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Abstract. For a continuous-time �nancial market with a single agent, we
establish equilibrium pricing formulae under the assumption that the dividends
follow an exponential Lévy process. The agent is allowed to consume a lump at
the terminal date; before, only �ow consumption is allowed. The agent's utility
function is assumed to be additive, de�ned via strictly increasing, strictly
concave smooth felicity functions which are bounded below (thus, many CRRA
and CARA utility functions are included). For technical reasons we require
that only pathwise continuous trading strategies are permitted in the demand
set.

The resulting equilibrium prices depend on the agent's risk-aversion
through the felicity functions. It turns out that the these prices will be the
(stochastic) exponential of a Lévy process essentially only if this process is
geometric Brownian motion.

1. Introduction
This article addresses the equilibrium foundations of Lévy �nance by studying a

continuous-time �nancial market with a single (�representative�) agent who trades
assets whose terminal dividends are given by the exponential of a Lévy process,
evaluated at the terminal date.

Lévy processes where introduced into �nancial modelling as a means of para-
metrically generalizing the original Black-Scholes [16] model to account for jumps
in stock prices. This �eld of research originated two decades ago with papers by
Madan and Seneta [55, 56, 57] on �nancial applications of the variance-gamma pro-
cess, although Merton [59] was the �rst to model logarithmic stock prices through
a Lévy process other than Brownian motion (by adding a Poisson process). Since
then, there has been a fast-growing number of notable contributions to this �eld,
e.g. by Eberlein and Keller [33], Barndor�-Nielsen [13], Chan [21] and � even
with some empirical validation � by Carr, Geman, Madan and Yor [19, 20], to
mention but a few. For more references, consult the volume edited by Barndor�-
Nielsen, Mikosch and Resnick [14] as well as Applebaum's survey article on Lévy
processes [10] or textbooks such as Boyarchenko and Levendorski�� [17], Schoutens
[67] and Applebaum [11]. Examples of more recent research on asset pricing based
on exponential Lévy process models (including interest rate models) are papers by
Eberlein, Kluge and Papapantoleon [34], Filipovi¢ and Tappe [36], Almendral and
Osterlee [4, 5], and Herzberg [42].

Existence proofs and explicit equilibrium asset pricing formulae for certain
continuous-time �nancial markets have previously been established by Cox, Inger-
soll and Ross [22], Bick [15], Du�e and Skiadas [30], He and Leland [38], and
Raimondo [64]. The methodological choices of these authors are quite diverse:
For example, Cox, Ingersoll and Ross [22] extensively use Itô calculus, Du�e and
Skiadas [30] employ Gateaux derivatives, whilst Raimondo [64] works with a hyper-
�nite discretization in the sense of Robinson's [65] nonstandard analysis. However,
except for Du�e and Skiadas [30], all of this research is limited to the case of
asset-price processes with continuous paths, whereas Du�e and Skiadas [30] do
not discuss concrete models for the dividend processes.

The present paper proves the existence of an equilibrium and provides explicit
equilibrium asset pricing formulae for a single-agent, continuous-time �nancial mar-
ket, under the assumption that dividends are only paid at the terminal date, when
they are given by the exponential realization of some Lévy process at that date. In
addition, we only allow path-continuous predictable processes as admissible trading
strategies.

It turns out that even in this simple model, no asset price process will ever
end up being an exponential Lévy process or the stochastic exponential of a Lévy
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process, the only exception being the very special case when the asset price pro-
cess becomes geometric Brownian motion. Instead, asset prices will generically be
more complicated stochastic integrals with respect to Lévy processes. Hence, an
economically sound generalization of the Black-Scholes model needs to assume that
asset price processes are given by general stochastic integrals with respect to Lévy
processes, not just exponential Lévy processes or stochastic exponentials of Lévy
processes.

Our pricing formulae show that generically the increments of the logarithmic
asset prices are not stationary. This is not surprising: Intuitively, it is clear that
discontinuous behavior in the economy, in our case in the guise of dividends which
are analytic functions of jump processes, should mean that risk premia of �nancial
instruments increase with the maturity date.

In order to prove both the existence of equilibrium and the pricing formulae, we
extend the hyper�nite discretization technique of Raimondo [64] in two directions:
First, rather than imposing a short-sale constraint and applying Radner's theorem
[63], we follow Anderson and Raimondo [9] by invoking the Du�e-Shafer theorem
[31, 32] to obtain an equilibrium in the discrete hyper�nite economy. Secondly,
we utilize the recently developed nonstandard theory of Lévy processes � which
was devised in a seminal paper by Lindstrøm [51] and subsequently expanded by
Albeverio and Herzberg [2], Lindstrøm [52], Herzberg and Lindstrøm [43] as well
as Herzberg [41] � in order to construct and analyze the appropriate hyper�nite
discretization. In addition to Lindstrøm's [51] account, there are also other non-
standard approaches to Lévy processes, due to Albeverio and Herzberg [3] as well
as Ng [62], but Lindstrøm's [51] treatment is the most useful for the purposes of
the present paper.

Our pricing formulae could perhaps also be derived through an application
of Du�e and Skiadas's [30] results. Rather than verifying the various technical
assumptions of that paper in the situation of the present article, we have chosen to
provide a proof from scratch. For, unlike the approach of Du�e and Skiadas [30],
the methodology of this paper can be � and, for the case of Brownian information,
already has been � applied to study both equilibrium derivative pricing and multi-
agent �nancial markets (cf. Anderson and Raimondo [8, 9]).

Nonstandard analysis has a long history of successful application in both equi-
librium theory (e.g. Brown and Robinson [18] and Keisler [47]) and asset pricing
(e.g. Cutland, Kopp and Willinger [23, 24, 25, 26], Cutland, Kopp, Willinger
and Wyman [27], Khan and Sun [48, 49], and Ng [61]). An excellent introduc-
tion to nonstandard methods in economics is Anderson's Handbook of Mathematical
Economics article [7]. Another classical exposition of nonstandard analysis, with
emphasis on applications in stochastic analysis, is Albeverio, Fenstad, Lindstrøm
and Høegh-Krohn [1]. To be sure, the results of this paper are �standard� in the
sense that they can (and will) be formulated without any reference to nonstandard
analysis. Notions from nonstandard analysis will only appear in the proof section.

The application of nonstandard methodology to stochastic analysis with jump
processes entails some technical limitations which force us to allow only admissi-
ble trading strategies with continuous paths in the demand set of our model. For,
the interplay between standard stochastic processes and their liftings (nonstandard
analogues) becomes much more delicate as soon as the underlying �ltration is gen-
erated by a process with discontinuous paths � even if these processes have càdlàg1
paths. In particular, there is no canonical notion of lifting in that situation: The
lifting notions which are based on the pathwise càdlàg property (such as Hoover
and Perkins' [44] SDJ liftings, or liftings which are well-behaved in Lindstrøm's

1Càdlàg is the French acronym for `right-continuous with left limits'.
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[50] sense) are incompatible with the lifting notions needed for stochastic integra-
tion with respect to square-integrable martingales (viz. 2-liftings, cf. Lindstrøm
[50]). This implies that there exists as yet no lifting notion which would match,
given some asset price process and a general càdlàg admissible trading strategy, the
di�erence between the current portfolio value (a pathwise scalar product) and the
gains from trading (a stochastic integral) associated with that trading strategy. For
this reason, we need to restrict the demand set to allow only for admissible trading
strategies with continuous paths. We conjecture that in our model, every càdlàg
� and maybe even more general � admissible trading strategy can be approxi-
mated, in terms of the utility of the consumption plan �nanced by that trading
strategy, by a path-continuous admissible trading strategy. Then, the restriction
to path-continuous strategies does not lead to a di�erent notion of equilibrium.

The results of this paper motivate several related questions which we hope to
address in future research:

(1) Implications for equilibrium derivative pricing: The valuation of deriva-
tives in Lévy market models by means of martingale measures is concep-
tually troublesome since there are in�nitely many martingale measures
and hence generically in�nitely many derivative prices. In practice, this
is overcome by choosing the martingale measure which maximizes some
utility functional; however, there is no clear economic justi�cation for pre-
ferring one martingale measure over the other. By contrast, equilibrium
pricing only provides a unique derivative price for each equilibrium.

(2) Numerical aspects of equilibrium asset pricing: As suggested by Anderson
and Raimondo [8], one can probably expand the existing nonstandard
literature on continuity corrections for discrete-time stochastic option-
pricing models (e.g. Cutland, Kopp and Willinger [23, 24, 25, 26]) to
obtain discrete approximations of the equilibrium pricing formulae studied
both in this paper and in Anderson and Raimondo's article [8].

(3) Vindication of the restriction to pathwise continuous trading strategies:
We expect that the notion of equilibrium in this paper ultimately does
not depend on the assumption of pathwise continuous admissible trading
strategies (as was discussed above), but we have to leave this to future
research.

(4) Extension to multi-agent models: Just as Raimondo's paper [64] was the
�rst in a series of papers on the equilibrium foundations of continuous-
time �nance with Brownian stochasticity which eventually culminated in
Anderson and Raimondo's [9] existence proof for a multi-agent �nancial
market with Brownian information, we hope that the methodology in this
paper can be extended to analyze multi-agent models for �nancial markets
with Lévy stochasticity.

2. Model
We modify the model of Raimondo [64] through replacing the d-dimensional

Brownian motion β by a general d-dimensional exponentially integrable Lévy pro-
cess. For technical reasons that were outlined in the introduction, we can only
admit pathwise continuous trading strategies into the demand set.

Hence, the model of our economy as follows. Herein and in all of this paper,
the Lebesgue measure on [0, T ] will be denoted by λ.

(1) The economy has a single agent.
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(2) Stochasticity in the market is modeled as follows: Take a vector γx ∈ Rd,
a symmetric nonnegative-de�nite matrix Cx ∈ Rd×d, and a Lévy measure2
νx on Rd such that y 7→ ∑d

k=1 eyk (the sum of exponential components)
is νx-integrable, and let

(
Ω, (Gt)t∈[0,T ] ,P

)
be a �ltered probability space,

which will be further speci�ed later on,3 such that there exists a Lévy
process x : Ω× [0, T ] → Rd on (Ω,GT ,P) which is adapted to the �ltration
(Gt)t∈[0,T ] and such that the drift, covariance matrix and Lévy (jump in-
tensity) measure of x are γx, Cx, νx, respectively.4 Every P⊗λ-measurable
map y : Ω × [0, T ] → Rm (for some m ∈ N) will be referred to as a sto-
chastic process. The exponential integrability assumption on νx ensures
that exp (x(·, t)) ∈ L1(P) for all t ∈ [0, T ].

(3) There are J risky assets A1, . . . , AJ (wherein 0 ≤ J ≤ d), one risk-free
asset A0, and one consumption good C. Trading occurs over times in
the interval [0, T ]. The vector of cum-dividendis price processes of the
securities will be denoted by pA, whereas pC will be the price process of
the consumption good.

(4) We shall identify the securities with their dividend processes, which are
given by

∀ω ∈ Ω ∀t ∈ [0, T ) Aj(ω, t) = 0, Aj(ω, T ) = exp (xj(ω, T ))

for all j ∈ {1, . . . , J}, and
∀ω ∈ Ω ∀t ∈ [0, T ) A0(ω, t) = 0, A0(ω, T ) = 1

(5) The agent's endowment process is given by
∀ω ∈ Ω ∀t < T e(ω, t) = 1, e(ω, T ) = ρ (x(ω, T ))

for some continuous function ρ : Rd → R which satis�es
∃r ∈ R≥0 ∀x̄ ∈ Rd 0 ≤ ρ (x̄) ≤ r + er |x̄|.

Hence, there is a �ow endowment throughout the time interval as well as
a lump endowment at the end of the time horizon.

(6) A (cum-dividendis) securities price process is a RJ+1
≥0 -valued square-

integrable stochastic process which happens to be a (Gt)t∈[0,T ]-martingale
pA. A consumption price process is a R≥0-valued stochastic process pC .

(7) An admissible trading strategy, given a securities price process pA is a
RJ+1-valued predictable5 stochastic process z such that
• for all j ∈ {0, . . . , J}, zj is square-integrable with respect to the

Doléans measure of pAj ,6 and
• z0(·, 0) = 0, zj(·, 0) = 1 for all j ∈ {1, . . . , J}.

(8) A consumption plan is a R≥0-valued stochastic process c.

2A measure ν on Rd is called a Lévy measure if and only if both ν{0} = 0 andR
Rd

ą
1 ∧ x2

ć
ν(dx) < +∞.

3Our approach is to provide a �strong solution� in the sense of stochastic analysis to the
pricing problem, thus assuming that we are already working on a rich probability space.

4In Lindstrøm's [51] terminology, (γx, Cx, νx) is the generating triplet of x.
5The σ-algebra of predictable sets is the smallest σ-algebra which contains all sets of the form

{0} ×G0 and (s, t]×G for all s < t and all G0 ∈ G0, G ∈ Gs.
6The Doléans measure of a square-integrable martingale N is de�ned on the σ-algebra of

predictable sets as the measure νN such that both

νN [(s, t]×G] = E
h
|N(·, t)−N(·, s)|2 χG

i

and
νN [{0} ×G0] = 0

for all s < t and all G0 ∈ G0, G ∈ Gs. (Cf. Doléans [28] and Métiviér [60].)
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(9) The agent's utility U is a function of the consumption plan c, de�ned via
two felicity functions ϕ1, ϕ2, with �ow consumption throughout the time
interval as well as a lump consumption at the end of the time-horizon:

U : c 7→ E

[∫ T

0

ϕ1 (c(·, t)) dt+ ϕ2 (c(·, T ))

]
.

ϕ1, ϕ2 : R>0 → R are assumed to be twice continuously di�erentiable,
strictly increasing, strictly concave and bounded from below. Further-
more, we assume that

(1) ∀c ∈ (0, 1] ϕ′2 (c) ≤ γ

cr

holds for some γ, r ∈ R.7
(10) The budget set for price processes pA, pC is the set of all real-valued sto-

chastic processes c for which there exists some admissible trading strategy
z such that c satis�es the (intertemporal) budget constraint generated by
z:

pA(·, t) · z(·, t) = 1 · pA(0) +
∫ t

0

zdpA +
∫ t

0

pC(·, s) (e(·, s)− c(·, s)) ds

P-almost surely for every t < T and

pA(·, T ) · z(·, T ) = 1 · pA(0) +
∫ T

0

zdpA +
∫ T

0

pC(·, s) (e(·, s)− c(·, s)) ds

+(z(·, T ) ·A(·, T ) + e(·, T )− c(·, T )) pC(·, T )

P-almost surely. Herein, we use the notation 1 := (1, . . . , 1)︸ ︷︷ ︸
J times

>

(11) The continuous-strategy demand set for price processes pA, pC consists of
all those pairs (z, c) of an admissible trading strategy z and a consumption
plan c such that
• z has continuous paths P-almost surely,
• c satis�es the budget constraint generated by z, and
• U(c) is the maximum of U on the budget set for pA, pC .

(12) A continuous-strategy (securities-market) equilibrium for the economy
(e,A, ϕ) is a quadruple (pA, pC , z, c) such that
• (z, c) is an element of the continuous-strategy demand set for pA, pC ,

and
• the securities and goods markets clear:

∀t ∈ [0, T ] z0(·, t) = 0, ∀j ∈ {1, . . . , J} zj(·, t) = 1

∀t ∈ [0, T ) c(·, t) = 1, c(·, T ) = e(·, T ) +
J∑

j=1

Aj(·, T )

everywhere on Ω.
We put x0 := 0, so that x can also be viewed as a Rd+1-valued Lévy process.

7A su�cient condition for this estimate, given the other assumptions on ϕ2, is that ϕ2 exhibits
bounded scaled risk aversion on (0, 1] in the sense that supc∈(0,1]−cq ϕ′′2 (c)

ϕ′2(c)
< +∞ for some q ≥ 1.

In particular, this condition is satis�ed if ϕ2 exhibits bounded relative risk aversion on (0, 1] �
for instance, if ϕ2 is of constant absolute risk aversion (CARA) or constant relative risk aversion
(CRRA). See Lemma A.1 in Appendix A.
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3. Main result
Our result is the existence of an equilibrium for the stochastic continuous-time

economy described in Section 2 and an explicit pricing formula in terms of the Lévy
process x. We will use the abbreviation R : Rd → R, y 7→ ρ(y) +

∑J
k=1 eyk .

Theorem 3.1. There exists a continuous-strategy securities-market equilibrium
(pA, pC , z, c) for the economy (e,A, ϕ). One has pC(·, t) = ϕ′(1) for all t < T as
well as pC(·, T ) = ϕ′2 (R (x(·, T ))) with probability 1. Furthermore, with probability
1, for all t ∈ [0, T ] and j ∈ {0, . . . , J},

pAj (·, t) = E [ϕ′2 (R (x(·, T ))) exp (xj(·, T ))| Gt] ,
hence

pAj
(ω, t) = exp (xj(ω, t))

∫
ϕ′2 (R (x(ω, t) + z)) ezjPx(·,T−t)(dz)

for P-almost all ω ∈ Ω.

4. Proof
Our proof is based on nonstandard analysis, more precisely: on a hyper�nite,

i.e. formally �nite, discretization of the continuous-time economy. This proof tech-
nique was introduced into the equilibrium theory of �nancial markets by Anderson
and Raimondo [64, 8, 9]. Our argument consists essentially of three parts: First,
we give a rigorous description of the hyper�nite economy, wherein Lindstrøm's [51]
theory of hyper�nite Lévy processes will be put to use. Then, secondly, we establish,
by means of the Du�e-Shafer [31, 32] theorems, the existence of equilibrium in a
perturbed hyper�nite discretization of the continuous-time economy (Theorem 4.1)
as well as a characterization of the equilibrium asset prices (Theorem 4.3). The last
step will be the proof that the standard part of the hyper�nite economy is indeed an
equilibrium of the standard economy (Theorem 4.4). Our main result, Theorem 3.1,
is just the combination of Theorem 4.1, Theorem 4.3 and Theorem 4.4.

4.1. The hyper�nite economy. Our hyper�nite discretization of the
continuous-time economy is a generalization of the hyper�nite economy of Rai-
mondo [64], obtained through replacing Anderson's [6] random walk β̂ by a hyper-
�nite Lévy process X (in the sense of Lindstrøm [51]) whose right standard part
will be the Lévy process x.

Lindstrøm [51] has shown that for for all triples (γx, Cx, νx) consisting of a
vector in Rd, a symmetric nonnegative-de�nite matrix in Rd×d, and a Lévy measure
on Rd, respectively, there exists a hyper�nite Lévy process X whose right standard
part has generating triplet (γx, Cx, νx). Hence, we may assume that x is the right
standard part of some hyper�nite Lévy process X : Ω× T→ ∗Rd de�ned on some
hyper�nite probability space (Ω, P ) (where Ω is a hyper�nite set and P is an internal
�nitely-additive probability measure on the internal power-set of Ω), wherein, T is
the hyper�nite time-line

T :=
{ n

N
T : n ∈ ∗N0, n ≤ N

}

(for some N ∈ ∗N \ N), and we shall write ∆t := 1
N for the � in�nitesimal �

spacing of T.8 If we denote by I the increment set of X, then (Ω, P ) may be chosen

8An internal map X : Ω× T→ ∗Rd is a hyper�nite Lévy process if and only if
(1) X(·, 0) = 0.
(2) For all t0 < · · · < tn ∈ T, the internal random variables

X (·, t1 − t0) , . . . , X (·, tn − tn−1) are ∗-independent under P .
(3) For all a ∈ ∗Rd and t ∈ T, P {X (·, t + ∆t)−X (·, t) = a} = P {X (·, ∆t) = a}.
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such that both
Ω = IT\{T} = {ω : T \ {T} → I : ω internal}

and
∀t ∈ T ∀ω ∈ Ω X(ω, t) =

∑

u∈T∩[0,t)

ω(u).

One can also de�ne an internal �ltration (Fu)u∈T on Ω: For all u ∈ T, de�ne an
equivalence relation ∼u on Ω by

∀ω, ω′ ∈ Ω ω ∼u ω′ :⇔ ∀v < u ω(v) = ω′(v),

and de�ne Fu to be the algebra of all internal, ∼u-respecting sets. In other words:
Fu :=

{
C ∈ 2Ω : ∀ω, ω′ ∈ Ω(ω ∼u ω′ ⇒ (ω ∈ C ⇔ ω′ ∈ C))

}
.

The probability space of the standard model,
(
Ω, (Gt)t∈[0,T ] ,P

)
, can now be

speci�ed as follows:
• Ω is the hyper�nite set Ω = IT\{T}, the �rst component of the domain of
X.

• P is the Loeb measure9 generated by P , in symbols: P = L(P ).
• For all t ∈ [0, T ], the σ-algebra Gt is the L(P )-completion of the algebra

{
C ∈ 2Ω : ∀u ' t ∀ω, ω′ ∈ Ω((∀v < u ω(v) = ω′(v)) ⇒ (ω ∈ C ⇔ ω′ ∈ C))

}

(equivalently, Gt is the L(P )-completion of the algebra
⋂
u't Fu).

• x is the right standard part of X.
Here is the model of the (discrete) hyper�nite economy:
(1) The economy has a single agent.
(2) Randomness is given by the hyper�nite probability space (Ω, P ). An

internal (stochastic) process is an internal map Y : Ω × T → ∗Rm (for
m ∈ N). An internal process is called nonanticipating if and only if it is
adapted with respect to the internal �ltration F = (Fu)u∈T (i.e. if Y (·, u)
is Fu-measurable for all u ∈ T).10

(3) There are J + 1 securities.
(4) The internal dividend processes of the securities are Â0, . . . , ÂJ , where Â0

is risk-free.
(5) The agent in the hyper�nite economy has an endowment process ê : Ω×

T→ ∗R≥0.
(6) A (cum-dividendis) securities price process for the hyper�nite economy is

an internal process p̂A : Ω×T→ ∗RJ+1
≥0 . A consumption price process for

the hyper�nite economy is an internal process p̂C : Ω× T→ ∗R≥0.
(7) An admissible trading strategy for the hyper�nite economy is an internal

process ẑ : Ω× T→ ∗RJ+1 such that
• ẑ(·, t) is Ft−∆t-measurable for all t ∈ T \ {0}, and
• ẑ0(·, 0) = 0, ẑj(·, 0) = 1 for all j ∈ {1, . . . , J}.11

(8) A consumption plan for the hyper�nite economy is an internal process
ĉ : Ω× T→ ∗R≥0.

The internal set
ľ
a ∈ ∗Rd : P {X (·, ∆t) = a} > 0

ł
is called the increment set of X.

9The Loeb measure L(µ) generated by an internal �nitely-additive �nite measure µ on some
internal algebra A is the Carathéodory extension of the �nitely additive measure A 7→ ◦µ(A).
(Cf. Loeb [53] and Albeverio, Fenstad, Høegh-Krohn and Lindstrøm [1].)

10An equivalent de�nition would be to demand that for all ω, ω′ ∈ Ω and t ∈ T, if ω(s) = ω′(s)
for all s < t, then Y (ω, t) = Y (ω′, t).

11Anderson and Raimondo [9] employ a slightly di�erent terminology. They would call the
process (ẑ(·, t−∆t))t∈T, rather than ẑ, an (admissible) trading strategy.
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(9) The agent's utility in the hyper�nite economy is an internal function of
the consumption plan ĉ, de�ned by

Û : ĉ 7→ E

[(∑

u<T

∗ϕ1 (ĉ(·, u))∆t

)
+ ∗ϕ2 (ĉ(·, T ))

]
,

wherein ∗ϕ1,
∗ϕ2 are the ∗-images of the functions ϕ1, ϕ2 : R>0 → R that

de�ned the utility function in the standard economy (which were assumed
to be twice continuously di�erentiable, strictly increasing, concave and
bounded from below).

(10) The budget set for price processes p̂A, p̂C is the set of all consumption
plans ĉ for which there exists some admissible trading strategy ẑ such
that ĉ satis�es the (intertemporal) budget constraint generated by ẑ:

p̂A(·, u) · ẑ(·, u)
= 1 · p̂A(0) +

∑
v<u

ẑ(·, v)∆p̂A(·, v) +
∑
v<u

p̂C(·, v) (ê(·, v)− ĉ(·, v))∆t

for every u ∈ T and

p̂A(·, T ) · ẑ(·, T )

= 1 · p̂A(0) +
∑

v<T

ẑ(·, v)∆p̂A(·, v) +
∑

v<T

p̂C(·, v) (ê(·, v)− ĉ(·, v))∆t

+
(
ẑ(·, T ) · Â(·, T ) + ê(·, T )− ĉ(·, T )

)
p̂C(·, T )

(11) The demand set for price processes p̂A, p̂C consists of all those pairs (ẑ, ĉ)
where ẑ is an admissible trading strategy and ĉ is a consumption plan
such that
• ĉ satis�es the budget constraint generated by ẑ, and
• Û (ĉ) is the maximum of Û on the budget set for p̂A, p̂C .

(12) A (securities-market) equilibrium for the hyper�nite economy
(
ê, Â, ∗ϕ

)

is a quadruple (p̂A, p̂C , ẑ, ĉ) such that
• (ẑ, ĉ) lies in the demand set for p̂A, p̂C ,
• and the securities and goods markets clear, i.e.

∀u ∈ T ẑ0(·, u) = 0, ∀j ∈ {1, . . . , J} ẑj(·, u) = 1

∀u ∈ T \ {T} ĉ(·, u) = 1, ĉ(·, T ) = ê(·, T ) +
J∑

j=1

Âj(·, T )

everywhere on Ω.

Again, we will put X0 = 0, so that X can also be regarded as a ∗Rd+1-valued
hyper�nite Lévy process.

It is worth noting that for every S-continuous trading strategy in the hyper�nite
economy, the di�erence between the internal current portfolio value and the internal
gains process is itself an S-continuous process:

Lemma 4.1. Suppose ŷ is S-continuous, and, L(P )-almost surely, p̂A(·, u) is
�nite for all u ∈ T. Then ŷp̂A −

∫
ŷdp̂A is S-continuous.
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Proof. For all u, v ∈ T,

ŷ(·, v)p̂A(·, v)−
∫ v

0

ŷ dp̂A −
(
ŷ(·, u)p̂A(·, u)−

∫ u

0

ŷ dp̂A

)

= ŷ(·, v)p̂A(·, v)− ŷ(·, u)p̂A(·, u)−
∫ v

u

ŷ dp̂A

= ŷ(·, v)p̂A(·, v)− ŷ(·, u)p̂A(·, u)− ŷ(·, v) (p̂A(·, v)− p̂A(·, u))
+ŷ(·, v) (p̂A(·, v)− p̂A(·, u))−

∫ v

u

ŷ dp̂A

= (ŷ(·, v)− ŷ(·, u)) p̂A(·, u) + ŷ(·, v) (p̂A(·, v)− p̂A(·, u))−
∫ v

u

ŷ dp̂A.

whilst p̂A(·, u) is �nite L(P )-almost surely.
Now the �rst addend on the right-hand side of this equation is zero if u ' v,

due to the S-continuity of ŷ and because p̂A(·, u) is �nite L(P )-almost surely. The
second part can be estimated as follows:

(
ŷ(·, v)− max

t∈[u,v]
ŷ(·, t) ∨ min

t∈[u,v]
ŷ(·, t)

)
(p̂A(·, v)− p̂A(·, u))

= ŷ(·, v) (p̂A(·, v)− p̂A(·, u))
−

(
max
t∈[u,v]

ŷ(·, t) ∨
(
− min
t∈[u,v]

ŷ(·, t)
))

(p̂A(·, v)− p̂A(·, u))

≤ ŷ(·, v) (p̂A(·, v)− p̂A(·, u))−
∫ v

u

ŷ dp̂A

≤ ŷ(·, v) (p̂A(·, v)− p̂A(·, u))
−

(
min
t∈[u,v]

ŷ(·, t) ∧
(
− max
t∈[u,v]

ŷ(·, t)
))

(p̂A(·, v)− p̂A(·, u))

=
(
ŷ(·, v)− min

t∈[u,v]
ŷ(·, t) ∧

(
− max
t∈[u,v]

ŷ(·, t)
))

(p̂A(·, v)− p̂A(·, u)) ,

wherein min,max,∧,∨ are taken componentwise. But if u ' v, then ŷ(·, v) '
mint∈[u,v] ŷ(·, t) ' maxt∈[u,v] ŷ(·, t) whilst p̂A(·, v), p̂A(·, u) are �nite, therefore both
the very left-hand side and the very right-hand side of this chain of inequalities are
in�nitesimal. For this reason, ŷ(·, v) (p̂A(·, v)− p̂A(·, u))− ∫ v

u
ŷ dp̂A is in�nitesimal

whenever u ' v. ¤

4.2. The hyper�nite equilibrium. We shall now establish the existence of a
securities-market equilibrium for some hyper�nite economy that is an in�nitesimal
perturbation of the hyper�nite economy whose primitives correspond to those of
the standard economy.

The size of this perturbation is determined by two in�nitesimal constants
ψ (∆t) , χ (∆t). Using, as before, the abbreviation R for the function R : Rd → R,
y 7→ ρ(y) +

∑J
k=1 eyk and its ∗-image, we de�ne these constants as

ψ (∆t) =
∆t

maxω∈Ω maxξ∈[0,1] |∗ϕ′′2 (R (X(ω, T )) + ξ)|maxω∈Ω maxk exp (Xk(ω, T ))

and

χ (∆t) =
∆t

maxω∈Ω maxξ∈[0,1] |∗ϕ′′2 (R (X(ω, T )) + ξ)| .
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Theorem 4.1. The hyper�nite economy
(
ê, Â, ∗ϕ

)
has a securities-market

equilibrium (p̂A, p̂C , ẑ, ĉ) for some ê, Â which satisfy
∀t ∈ T \ {T} 0 ≤ ê (·, t)− 1 ≤ ψ (∆t)

0 ≤ ê (·, T )− ∗ρ (X(·, T )) ≤ ψ (∆t)

as well as for all j ∈ {0, . . . , J},
∀t ∈ T \ {T} 0 ≤ Âj (·, t) ≤ χ (∆t)

exp (Xj(·, T )) ≤ Âj (·, T ) ≤ exp (Xj(·, T )) + χ (∆t) .

For L(P )-almost all ω, one has
∀t ∈ T \ {T} p̂C(ω, t) = ∗ϕ′1(1), p̂C(ω, T ) ' ∗ϕ′2 (R (X(ω, T ))) ,

as well as for all j ∈ {0, . . . , J},

(2) ∀t ∈ T p̂Aj
(ω, t) ' exp (Xj(ω, t))

∫
∗ϕ′2 (R (X(ω, t) + y)) eyjPX(·,T−t)(dy).

Proof. The existence of the equilibrium for a perturbed economy follows from
the Du�e-Shafer theorem [31, 32] transferred to the nonstandard universe.

Next, we prove the formula (2) for p̂A. The �rst-order conditions (cf. e.g.
Magill and Quinzii [58, �22, pp. 230-231]) imply that for all j ∈ {0, . . . , J} and
t ∈ T,

(3) p̂Aj (·, t) = E

[
∗ϕ′2

(
ê(·, T ) +

J∑

k=1

Âk(·, T )

)
Âj(·, T )

∣∣∣∣∣Ft
]
.

Let us combine this equation with the estimates on ê and Â which the Theorem
assumes. Then there exist random variables ζ, η such that

p̂Aj (·, t) = E
[∗ϕ′2 (R (X(·, T )) + ζ) (exp (Xj(·, T )) + η)

∣∣Ft
]

and

0 ≤ ê(·, T )+
J∑

k=1

Âk(·, T )− ∗ρ (X(·, T ))−
J∑

k=1

exp (Xk(·, T )) = ζ ≤ ψ (∆t)+Jχ (∆t)

as well as
0 ≤ Âj(·, T )− exp (Xj(·, T )) = η ≤ χ (∆t) .

Combining these bounds on ζ with the intermediate-value theorem and the choice
of ψ (∆t) , χ (∆t), we obtain

∣∣∗ϕ′2 (R (X(·, T )) + ζ)− ∗ϕ′2 (R (X(·, T )))
∣∣

≤ ζ max
ξ∈[0,ζ]

∣∣∗ϕ′′2 (R (X(·, T )) + ξ)
∣∣

≤ (ψ (∆t) + Jχ (∆t)) max
ξ∈[0,ψ(∆t)+Jχ(∆t)]

∣∣∗ϕ′′2 (R (X(·, T )) + ξ)
∣∣

≤ (ψ (∆t) + Jχ (∆t))max
ω∈Ω

max
ξ∈[0,ψ(∆t)+Jχ(∆t)]

∣∣∗ϕ′′2 (R (X(ω, T )) + ξ)
∣∣ ' 0

everywhere on Ω. Therefore
(4) ∀ω ∈ Ω ∗ϕ′2 (R (X(ω, T )) + ζ) ' ∗ϕ′2 (R (X(ω, T )))

Since also |η| ≤ χ (∆t) ' 0 and X(·, T ) is �nite L(P )-almost surely, we conclude
that

∗ϕ′2 (R (X(·, T )) + ζ) (exp (Xj(·, T )) + η) ' ∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))
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holds L(P )-almost surely. (In fact, our choice of ψ (∆t) , χ (∆t) even makes sure
that this approximate identity holds everywhere on Ω.) This implies, by Loeb
integration theory, that

p̂Aj
(·, t) = E

[∗ϕ′2 (R (X(·, T )) + ζ) (exp (Xj(·, T )) + η)
∣∣Ft

]

' E
[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))

∣∣Ft
]

(5)
L(P )-almost surely. Since X is a hyper�nite Lévy process, we may �nally deduce

p̂Aj (·, t) '
∫

∗ϕ′2 (R (X(·, t) + y)) exp (Xj(·, t) + yj)PX(·,T−t)(dy)

L(P )-almost surely, which is the same as the approximate identity (2).
As the last step, we prove the formulae for p̂C . At the terminal date, the �rst-

order conditions yield p̂C(·, T ) = ∗ϕ′2 (ĉ(·, T )). Combining this with market clearing
and Equation (4), we obtain

p̂C(·, T ) = ∗ϕ′2 (ĉ(·, T )) = ∗ϕ′2

(
ê(·, T ) +

J∑

k=1

Âk(·, T )

)
' ∗ϕ′2 (R (X(·, T ))) .

Finally, the individual consumption equals the social consumption and hence
ĉ(·, t) = 1 for all t ∈ T \ {T}, which leads, via the �rst-order conditions, to

∀t ∈ T \ {T} p̂C(·, t) = ∗ϕ′1 (ĉ(·, t)) = ∗ϕ′1 (1) .

¤

Theorem 4.2. p̂A has a right standard part and is nonanticipating as well as
S-square integrable. Its right standard part ◦p̂A is a square-integrable martingale.

Proof. Due to Equation (5) (which follows from the �rst-order conditions),
p̂A is a martingale and nonanticipating.

Next, �x j ∈ {0, . . . , J}. ϕ′2 is nonnegative and R is the ∗-image of the
continuous function ρ +

∑J
k=1 exp ((·)k), whence the internal processes (ω, t) 7→

E
[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T )) ∧ n

∣∣Ft
]
(ω), n ∈ N are adapted functions of X

(in the terminology of Fajardo and Keisler [35]) and, moreover, bounded inter-
nal martingales. Hence, (ω, t) 7→ E

[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))
∣∣Ft

]
(ω) is the

monotone limit of adapted functions which are martingales. Also, X is a right
lifting of x = ◦X.

Therefore, the model theory of stochastic processes teaches, by means of the
Adapted Lifting Theorem (cf. Fajardo and Keisler [35]) that the internal process
(ω, t) 7→ E

[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))
∣∣Ft

]
(ω) has a right standard part (for

all j) which is a martingale.
In addition, if we combine the growth estimate (1) on ϕ′2 with the as-

sumption that ϕ′2 is decreasing, we obtain S-square integrability of (ω, t) 7→
E

[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))
∣∣Ft

]
(ω) through an estimate on the standard

part of ∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T )).
This implies that the right standard part of the internal process (ω, t) 7→

E
[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))

∣∣Ft
]
(ω) is a square-integrable martingale.

In light of Equation (5) we �nally conclude that p̂Aj : (ω, t) 7→ p̂Aj (ω, t) '
E

[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))
∣∣Ft

]
(ω) has a right standard part which is a

square-integrable martingale. ¤

Lemma 4.2. For all t ∈ T and all �nite a ∈ ∗RJ , ∗ϕ′2 (R (a+X(·, T − t))) is
SL1(P ).

Proof. Note that R grows exponentially and ∗ϕ′2 (c) ≤ γ
cr holds for all c ∈

(0, 1] by estimate (1). Therefore, ∗ϕ′2 ◦R exhibits exponential growth. On the other
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hand exp (Xj(·, T − t)) is S-integrable with respect to P for all j ∈ {0, . . . , J}.
Therefore, ∗ϕ′2 (R (a+X(·, T − t))) must be S-integrable with respect to P , too.

¤

Lemma 4.3. For all t ∈ T, L
(
PX(·,t)

) ◦ st−1 = L(P )x(·,◦t)

Proof. Consider a Borel measurable B ⊆ RJ . Lindstrøm [51, Lemma 6.4]
has shown that ◦ (X(ω, t)) = x (ω, ◦t) for L(P )-almost every ω ∈ Ω. Therefore,
L(P ) {x (ω, ◦t) ∈ B} = L(P ) {◦ (X(·, t)) ∈ B} and hence L(P ) {x (ω, ◦t) ∈ B} =
L(P )

{
X(·, t) ∈ st−1[B]

}
= L

(
PX(·,t)

) ◦ st−1[B].
¤

Lemma 4.4. For all j ∈ {0, . . . , J} and all t ∈ T,

(6) ◦ (
p̂Aj (ω, t)

)
= exp (xj (ω, ◦t))

∫
ϕ′2 (R (x (ω, ◦t) + z)) ezj L(P )x(·,T−◦t)(dz)

for L(P )-almost all ω.

Proof. Fix j ∈ {0, . . . , J} and t ∈ T. In the following calculations, the �rst
equation is just Equation (2), the second equation follows from Lemma 4.2 and
Loeb integration theory, and the last equation is due to Lemma 4.3:

p̂Aj (ω, t) ' exp (Xj(ω, t))
∫

∗ϕ′2 (R (X(ω, t) + y)) eyjPX(·,T−t)(dy)

' exp (Xj(ω, t))
∫

◦ (∗ϕ′2 (R (X(ω, t) + y)) eyj
)
L

(
PX(·,T−t)

)
(dy)

= exp (Xj(ω, t))
∫

◦ (∗ϕ′2 (R (X(ω, t) + ◦y)) eyj
)
L

(
PX(·,T−t)

)
(dy)

= exp (Xj(ω, t))
∫

◦ (∗ϕ′2 (R (X(ω, t) + z)) ezj
)
L

(
PX(·,T−t)

) ◦ st−1(dz)

= exp (Xj(ω, t))
∫

◦ (∗ϕ′2 (R (X(ω, t) + z)) ezj
)
L(P )x(·,T−◦t)(dz)

for all ω ∈ Ω. However, the function ξ 7→ ∗ϕ′2 (R (ξ + z)) eξj is S-continuous (for
all z ∈ RJ) and so is exp, and additionally we have by Lindstrøm [51, Lemma 6.4]
that X(ω, t) ' x (ω, ◦t) for L(P )-almost every ω ∈ Ω. This �nally yields

p̂Aj (ω, t) ' exp (xj(ω, ◦t))
∫
ϕ′2 (R (x(ω, ◦t) + z)) ezj L(P )x(·,T−◦t)(dz)

for L(P )-almost every ω ∈ Ω. ¤

4.3. Equilibrium for the standard economy. The model theory of sto-
chastic processes can again be used to derive, from the pricing formulae in Theo-
rem 4.1, an explicit formula for the right standard part ◦p̂A of p̂A.

Theorem 4.3. With Loeb probability 1, one has for all t ∈ [0, T ] and j ∈
{0, . . . , J},
(7) ◦p̂Aj (·, t) = E [ϕ′2 (R (x(·, T ))) exp (xj(·, T ))| Gt] ,
hence for L(P )-almost all ω,

(8) ◦p̂Aj (ω, t) = exp (xj(ω, t))
∫
ϕ′2 (R (x (ω, t) + z)) ezj L(P )x(·,T−t)(dz)

for all t ∈ [0, T ] and j ∈ {0, . . . , J}.
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Proof. Equation (5) tells us that with L(P )-probability 1, one has for all
t ∈ T,

p̂A(·, t) ' E
[∗ϕ′2 (R (X(·, T ))) exp (Xj(·, T ))

∣∣Ft
]
.

Combining this with the Adapted Lifting Theorem (cf. Fajardo and Keisler [35])
completes the proof for the conditional-expectation representation of ◦p̂A in Equa-
tion (7). Equation (8) follows immediately from Equation (7) by the properties of
Lévy processes:

E [ϕ′2 (R (x(·, T ))) exp (xj(·, T ))| Gt]
=

∫
ϕ′2 (R (x (ω, t) + z)) exp (xj (ω, t) + zj) L(P )x(·,T−t)(dz)

= exp (xj(ω, t))
∫
ϕ′2 (R (x (ω, t) + z)) ezj L(P )x(·,T−t)(dz).

¤

The combination of Theorem 4.3 with Lemma 4.4 gives another characterization
of ◦p̂A (which, as we shall see, is the price process of the standard economy) through
p̂A:

Corollary 4.1. For all j ∈ {0, . . . , J} and all t ∈ T, one has
◦p̂Aj (·, ◦t) = ◦ (

p̂Aj (ω, t)
)

for L(P )-almost all ω ∈ Ω.
Finally, we prove that the standard part of the hyper�nite securities-market

equilibrium is indeed a (standard) securities-market equilibrium for the (standard)
continuous-time economy. Herein, by standard part we mean, as before, the �
pathwise � right standard part, and it should be noted that this is the canonical
notion of standard part when studying stochastic processes whose paths are right-
continuous functions with left limits: For, the right standard part of a function
[0, T ] → Rd which is right-continuous with left limits coincides with the topological
standard part of that function, both in the Skorokhod J1 topology (cf. Hoover and
Perkins [44]) and in the Kolmogorov metric (cf. Stroyan and Bayod [69]).

Theorem 4.4. (pA, pC , z, c) := (◦p̂A, ◦p̂C , ◦ẑ, ◦ĉ) is a continuous-strategy
(securities-market) equilibrium for the standard continuous-time economy
(e,A, ϕ, ρ, x).

In the following, we shall denote by Ã := (A1, . . . , AJ) the vector of risky assets.

Proof of Theorem 4.4. The internal market clearing condition ensures that
c(·, u) = 1 for all u ∈ T \ {T}, therefore, we also get

∀t ∈ [0, T ] c(·, t) = 1.

Moreover, by the choice of the equilibrium endowment and dividend processes ê, Â
in Theorem 4.1 and the fact that X(·, T ) ' x(·, T ) (due to Lindstrøm [51, Lemma
6.4]), we know that ê(·, T ) ' ρ (x (·, T )) and Âj(·, T ) ' exp (xj(·, T )), hence by
market clearing

c(·, T ) ' ĉ(·, T ) = ρ (x (·, T )) +
J∑

k=1

exp (xk(·, T )) .

On the other hand, by Loeb integration theory, we have U(c) ' Û (ĉ), so

Û (ĉ) ' U(c) = Tϕ1(1) + E

[
ϕ2

(
ρ (x (·, T )) +

J∑

k=1

exp (xk(·, T ))

)]
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which is > −∞ since x is exp-integrable.
Furthermore, we have
◦
∫ t

0

ẑ dp̂A = 1 · ◦p̂A(·, t)− 1 · ◦p̂A(·, 0) = 1 · pA(·, t)− 1 · pA(·, 0) =
∫ t

0

z dpA

for all t ∈ [0, T ] on a set of Loeb probability 1 (viz. where p̂A has a right standard
part). Hence,

∫ t

0

z dpA − pA(·, t)z(·, t) =
◦
∫ t

0

ẑ dp̂A − ◦p̂A(·, t)◦ẑ(·, t)

for all t ∈ [0, T ] on a set with Loeb probability 1. Also, by Loeb integration theory,
we have

∀t ∈ T
∫ ◦t

0

pC(·, s) (e(·, s)− c(·, s)) ds =
∑
u<t

p̂C(·, u) (ê(·, u)− ĉ(·, u)) ∆t

on a set of Loeb probability 1.
Now, since ĉ satis�es the internal budget constraint generated by ẑ, taking the

right standard part of the internal budget equation proves that c must satisfy the
budget constraint generated by z. Also, note that the securities and consumption
goods markets clear for the economy (pA, pC , z, c).

Therefore, if (pA, pC , z, c) was not an equilibrium then c could not maximize U
over the budget set. Hence, there would be an admissible trading strategy y with
continuous paths and a consumption plan c′ in the budget set generated by y such
that U (c′) > U(c).

Since c′ is in the domain of U , we must have c′ ∈ L1 (λ⊗ L(P )); furthermore,
c′ is continuous and adapted. Therefore, c′ has a 1-lifting c̄′ (by Anderson [6,
Lemma 31]). For all ε ∈ ∗R>0, let c̄′ε := max {ε, c̄′}.

By �nding estimates on ϕ1 (c̄′ε(ω, t)) and ϕ2 (c̄′ε(ω, T )) for all t ∈ [0, T ] and
almost all ω, one can prove, via Lebesgue's Dominated Convergence Theorem that
◦Û (c̄′ε) −→ U (c′) as ε → 0 in R>0. Hence, there exists some ε′ ' 0 such that
◦Û (c̄′ε) = U (c′). De�ne ĉ′ := c̄′ε′ . It is clear that then ĉ′ also is a 1-lifting of c′.
Hence

(9) ∀t ∈ T
∫ ◦t

0

pC(·, s) (e(·, s)− c′(·, s)) ds '
∑
u<t

p̂C(·, u) (ê(·, u)− ĉ′(·, u)) ∆t

on a set of Loeb probability 1.
Based on y, we next choose some process ŷ such that ĉ′ violates the budget

constraint generated by that process ŷ merely in�nitesimally (at all times t ∈ T).
Since y is continuous by assumption, it must have an S-continuous lifting. Let

ŷ be such a lifting. In order to prove that ŷ �nances ĉ′ up to an in�nitesimal at
all internal times t ∈ T, �rst note that y (·, ◦u) = ◦ (ŷ(·, u)) for all u ∈ T (as ŷ is
S-continuous). Second, since p̂A is a right-continuous martingale and y is square-
integrable with respect to the Doléans measure of pA, the S-continuous lifting ŷ
must even be a 2-lifting of y with respect to pA. Thus, the SL2 theory of stochastic
integration (cf. Lindstrøm [50, Theorem 17]) yields

◦∫ t
0
ŷ dp̂A =

∫ t
0
y dpA for all

t ∈ [0, T ]. Hence, the right standard part of p̂Aŷ−
∫
ŷdp̂A is pAy−

∫
y dpA. On the

other hand, by Lemma 4.1, the internal process p̂Aŷ−
∫
ŷdp̂A must be S-continuous.

These deliberations yield that with Loeb probability 1,

∀t ∈ T p̂A(·, t)ŷ(·, t)−
∫ t

0

ŷdp̂A ' pA (·, ◦t) y (·, ◦t)−
∫ ◦t

0

y dpA.

Combining this result with Equation (9) and the assumption that c′ satis�es
the budget constraint generated by y, we get that indeed with Loeb probability 1,
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the consumption plan ĉ′ violates the budget constraint generated by ŷ at all times
at most by an in�nitesimal.

Since the time line T is hyper�nite, the maximal amount over time by which
this violation occurs is in�nitesimal, too. Put formally, if we de�ne f by

f(ω) := max
t∈T

(
p̂A(ω, t)ŷ(ω, t)− ∫ t

0
ŷ(ω, u)dp̂A(ω, u)− 1 · p̂A(0)

− ∫ t
0
p̂C(ω, u) (ê(ω, u)− ĉ′(ω, u)) du

)

for every ω ∈ Ω, then f ' 0 with Loeb probability 1.
Consider next the function g de�ned by

∀ω ∈ Ω g(ω) :=
1

1 +
∑
u∈T ê(ω, u)

min
j∈{0,...,J}

mint∈T
(
p̂Aj (ω, t) ∧ p̂C(ω, t)

)

maxt∈T
(
p̂Aj (ω, t) ∨ p̂C(ω, t)

} .

By Equation (2), the second factor in this equation is non-in�nitesimal with Loeb
probability 1, and the �rst factor is Loeb almost surely non-in�nitesimal as X
is a hyper�nite Lévy process (and therefore is almost surely �nite). Hence, g is
non-in�nitesimal with Loeb probability 1.

Thus, there exists some in�nitesimal δ > 0 such that both |f | < δ and g >
√
δ

with Loeb probability 1. (For, the set {δ ∈ ∗R>0 : P {|f | ≥ δ} ≤ δ} is internally
de�ned, hence internal, and contains all positive reals, hence it must contain a
positive in�nitesimal hyperreal δ as well. But on the other hand, ◦P

[{
g ≤

√
δ
}]

≤
L(P ) {g ' 0} = 0. Therefore, the internal set Ω′ = {|f | < δ} ∩

{
g >

√
δ
}

satis�es
L(P ) [Ω′] = 1.)

In order to produce a contradiction, we shall now construct a consumption plan
ˆ̄c and an admissible trading strategy ˆ̄y that �nances it such that Û

(
ˆ̄c
)
> Û (ĉ). ˆ̄y

will be the following modi�cation of ŷ: We put ˆ̄yj = ŷj for every j ≥ 1, and for all
ω ∈ Ω, we set ˆ̄c(ω, t) = 0 and invest the resulting savings on consumption into the
bond (formally, ˆ̄y0 will be recursively de�ned via the budget constraint), until the
�rst t = t1(ω) such that p̂A0

(
ˆ̄y0 − ŷ0

)
(ω, t) ≥

√
δ.

For all ω ∈ Ω and t > t1(ω), we put ˆ̄c(ω, t) = ĉ′(ω, t) and ˆ̄y0(ω, t) = ŷ0(ω, t),
and the vector ˆ̄yÃ(ω, t) is set at whatever value is then needed to �nance the con-
sumption.

De�ne ˆ̄c and ˆ̄y in this way for all t, given ω, starting from t1(ω) until the �rst
time t = t2(ω) for which these formulae would yield p̂A · ˆ̄y(ω, t) < p̂A · ŷ(ω, t).

For all t ≥ t2(ω), put ˆ̄y(ω, t) = ŷ(ω, t) and let ˆ̄c be chosen, recursively in t, in
such a way that the budget constraint will be met, i.e. the consumption ˆ̄c will be
reduced such that for all t ≥ t2(ω),

p̂A(ω, t) · ŷ(ω, t)− 1 · p̂A(0) =
∑
u<t

p̂C
(
ê− ˆ̄c

)
(ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u).
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For all (ω, t) with t < t2(ω), the choice of ˆ̄c yields, via the budget constraint
for ˆ̄c and ˆ̄y, the following equations:

p̂A ·
(
ˆ̄y − ŷ

)
(ω, t) = −p̂A · ŷ(ω, t) + 1 · p̂A(0)

+
∑

t1(ω)≤u<t
p̂C

(
ê− ˆ̄c

)
(ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

+
∑

u<t1(ω)

p̂C
(
ê− ˆ̄c

)
(ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

= −p̂A · ŷ(ω, t) + 1 · p̂A(0)

+
∑

t1(ω)≤u<t
p̂C (ê− ĉ′) (ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

+
∑

u<t1(ω)

p̂C ê(ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

By the choice of t2(ω), this means that for all (ω, t) with t1(ω) < t < t2(ω), one has
p̂A ·

(
ˆ̄y − ŷ

)
(ω, t) ≥ −p̂A · ˆ̄y(ω, t) + 1 · p̂A(0)

+
∑

t1(ω)≤u<t
p̂C (ê− ĉ′) (ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

+
∑

u<t1(ω)

p̂C ê(ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

≥ −p̂A · ˆ̄y(ω, t) + 1 · p̂A(0)

+
∑

t1(ω)≤u<t
p̂C (ê− ĉ′) (ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u)

+
∑

u<t1(ω)

p̂C (ê− ĉ′) (ω, u)∆t+ ˆ̄y ·∆p̂A(ω, u).

Finally, the construction of ˆ̄y, ˆ̄c ensures that ĉ′ never violates the budget constraint
generated by ˆ̄y as much as the budget constraint generated by ŷ. Therefore, we
can �nd, for all (ω, t) with t1(ω) < t < t2(ω), the following lower bound for p̂A ·(
ˆ̄y − ŷ

)
(ω, t):
p̂A ·

(
ˆ̄y − ŷ

)
(ω, t) ≥ −p̂A · ŷ(ω, t) + 1 · p̂A(0)

+
∑

t1(ω)≤u<t
p̂C (ê− ĉ′) (ω, u)∆t+ ŷ ·∆p̂A(ω, u)

+
∑

u<t1(ω)

p̂C (ê− ĉ′) (ω, u)∆t+ ŷ ·∆p̂A(ω, u)

≥ −f(ω)(10)
Since t1 and t2 are internal stopping times, ˆ̄y is an admissible internal trading

strategy. Note that t1(ω) ' 0 for almost all ω due to Lemma 4.4. Moreover,
one can prove that t2(ω) > T for almost all ω. (For, if ω ∈ Ω′ and t ≥ t1(ω),
then inequality (10) yields �rst of all −p̂A ·

(
ˆ̄y − ŷ

)
(ω, t) ≤ f(ω) < δ ≤ g(ω)

√
δ ≤

g(ω)p̂A0 ·
(
ˆ̄yA0 − ŷA0

)
(ω, t1(ω)) = g(ω)p̂A·

(
ˆ̄y − ŷ

)
(ω, t1(ω)). However, if in addition(

ˆ̄y − ŷ
)
(ω, t) < 0, this would mean that

− p̂A ·
(
ˆ̄y − ŷ

)
(ω, t1(ω))

p̂A ·
(
ˆ̄y − ŷ

)
(ω, t)

>

(
1 +

∑

u∈T
ê(ω, u)

)
max

j∈{0,...,J}
maxt∈T

(
p̂Aj (ω, t) ∨ p̂C(ω, t)

)

mint∈T
(
p̂Aj (ω, t) ∧ p̂C(ω, t)

) .
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Hence, the negative relative portfolio loss generated by the trading strategy
(
ˆ̄y − ŷ

)
would be more than the maximal relative gain from investing while reinvesting all
endowments. This is a contradiction. Therefore,

(
ˆ̄y − ŷ

)
(ω, t) 6< 0 for all ω ∈ Ω′,

t > t1(ω). Since L(P )[Ω′] = 1, we arrive at t2 > T with L(P )-probability 1.)
This shows that ˆ̄c(ω, t) = ĉ′(ω, t) for almost every (ω, t). Since ϕ1 and ϕ2 are

bounded below, ◦Û
(
ˆ̄c
)

= ◦Û (ĉ′) = U (c′) > U(c) = ◦Û (ĉ), which contradicts the
choice of (p̂A, p̂C , ẑ, ĉ) as an internal securities-market equilibrium of the hyper�nite
economy. ¤

5. Discussion
Theorem 3.1 has interesting consequences for the foundations of Lévy �nance.

It implies that even for a model as simple as ours, the resulting asset-price process
will never be an exponential Lévy process (i.e. the composition of exp and some
Lévy process) or the stochastic exponential (cf. Doléans-Dade [29], see also Ap-
plebaum [11]) of a Lévy process. This is the thrust of the following Remark 5.1,
which generalizes the �ndings of Raimondo [64, Remark 1, p. 273] to the case of
general exponential Lévy (not just geometric Brownian) dividends:

Remark 5.1. Fix j ∈ {1, . . . , J}. From Theorem 3.1 one can derive that the
discounted equilibrium price of asset j, viz. the ratio

pAj

pA0

=
◦p̂Aj

◦p̂A0

: (ω, t) 7→ exp (xj(ω, t))

∫
ϕ′2 (R (x (ω, t) + z)) ezjPx(·,T−t)(dz)∫
ϕ′2 (R (x (ω, t) + z))Px(·,T−t)(dz)

will generically be neither an exponential Lévy process nor the stochastic exponential
of a Lévy process. Essentially, the only exception is the special arrangement of
primitives of the economy where all of the following propositions are true:

(1) ϕ2 : c 7→ γcα for some γ > 0, α ∈ (0, 1)
(2) ρ = 0, i.e. R : z 7→ ∑J

k=1 ezj ,
(3) d = 1.
(4) x is a constant multiple of one-dimensional Brownian motion.

If these conditions hold, then pAj

pA0
will be the exponential martingale corresponding

to x (geometric Brownian motion with drift equal to the negative halved square of
the di�usion coe�cient).

If one of these four conditions fails, then pAj

pA0
will be neither an exponential

Lévy process nor the stochastic exponential of a Lévy process, except perhaps under
some knife-edge circumstances which make the correction factor cancel out for all
t ∈ [0, T ].

The second and third condition in Remark 5.1 can be summarized as R = exp :
R→ R>0. The �rst condition implies that the felicity function ϕ2 exhibits Constant
Relative Risk Aversion. The second condition means that there is no endowment
at the terminal date.

In this sense, the pricing formulae in Theorem 3.1 relate the shape of the
representative agent's utility function and the dynamics of the asset price process
for models with general log-Lévy dividends, and thus substantially generalize the
results of He and Leland [38] and Raimondo [64].

Proof of Remark 5.1. Note that Raimondo [64, Remark 1, p. 273] has al-
ready argued, albeit merely in the case of geometric Brownian dividends, that only
if the �rst three conditions are satis�ed, there is any hope to simplify pAj

pA0
. Exactly

the same reasoning, however, applies to our setting. Hence, we may assume that
the �rst three conditions are satis�ed.
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Under this assumption, pA1
pA0

can be written as the product of an exponential
Lévy process and a deterministic function of the time argument:
pA1

pA0

: (ω, t) 7→ exp (x1(ω, t))

∫
ϕ′2 (R (x (ω, t) + z)) ez1Px(·,T−t)(dz)∫
ϕ′2 (R (x (ω, t) + z))Px(·,T−t)(dz)

= exp (x(ω, t))

∫
γα exp ((α− 1) (x (ω, t) + z)) ezPx(·,T−t)(dz)∫
γα exp ((α− 1) (x (ω, t) + z))Px(·,T−t)(dz)

= exp (x(ω, t))

∫
eαzPx(·,T−t)(dz)∫

e(α−1)zPx(·,T−t)(dz)

= exp (x(ω, t))
E [exp (αx(·, T − t)]

E [exp ((α− 1)x(·, T − t)]
.

Therefore, pA1
pA0

can only be an exponential Lévy process or the stochastic ex-
ponential of a Lévy process if the second � deterministic � factor κ(t) :=
E[exp(αx(·,T−t)]

E[exp((α−1)x(·,T−t)] is the exponential of an a�ne function of the time argument
t.

However, the factor κ(t) can only be simpli�ed further if x is a stable process.
But even for rotationally stable Lévy processes (of Hurst index H, say), we have
E [exp (δx(·, T − t)] = E

[
exp

(
δ (T − t)Hx(·, 1)]

(for every δ > 0), which � in light
of the Lévy-Khintchine formula (cf. Applebaum [11] or Sato [66]) � will only
be the exponential of an a�ne function of t if H = 1/2, i.e. if x is a constant
multiple of Brownian motion. Hence pA1

pA0
will essentially only be an exponential

Lévy process or the stochastic exponential of a Lévy process if � in addition to the
�rst three conditions � the Lévy process x is just a constant multiple of Brownian
motion. ¤

In the introduction, it was already mentioned that nonstandard analysis has
been used fruitfully in both equilibrium theory and mathematical �nance for several
decades. This success in economic applications notwithstanding, popular opinion
used to view, until less than �ve years ago, nonstandard analysis as an intrinsically
non-constructive tool, due to its heavy dependence on a non-principal ultra�lter.
For, although the ultra�lter existence theorem does not imply the Axiom of Choice
(cf. Halpern and Lévy [37], see also Banaschewski [12]), it does entail the exis-
tence of non-Lebesgue measurable sets (cf. e.g. Luxemburg [54]) and therefore is
independent of Zermelo-Fraenkel set theory without the Axiom of Choice (cf. Solo-
vay [68]). However, recent research in mathematical logic has �nally established
the existence of de�nable nonstandard universes, under the assumption of Zermelo-
Fraenkel set theory plus Axiom of Choice (cf. Kanovei and Shelah [46], Kanovei
and Reeken [45], Herzberg [39, 40]).
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Appendix A. Bounded scaled risk aversion
Lemma A.1. Suppose ϕ : R>0 → R>0 is twice continuously di�erentiable,

strictly increasing, strictly concave, bounded from below and supc∈(0,1]−cq ϕ
′′(c)
ϕ′(c) <

+∞ for some q ≥ 1. Then there exist γ, r ∈ R such that

∀c ∈ (0, 1] ϕ′ (c) ≤ γ

cr

Proof by contraposition. Suppose that {ϕ′ (c) cr : c ∈ (0, 1]} is un-
bounded for all r ∈ R. De�ne, for all c0 > 0, the maximum of 1 and the maximal
relative risk aversion on [c0, 1] by

r (c0) := max
c∈[c0,1]

−cϕ
′′(c)
ϕ′(c)

∨ 1.

Fix now c0 > 0 and consider the function ψ : R>0 → R>0 de�ned by

∀c > 0 ψ(c) := ϕ′(c)cr(c0).

Since its derivative is given by

∀c > 0 ψ′(c) = cr(c0)−1 (r (c0)ϕ′(c) + cϕ′′(c)) ,

one has ψ′(c) ≥ 0 if and only if r (c0) ≥ −cϕ′′(c)ϕ′(c) . The latter estimate holds for all
c ∈ [c0, 1], therefore ψ is increasing on [c0, 1]. Hence

(11) ∀c ∈ [c0, 1] ϕ′ (c0) c
r(c0)
0 ≤ ϕ′(c)cr(c0) ≤ ϕ′(1).

Note that r is decreasing. Furthermore, we may assume that r(c) ↑ ∞ as c ↓ 0, for
otherwise we would get

∀c ∈ (0, 1] ϕ′(c)csup r ≤ ϕ′(c)cr(c) ≤ ϕ′(1),

whence estimate (1) would already be established.
Now, by estimate (11), we get ϕ′ (c) ≥ ϕ′ (c0)

(
c0
c

)r(c0) for all c ∈ [c0, 1], hence
for all su�ciently small c0 (such that r (c0) > 1), we obtain

ϕ (c0)− ϕ (1) = −
∫ 1

c0

ϕ′ (c) dc

≤ −
∫ 1

c0

ϕ′ (c0)
(c0
c

)r(c0)
dc = −ϕ′ (c0) cr(c0)0

c1−r(c0)

1− r (c0)

∣∣∣∣
c=1

c=c0

=
ϕ′ (c0) cr(c0)

r (c0)− 1
− ϕ′ (c0) c0
r (c0)− 1

≤ ϕ′ (1)
r (c0)− 1

− ϕ′ (c0) c
q
0

cq−1
0 r (c0)− cq−1

0

But since q ≥ 1, we may calculate

cq−1
0 r (c0)− cq−1

0 ≤ cq−1
0 r (c0) = max

c∈[c0,1]
−cq−1

0 c
ϕ′′(c)
ϕ′(c)

≤ sup
c∈(0,1]

−cqϕ
′′(c)
ϕ′(c)

,

so

ϕ (c0)− ϕ (1) ≤ ϕ′ (1)
r (c0)− 1

− ϕ′ (c0) c
q
0

supc∈(0,1]−cq ϕ
′′(c)
ϕ′(c)

.

Note that ϕ′(1)
r(c0)−1 −→ 0 as c0 ↓ 0, whilst {ϕ′ (c) cq : c ∈ (0, 1]} is assumed to

be unbounded and supc∈(0,1]−cq ϕ
′′(c)
ϕ′(c) is �nite. Therefore, the last estimate shows

that the set {ϕ (c0)− ϕ (1) : c0 ∈ (0, 1]} is not bounded from below. Hence, the
function ϕ cannot be bounded from below either, a contradiction. ¤
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