◦f (A),
we arrive at(p ∨ q) ∧ ¬(p ∧ q) ∈ j ◦ f (A). Therefore,

j ◦ f (A) ⊇ {(p ∨ q) ∧ ¬(p ∧ q)} ` (p ∧ ¬q) ∨ (¬p ∧ q),

which through deductive closedness yields(p ∧ ¬q) ∨ (¬p ∧ q) ∈ j ◦ f (A).
By Remark 3, we obtain that eitherp ∧ ¬q ∈ j ◦ f (A) or ¬p ∧ q ∈ j ◦ f (A),
in other words, eitherA (p ∧ ¬q) ∈ F or A (¬p ∧ q) ∈ F . Hence, by the
choice ofA, eitherU = {i ∈ N : p ∧ ¬q ∈ j (A(i))} = A(p ∧ ¬q) ∈ F or
N \ U = {i ∈ N : ¬p ∧ q ∈ j (A(i))} = A(¬p ∧ q) ∈ F .

3. Superset Closedness(i.e. U ′ ∈ F wheneverU ′ ⊇ U for someU ∈ F). Suppose
U ′ ⊇ U ∈ F . By axiom (A1’) and Remark 2 (deductive closedness), there exists
someA ∈ Df such that for alli ∈ N ,

• p ∧ q ∈ j (A(i)) if i ∈ U ,

• p ∧ ¬q ∈ j (A(i)) if i ∈ U ′ \ U , and

• ¬p ∧ q ∈ j (A(i)) if i ∈ N \ U ′.

Then,A (p ∧ q) ∈ F , hencep ∧ q ∈ j ◦ f (A) and thereforep ∈ j ◦ f (A) by
Remark 2 (deductive closedness). By definition ofF , U = A(p) ∈ F .

4. Intersection Closedness(i.e. U∩U ′ ∈ F for all U,U ′ ∈ F). SupposeU,U ′ ∈ F .
By axiom (A1’), there exists someA ∈ Df such that for alli ∈ N ,

• p ∧ q ∈ j (A(i)) if i ∈ U ∩ U ′,

• p ∧ ¬q ∈ j (A(i)) if i ∈ U \ U ′, and

• ¬p ∧ q ∈ j (A(i)) if i ∈ N \ U .

Then,

• F 3 U = (U ∩ U ′) ∪ (U \ (U ∩ U ′)) = A(p), and

• F 3 U ′ ⊆ (U ∩ U ′) ∪ (N \ U) = A(q), which by superset closedness of
F meansF 3 A(q).
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Therefore, due to Remark 9, we arrive atp, q ∈ j◦f (A) and thusp∧q ∈ j◦f (A)
by Remark 2. HenceU ∩ U ′ = A(p ∧ q) ∈ F .

Theorem 1. If f satisfies the axioms (A1’), (A2) and (A3), thenf (A) =
∏

A/Ff for
all A ∈ Df .

Proof. Let A ∈ Df . By Lemma 1,
∏

A/Ff = {p ∈ X : A(p) ∈ Ff}. Therefore, we
need to prove that

p ∈ f (A) ⇔ A(p) ∈ Ff

for all p ∈ X. However, by Remark 9,A(p) ∈ Ff ⇔ p ∈ j ◦ f (A), hence due to
Remark 1, finallyA(p) ∈ Ff ⇔ p ∈ f (A) for all p ∈ X.

Theorem 2. If G is an ultrafilter onN , then the mapg : DN → D, A 7→ ∏
A/G

satisfies the axioms (A1), (A2) and (A3).

Proof. We verify:

(A1). Dg = DN holds by definition, andg
(
DN

) ⊆ D by Lemma 1.

(A2). Let A ∈ DN . By Lemma 1,j ◦ g (A) = j (
∏

A/G) = {p ∈ Z : A(p) ∈ G}.
Hence, for allp ∈ Z such thatp ∈ j ◦ g (A), one hasA(p) ∈ G and thus
A(p) 6= ∅ sinceG is non-trivial.

(A3). Let A,A′ ∈ Df and p, p′ ∈ Z with A(p) = A′(p′). Again, by Lemma 1,
j ◦ g (A) = {q ∈ Z : A(q) ∈ G} and j ◦ g

(
A′

)
=

{
q ∈ Z : A′(q) ∈ G}

.
Hencep ∈ j ◦ g (A) if and only if A(p) ∈ G, andp′ ∈ j ◦ g

(
A′

)
if and only if

A′(p′) ∈ G. But on the other hand,A(p) = A′(p′), soA(p) ∈ G if and only if
A′(p′) ∈ G. Therefore, indeed,p ∈ j ◦ g (A) if and only if p′ ∈ j ◦ g

(
A′

)
.

Theorem 3. Supposef andf ′ are judgment aggregation functions which satisfy axiom
(A3). If E := Df ∩ Df ′ 6= ∅ andf ¹ E 6= f ′ ¹ E, thenFf 6= Ff ′ .

Proof. There exists someA ∈ E such thatf (A) 6= f ′ (A). By Remark 1, this implies
j ◦f (A) 6= j ◦f ′ (A) hence there exists somep ∈ Z such thatp ∈ j ◦f (A)\j ◦f ′ (A)
or p ∈ j ◦f ′ (A)\ j ◦f (A). Without loss of generality, we may assume the former, i.e.
p ∈ j ◦ f (A) andp 6∈ j ◦ f ′ (A). Thanks to axiom (A3), we can now apply Remark 9
and obtain bothA(p) ∈ Ff andA(p) 6∈ Ff ′ . Thus,F 6= Ff ′ .

Remark 12. After writing the first draft of the technical part of this paper, the author
read through the recent paper by Dietrich and Mongin (2007) and discovered that a
special case of Theorem 1 (viz. wheref : DN → D) is already contained in Dietrich
and Mongin’s (2007) Theorem 1’, and that a weak form of Theorem 2 — which replaces
(A2) by unanimity preservation for formulae inX — is contained in Dietrich and
Mongin’s (2007) Theorem 2. (For, what Dietrich and Mongin (2007) refer to as an
“ultrafilter rule” is nothing else than an ultraproduct as defined in the present paper.)

Wherever the two papers overlap, priority belongs to Dietrich and Mongin (2007).
The novelty of the present paper is its systematic model-theoretic approach in trans-
lating judgment aggregation functions into propositional ultraproducts and vice versa,
and its connection with related work on preference aggregation. Furthermore, we study
judgment aggregation for the more general case where the population may be assumed
to share a common theoryT .

9



6 Applications

We begin with corollaries to Theorem 1, the first of which mirrors a result by Lauwers
and Van Liedekerke (1995) for preference aggregation functions. Again, we adopt the
terminology and of List and Puppe (2007) and Eckert and Klamler (2008).

Corollary 1 (Sovereignty). If f satisfies (A1), (A2) and (A3), thenf : DN → D is
surjective.

Proof. Let A ∈ D and setA(i) = A for all i ∈ N . Then, for all p ∈ A,
{i ∈ N : p ∈ A(i)} = N ∈ G and for allp ∈ X \ A, {i ∈ N : p ∈ A(i)} = ∅ 6∈ G.
Theorem 1 therefore tells us that

f (A) =
∏

A/Ff = {p ∈ X : {i ∈ N : p ∈ A(i)} ∈ Ff}
= {p ∈ X : p ∈ A} = A.

Corollary 2 (Monotonicity). Letf satisfy (A1’), (A2) and (A3). Then,

∀A,A′ ∈ Df ∀p ∈ f (A)
(
A(p) ⊆ A′(p) ⇒ p ∈ f

(
A′

))
(2)

Proof. Let A ∈ Df . By Theorem 1 and Lemma 1,

f (A) =
∏

A/Ff = {q ∈ X : A(q) ∈ Ff} ,

whenceA(p) ∈ Ff for all p ∈ f (A), and thereforeA′(p) ∈ Ff for all A′ ∈ Df with
A(p) ⊆ A′(p). But analogously,f

(
A′

)
=

{
q ∈ X : A′(q) ∈ Ff

}
holds. Therefore

p ∈ f
(
A′

)
.

A judgment aggregation functionf satisfying Formula (2) is calledmonotone.
As another application, we state an impossibility theorem for finite electorates. It

is based on the well-known fact that on a finite set, every ultrafilter (decisive coalition)
is principal, i.e. is the family of supersets of some singleton:

Remark 13. If G is an ultrafilter on a finite setN , then there exists some` ∈ N such
thatG = {U ⊆ N : ` ∈ U}.
Proof. By Remark 10, it is enough to prove that there is some` ∈ N such that{`} ∈ G.
Suppose otherwise. Then,N \{`} ∈ G for all ` ∈ N , and sinceG is closed under finite
intersections,∅ = N \⋃N

`=1{`} =
⋂

`∈N N \ {`} ∈ G. Contradiction.

Theorem 4 (Dictatorship). If N is finite andf satisfies the axioms (A1’), (A2) and
(A3), then there exists some` ∈ N such thatf (A) = A(`) for all A ∈ Df .

Proof. Theorem 1 and the definition of the ultrapower yield that for allA ∈ Df ,

f (A) =
∏

A/Ff = {p ∈ X : {i ∈ N : p ∈ A(i)} ∈ Ff} .

However, by Remark 13 and Lemma 2, there exists some` ∈ N such thatFf =
{U ⊆ N : ` ∈ U}. Thus, we arrive at

f (A) = {p ∈ X : p ∈ A(`)} = A(`).

10



Remark 14. The axiom (A1’) is, albeit substantially weaker than the usual universality
axiom (A1), still strong enough to demand that no weakly value-restricted profiles — in
the sense of Dietrich and List (2007), who generalised Sen’s (1966) original notion of
triplewise value restriction — are in the domain of the judgment aggregation function.
Therefore, Theorem 4 is compatible with the results of both Dietrich and List (2007)
and Sen (1966).

Preference aggregation can be studied as a special case of judgment aggregation,
simply by interpreting the basis of the agenda as a set of atomic preference relations
among alternatives and their negations. In this spirit, we shall now show how one can
obtain the findings of Lauwers and Van Liedekerke (1995) as a corollary to Theorems 1
and 2.

Let A be a set of at least three elements, calledalternatives, let P be a binary rela-
tion onA and letY = {P (a, b) : a, b ∈ A}. Then,X =

⋃
a,b∈A {P (a, b),¬P (a, b)}

andZ is the Boolean closure ofY , i.e. the smallest superset ofY which is closed under
negation, conjunction and disjunction. In the terminology of Lauwers and Van Liedek-
erke (1995),Z is the set oftest sentences with baseY . Denote the first-order language
with one binary relation symbolP and a constant symbol for every element ofA by
L(A,P ).

Note:

1. Every universal sentence∀x1, . . . , xn p (x1, . . . , xn), whereinp is a quantifier-
free formula of the languageL(A,P ) is true in the restrictionM of anL(A,P )-
structure toA if and only ifM |= {p (a1, . . . , an) : a1, . . . , an ∈ A}.
Therefore, given any consistent setS of universalL(A,P )-sentences, one can
find a consistent setT ⊆ Z such that for all restrictionsM ofL(A,P )-structures
to A, one hasM |= S if and only ifM |= T . For thisT , letD be the set of fully
rational judgment sets inX givenT .

2. Denote the set of restrictions of models ofS to A by Ω. There is a one-to-one
correspondence betweenΩ andD.

Givenω ∈ ΩN andp ∈ Z, thep-supporting coalition inω is denoted

ω(p) := {i ∈ N : ω(i) |= p} .

3. The one-to-one correspondence betweenΩ andD entails a one-to-one corre-
spondence between

• restrictions of ultraproducts ofN -sequences of models ofS with respect to
an ultrafilter onN , and

• ultraproducts in the sense of Section 4 of the present paper.

In view of these observations, Theorems 1 and 2 of the present paper imply the
main theorem of Lauwers and Van Liedekerke (1995, Theorem 1):

Theorem 5. A mapA is given by

∀ω ∈ ΩN A(ω) =
∏

i∈N

ω(i)/FA

if and only if it satisfies the following axioms:
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(L1) A : ΩN → Ω.

(L2) ∀ω ∈ ΩN ∀p ∈ Z (A(ω) |= p ⇒ ω(p) 6= ∅)
(L2) ∀ω, ω′ ∈ ΩN ∀p, p′ ∈ Z (ω(p) = ω′(p′) ⇒ (A(ω) |= p ⇔ A(ω′) |= p′)).

7 Conclusion

Ideas from model theory can be fruitfully applied in the theory of judgment aggrega-
tion. In particular, the notion of an ultraproduct in the sense of propositional model
theory is the same as the notion of a weakly universal, unanimity-respecting, system-
atic judgment aggregation function. This representation result can be employed to
prove other properties of such judgment aggregation functions, as well as an impossi-
bility theorem for finite electorates. A special case is Lauwers and Van Liedekerke’s
(1995) representation theorem for preference aggregation functions.

Kirman and Sondermann (1972) as well as Armstrong (1980, 1985) have shown
that even non-principal ultrafilters on infinite populations may be interpreted as “in-
visible dictators”, provided the population is endowed with some measure-theoretic
or topological structure. Hence, our results show that judgment aggregation functions
are always, even for infinite populations, dictatorial in some weak sense. However, as
Hansson (1976) elaborated, the strength of this concept of dictatorship is highly depen-
dent on the actual topology imposed on the population set, and for some topologies, the
“dictators” provided by the Kirman-Sondermann (1972) construction are non-unique
and therefore hardly deserve this name.
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