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Abstract

We consider long-run behavior of agents assessing risk in terms
of dynamic convex risk measures or, equivalently, utility in terms of
dynamic variational preferences in an uncertain setting. By virtue of
a robust representation, we show that all uncertainty is revealed in the
limit and agents behave as expected utility maximizer under the true
underlying distribution regardless of their initial risk anticipation. In
particular, risk assessments of distinct agents converge. This result
is a generalization of the fundamental Blackwell-Dubins Theorem, cp.
[Blackwell & Dubins, 62], to convex risk. We furthermore show the
result to hold in a non-time-consistent environment.
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1 INTRODUCTION

1 Introduction

In this article, we take a look at two distinct agents deciding on in-
vestment in a risky project contingent on individual assessments of
risk in a dynamic uncertain setting. We assume that they are not
certain about the true underlying distribution but about sure and
impossible events and agree upon those. Each decision maker, how-
ever, assesses risk in a manner she thinks appropriate, resulting in
two possibly distinct measures of risk. We restrict attention to a spe-
cific class of risk measures based on plausible axioms as elaborated in
[Follmer & Schied, 04]: convex risk measures. The question we tackle
in our framework is for the the long term behavior of agents. More
precisely, what can be said about the evolution of the underlying risk
measures inducing individual behavior. We see that, with increas-
ing information in course of time, the two distinct risk measures will
converge to each other meaning that our decision makers agree on a
common appropriate measure of risk in the long run. More precisely,
both will act as expected utility maximizers with respect to the true
underlying distribution. In this sense all uncertainty vanishes in the
limit and only risk remains. Equivalently, utility functionals as intro-
duced in [Maccheroni et al., 06b] induced by our class of risk measures
converge. Interpreted in terms of financial markets, our results show
that herding is eventually inevitable. In H.P. Minsky’s theory of fi-
nancial instability (cp. [Schnyder, 02]), herding plays a major role for
causes of financial bubbles.

Before we rigorously model the problem, we come up with an ap-
propriate class of risk measures or, equivalently, utility functionals:
In the financial industry, value at risk (VaR) still is used as a stan-
dard approach to assess and manage risk despite its well-known short-
comings. The ongoing prominence of VaR is owed to its apparent
simplicity and intuitiveness. Hence, an alternative way to assess risk
has to particularly compete in these respects with VaR. In our opin-
ion, the axiomatic approach that we briefly describe now satisfies this
prerequisite by virtue of a simple robust representation: Coherent risk
measures were introduced in [Artzner et al., 99] in a static setting and
have been generalized to a dynamic framework in [Riedel, 04]. Tan-
gible problems in this setup are inter alia discussed in [Riedel, 10].
The equivalent theory of multiple prior preferences in a static setup is
introduced in [Gilboa & Schmeidler, 89]; a dynamic generalization is
given in [Epstein & Schneider, 03]. Applying coherent risk measures
substantially decreases model risk as they do not assume a specific
probability distribution to hold but assume a whole set of equally
likely probability models. Moreover, they possess a simple robust
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representation in terms of maximal expected loss. However, as they
assume homogeneity, coherent risk measures do not account for liquid-
ity risk. Though in financial applications, the Basel II accord requires
a “margin of conservatism”, coherent risk measures are far too con-
servative when estimating risk of a project as they result in a worst
case approach. Furthermore, popular examples of risk measures, as
e.g. entropic risk, are not coherent.

Hence, it seems worthwhile to consider a more sophisticated ax-
iomatic approach: [Follmer & Schied, 04] introduce convex risk mea-
sures as a generalization of coherent ones relaxing the homogeneity
assumption. Equivalently, [Maccheroni et al., 06a] generalize multiple
prior preferences to variational preferences. Convex risk measures are
applied to a dynamic setup in [Follmer & Penner, 06] for a stochastic
payoff in the last period or, equivalently, in [Maccheroni et al., 06b] in
terms of dynamic variational preferences. [Cheridito et al., 06] apply
dynamic convex risk measures to stochastic payoff processes. Given
a set of possible probabilistic models, convex risk measures are less
conservative than coherent ones. Dynamic convex risk measures as
well as dynamic variational preferences possess a robust representa-
tion in terms of minimal penalized expectation. Both approaches are
equivalent as their robust representations coincide up to a factor of
—1. It his, hence, more a question of taste which approach to use;
the mathematical theory is identical. The minimal penalty, serving
as a measure for uncertainty aversion, uniquely characterizes the risk
measure or, respectively, the preference. Conditions on the minimal
dynamic penalty characterize time-consistency of the dynamic convex
risk measure.

We take the robust representation of a dynamic convex risk mea-
sure in terms of minimal penalty for granted. As a main result of this
article we achieve a generalization of the famous Blackwell-Dubins
theorem in [Blackwell & Dubins, 62] from conditional probabilities to
time-consistent dynamic convex risk measures: We pose a condition
on the minimal penalty in the robust representation, always satis-
fied by coherent risk measures, forcing the convex risk measure to
converge to the conditional expected value under the true underlying
distribution. Intuitively, this result states that, eventually, the uncer-
tain distribution is revealed or, in other words, uncertainty diminishes
as information is gathered but risk remains. The agent, as she has
learned about the underlying distribution, is again in the framework
of being an expected utility maximizer with respect to the true un-
derlying distribution. In this sense, distinct agents assess risk in an
identical way in the limit if they agree upon impossible events and
apply time-consistent dynamic convex risk measures. Hence long-run



2 MODEL

behavior of agents converges.

Our generalization of the Blackwell-Dubins theorem serves as an
alternative approach to limit behavior of time-consistent dynamic con-
vex risk measures as the one in [Follmer & Penner, 06]. The result
particularly states the existence of a limiting risk measure. As an ex-
ample we consider dynamic entropic risk measures or, equivalently, dy-
namic multiplier preferences. We, however, show a Blackwell-Dubins
type result to hold, even if we relax the time-consistency assumption.
Again, we obtain existence of a limiting risk measure but in a more
general manner than [Follmer & Penner, 06] for not necessarily time-
consistent convex and coherent risk measures.

Furthermore, we elaborate an example for non-time-consistent risk
that satisfies the properties of our main theorem: We make explicit
a learning mechanism for a penalty in terms of conditional relative
entropy.

The article is structured as follows: The next section introduces
the underlying probabilistic model. Section 3 elaborately discusses ro-
bust representation of dynamic convex risk measures and introduces
dynamic entropic risk measures. Section 4 generalizes the Blackwell-
Dubins theorem to conditional expectations. The following two sec-
tions then apply this result to coherent and convex risk measures:
First, Section 5 in the time-consistent case and, then, Section 6 with-
out assuming time-consistency. Section 7 states examples. Then we
conclude.

2 Model

For our model we start with a discrete time set t € {0, ...,7'} where T’
is an infinite time horizon.

Let Py be the reference distribution on the underlying measurable
space (2, F) with filtration (F;);. Py can be seen as the true distri-
bution of the states. Let M¢(Py) denote the set of all distributions
on (2, F) equivalent to Py. Due to our assumption to only consider
distributions equivalent to Py, the reference distribution merely fixes
the null-sets of the model. This assumption has no influence on the
stochastic structure of the distributions it just tells the decision makers
what sure or impossible events are. An economic interpretation of this
assumption was given in [Epstein & Marinacci, 06]. They related it
to an axiom on preferences first postulated in [Kreps, 79]. He claimed
that if a DM is ambivalent between an act x and x Uz’ then he should
also be ambivalent between zUz” and xUz'Ux”. Meaning if the possi-
blity of choosing 2’ in addition to x brings no extra utility compared to
just being able to choose x, then also no additional utility should arise
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from being able to choose x’ supplementary to xUz”. Furthermore we
define X : 2 — R to be an F-measurable random variable which can
be interpreted as a payoff at final time T'. Assume X being essentially
bounded with ess sup | X| = x > 0. Having constructed the filtered
reference space (Q, F, (Ft)1>0,Po) as above, the sets of almost surely
bounded F-measurable and F;-measurable random variables are de-
noted by L* := L>®(Q, F,Py) and L{® := L>(Q, F;, Py), respectively.
All equations have to be understood Py-almost surely.

3 Dynamic Convex Risk Measures

Now we introduce a notion of risk measures that we consider appro-
priate for our framework. In this article, we apply the theory of con-
vex risk measures as set out in [Féllmer & Penner, 06] for end-period
payoffs. For payoff processes, convex risk measures are elaborated in
[Cheridito et al., 06]. We do not consider the axiomatic approach to
convex risk but take the robust representation of dynamic convex risk
measures or, equivalently, of dynamic variational preferences as given.

Definition 3.1 (Dynamic Convex Risk & Penalty Functions). (a) A
family (pr)e of mappings py : L — L° is called a dynamic convex
risk measure if each component p; is a conditional conver risk measure,
i.e. for all X € L™, p;y can be represented in terms of

pe(X) = ess sup (]EQ [—X|F] — at((@)> ,
QeMe(Py)

where (ay); denotes the dynamic penalty function, i.e. a family of
mappings oy 1 M¢(Po) — L°, ay(Q) € Ry U oo, closed and grounded.
For technical details on the penalty see [Fdollmer € Schied, 04].

(b) Equivalently, we define the dynamic concave monetary utility func-
tion (ug)¢ by virtue of uy = —py, i.e.

_ ; Q
w(X) = essinf (B [X] 7] + au(@))
Remark 3.2. (a) By Theorem 4.5 in [Féllmer & Penner, 06/, the
above robust representation in terms of M¢(Py) is sufficient to cap-
ture all time-consistent dynamic convex risk measures.

(b) Assuming risk neutrality but uncertainty aversion, no discounting,
and no intermediate payoff, (u¢); is the robust representation of dy-
namic variational preferences as introduced in [Maccheroni et al., 06b].
In this sense, all our results also hold for dynamic variational prefer-
ences.
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Assumption 3.3. In the robust representation, we assume the penalty
a; to be given by the minimal penalty ™. The minimal penalty
is introduced in terms of acceptance sets in [Féllmer & Penner, 006],
p.64: For every Q € M¢(Py)
aM(Q) ;= esssup EQ[-X|F].
XEL>®:py(X)<0

As stated in the respective references, every dynamic convex risk
measure (p;); can be expressed in terms of the above robust repre-
sentation uniquely by virtue of the minimal penalty and vice versa.
The notion of minimal penalty is justified by the fact that every other
penalty representing the same convex risk measure a.s. dominates the
minimal one, cp. [Follmer & Penner, 06]’s Remark 2.7. As the mini-
mal penalty uniquely characterizes the convex risk measure, distinct
agents assessing risk in distinct ways only differ by distinct minimal
penalty functions.

Remark 3.4. Now we elaborate more thoroughly on decision makers:
FEach decision maker i is endowed with an individual dynamic convex
risk measure (pt);. Hence in terms of robust representation, decision
makers differ by virtue of penalty functions. The only property they
share is the knowledge of sure and impossible events which is repre-
sented here by the assumption to only consider equivalent distributions
in M¢(Py). This assumption is justified in [Follmer & Penner, 06]
from a mathematical point of view and in economic terms in our model
section. In this sense, Py fizes the null sets that decision makers agree
upon.

In the literature, there are three equivalent ways to introduce convex
risk measures: in terms of an axiomatic system, by robust represen-
tation, and by acceptance sets. Whereas the second one is equivalent
to dynamic variational preferences by robust representation, the latter
one makes explicit that risk measures provide guidance for decision
making: agent i accepts a risky project X as long as pi(X) < 0.

Further assumptions on the risk measure under consideration will
be posed when necessary.

Remark 3.5 (On Coherent Risk). As set out in the references, the
robust representation of coherent risk is a special case of the robust
representation of conver risk when the penalty is trivial, i.e. for all t

it holds

0 ifPe0,
oo else

%®:{

for some set Q C ME(IPy) of priors. Throughout, we assume Q to be
convex and weakly compact.
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The following definition is a major assumption needed in order to
solve tangible economic problems under convex risk.

Definition 3.6 (Time-Consistency). A dynamic convex risk measure
(pt)¢ is called time-consistent if, for all t,s € N, it holds

Pt = Pt(—Pt+s)-

Remark 3.7. For the special approach here, [Cheridito et al., 06]
show that it suffices to consider s =1 in the above definition.

Remark 3.8. As inter alia shown in [Féllmer & Penner, 06/, Theo-
rem 4.5, time-consistency of (pt)¢ is equivalent to a condition on the
minimal penalty called no-gain condition in [Maccheroni et al., 06b].

We now introduce a special class of dynamic convex risk measures
that will be used in several examples later on: Dynamic entropic risk
measures. Therefore, we first have to introduce:

Definition 3.9 (Relative Conditional Entropy). For P < Q, we de-
fine the relative conditional entropy of P with respect to Q at time
t>0 as

A,(PlQ) = E [mg Zr
Zy

Zr Zr
—EQ | ZL 10 2L
ft] { Z %7

ft] L z,>0}

where (Zy)y by virtue of Zy = ;%]]:t denotes the density process of P
with respect to Q.

Definition 3.10 (Entropic Risk Measures). Let 6 > 0 be arbitrary
but fivred. We say that dynamic convex risk p§(X) of a random vari-

able X € L*°, is obtained by a dynamic entropic risk measure given
reference model Q € M(Py) if it is of the form

pE(X) i= ess sup (EF[-X|] - 6H(PIQ)) . (1)
PcMe(Py)

Remark 3.11. The variational formula for relative entropy implies
pi(X) = Slog(E[e™+ | 7).

Thinking of the penalty as an inverse likelihood for distributions
to rule the world or a measure for uncertainty aversion, an entropic
risk measure means that the agent in an uncertain setting beliefs the
reference model QQ as most likely and distributions “further away” as
more unlikely. The equivalent dynamic variational preference with
penalty given by relative conditional entropy are the well-known milti-
plier preferences.
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4 Adaption of Blackwell-Dubins The-
orem

As a cornerstone for our main result on convergence of time-consistent
dynamic convex risk measures, we first generalize the famous Blackwell-
Dubins theorem, cp. [Blackwell & Dubins, 62], from conditional prob-
abilities to conditional expectations of risky projects.

Proposition 4.1. Let Q be absolutely continuous with respect to Pg,!
X as in the definition of the model, then

|E@[X | Fi] — EFo[X |Fi]| — 0 Po-almost surely for t — .

Proof. Given Py and Q, Q being assumed absolutely continuous with

respect to Py, i.e. jﬁ% = q is well defined, and for every ¢, 75%("@3) =

q(-|F:). Then, the following line of equations holds Pyp-a.s.:

EQ (X|F] = EQCIF:) [X]
ERC7[o( 17X

and hence

EQ[X|F] - EP[X|A]| = [EPCF) [(g(17) - 1)X]|

IN

R BRI [((17) — 1)

/ (a(1F) — D Po(d - | F)

= K s

which converges to zero Pyp-a.s. by Blackwell-Dubins theorem as (F);
is assumed to be a filtration and, hence, an increasing family of o-
fields. O

5 Time-Consistent Risk Measures

We will now show a Blackwell-Dubins type result for coherent as well
as convex risk measures in case time-consistency is assumed. We see
that the risk measure eventually equals the expected value under the
true parameter; in this sense, uncertainty vanishes but risk remains.
Thus, the basis for learning the underlying distribution is already in-
corporated in convex risk measures intuitively as the domain of penalty

I'Note that we have assumed all distributions to be equivalent. In particular, all those
are absolutely continuous with respect to each other and this assumption is no restriction
within our setup. Moreover, we can take another arbitrary but fixed distribution instead
of ]P)o.
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consists of bayesian updated distributions. Interpreted in terms of de-
cision makers, long-run behavior of distinct agents converges as they
all behave as risk neutral expected utility maximizers with respect to
the true underlying distribution in the limit.

5.1 Time-Consistent Coherent Risk

Let (p;): be a time-consistent dynamic coherent risk measure possess-
ing robust representation

pt(X) = sup EF[-X |7,
PeQ

with weakly compact and convex set of priors Q C ME(Py).

Proposition 5.1. For every essentially bounded F-measurable ran-
dom variable X as in the model and time-consistent dynamic coherent
risk measure (pt)y we have

|pe(X) — EFo[—X 7| — 0 Po-almost surely for t — occ.

Proof. Thanks to the assumption of time-consistency and compact-
ness there exists a distribution P* € Q such that p,(X) = EF' [~ X |F]
for all t € {0,..., T} resulting in the following equation

)

|o1(X) —E™[-X |F]| = [ET [-X |F] - E®[-X |F]

converging to zero as t increases and P* ~ Py by Proposition 4.1. [

Remark 5.2. Note that we have not assumed Py € Q

Remark 5.3. The assumption that Q is weakly compact is crucial,
as it assures that the supremum is actually attained. Additionally it
is a necessary property for our result to hold, which is shown in the
Proposition 5.4.

Proposition 5.4. Weak compactness of the set o) of priors is a nec-
essary condition for our result in Proposition 5.1 to hold.

Proof. For the proof, see the counterexample in section 7.2. 0

5.2 Time-Consistent Convex Risk

Let (p¢)¢ be a time-consistent dynamic convex risk measure, hence,
possessing the following robust representation:

pt(X) = ess sup {]EP[—X\}}] - afﬁn(IP’)}
PeMe(Po)

with dynamic minimal penalty (a"");.
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Assumption 5.5. We assume (pt): to be continuous from below for
all t, i.e. for every sequence of random variables (Xj);, Xj € L> for
all j, with X; /X € L™ we have limj_. pi(X;) = p(X).

Remark 5.6. In the coherent case, continuity fromNbelow 1s equivalent
to weak compactness of the set {P|(cw(P)): = 0} = Q of priors as inter
alia shown in [Riedel, 10].

This assumption has technical advantages as it ensures the supre-
mum to be achieved in the robust representation of p;. A proof is given
in Theorem 1.2 of [Follmer et al., 09]. It is also shown that continu-
ity from below implies continuity from above. To sum up: continuity
from above is equivalent to the existence of a robust representation.
Continuity from below (which generalizes the compactness assump-
tion in the coherent case) is equivalent to the existence of a robust
representation in terms of a distinct prior distribution, the so called
worst-case distribution.

From an economic point of view, continuity from below results
from a feature of preferences already claimed in [Arrow, 71] and re-
lated to this assumption by [Chateauneuf et al., 05]. The condition on
preferences we need to ask for in order to obtain this feature is called
Monotone Continuity: If an act f is preferred over an act g then a
consequence z is never that bad that there is no small p such that =
with probability p and f with probability (1 —p) is still preferred over
g. The same is true for good consequences mixed with g.

Formally this means, for acts f > g, a consequence x and a se-
quence of events {E, },eny with E1 2 Es O ... and NpenEy, = 0 there
exists an n € N such that

[ zif s € Ejy
f

(s)if s ¢ En

if Es
}>—g and f>-[g$l$e ]

(s)if s ¢ En

Now with the help of this assumption we can show the Blackwell-
Dubins result for time-consistent convex risk measures:

Proposition 5.7. For every essentially bounded F-measurable ran-
dom wvaritable X and time-consistent dynamic convex risk measure
(pt)t, continuous from below, it holds

‘pt(X) —EP[—X |J’:t]’ — 0 Pg-almost surely for t — oo

if there exists P € M®(PPy) such that o™™(P) — 0 Pg-almost surely
and o (P) < oo.

Remark 5.8 (On the Assumption). By the main assumption in Propo-
sition 5.7 there ought to be some P such that the penalty vanishes in

10
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the long run. This intuitively means that, eventually, nature at least
has to pretend some distribution to be the correct one. We see that
this is satisfied e.g. in the coherent or in the entropic case.

The assertion then states that it does not matter which risk measure
was chosen as long as the penalty is finite in the beginning. In the time-
consistent case, the penalty then vanishes for all those parameters and
the convex risk eventually will be coherent.

As we will see later, in the non-time-consistent case, nature has
to pay a price for not choosing a distribution time-consistently as in
that case penalty has to vanish for the true underlying parameter.
To conclude: when nature chooses the worst case distribution time-
consistently, she merely has to pretend some distribution to be the
underlying one. If she does not choose the worst case measures at any
stage time-consistently, she has to reveal the true underlying distribu-
tion in the long run.

Remark 5.9. By Theorem 5.4 in [Follmer € Penner, 06] due to time-
consistency the assumption a{nin(}P’) — 0 Py-almost surely for some
P € M(Py) is equivalent to oi*(Q) — 0 Py-almost surely for all

Qe ME(P()) with ao(@) < 00.

Proof of the proposition. By our assumptions on (p;); there exists P* €
ME(Py) such that the assertion becomes

EY [— X|F] — o0(P*) — B [—X|F]| = 0 Po-as.

By the foregoing proposition on coherent risk, we know that this as-
sertion holds if and only if

‘afﬁn(ﬂl’*)‘ — 0 Pp-as.

As stated in Remark 5.9, Theorem 5.4 in [Follmer & Penner, 06] im-
plies this convergence being equivalent to

’a?“m(]P’)‘ — 0 Pp-as.

for some P € M¢(Py) such that ap(P) < oo as assumed to hold in the
assertion. O

Again, note that we have not assumed Py such that ag(Ppy) < co.

Corollary 5.10. Every dynamic time-consistent convez risk measure
(pt)e satisfying the assumptions of the Proposition 5.7 is asymptoti-
cally precise as in the sense of [Follmer € Penner, 06/, i.e. py(X) —
Poo(X) = =X, and vice versa.

11
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Proof. By the assumption of continuity from below, we know that a
worst case measure in the robust representation of (p;); is actually
achieved. By Theorem 5.4 (5) in [Follmer & Penner, 06] we have that
pt(X) = poo(X) > —X as we have assumed a""(PPy) — 0. Proposi-
tion 5.11 in [Follmer & Penner, 06] then shows the assertion. O

Remark 5.11. In [Féllmer & Penner, 06] time-consistency is directly
used to show the existence of the limit poo := limi_oopt. As, by as-
sumptions on X in the model, lim;_. o (E¥°[~X |F}]) exists we achieve
existence of peo from our result not directly from time-consistency. In
our propostion the convergence of the a corresponds to asymptotic pre-
cision, however starting at a different point of view. The question now
1s if time-consistency is a necessary condition for our result to hold.
If so, we have gained nothing, if not, we have a more general eris-
tence result for poo than [Follmer & Penner, 06]. We will tackle the
problem of necessity of time-consistency for our result within the next
section.

Proposition 5.12. (p;): being continuous from below is a necessary
condition for the result in Theorem 5.7 to hold.

Proof. In Proposition 5.4 we show necessity of weak compactness of
the set of priors for coherent risk measures. However, weak compact-
ness is equivalent to continuity from below and coherent risk measures
are particular examples for convex ones. This proofs the assertion. [

Remark 5.13 (On long run behavior of agents). Having considered
two agents possessing risk measures (p}); and (p?), respectively, our
result can be interpreted as follows: Both, (p}); and (p?); converge
to the conditional expectation with respect to the true underlying dis-
tribution. In this sense, |pf — p?| —t—oo 0 and both agents behave
identically in the limit.

6 Not Necessarily Time-Consistent Risk
Measures

We will now achieve a Blackwell-Dubins type result for dynamic co-
herent and convex risk measures for which we do not pose the time-
consistency assumption. However, we still assume the dynamic risk
measure to be continuous from below (i.e. in the coherent case the set
of priors to be weakly compact). We can still show that anticipation
of risk converges to the expected value of a risky project X as defined
in the model with respect to the underlying distribution Py.
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6.1 Non-Time-Consistent Coherent Risk

We will now restate the result in a manner that time-consistency is
not needed. We however need to assume that learning takes place;
which is a more liberal assumption than time-consistency as seen in
Section 7.3.

Definition 6.1. (a) Given a dynamic convex risk measure (py)¢, con-
tinuous from below but not necessarily time-consistent, we call a dis-
tribution Py € M(IPy) instantaneous worst case distribution at t if it
satisfies®

pe(X) = E [~ X|F] — o™ (P)).

(b) We say learning takes place if there exists a P € M¢(Py) such that
the instantaneous worst case measures Py — P weakly for t — co. In
the coherent case we need P € Q as the penalty is infinite otherwise.

In this very definition, we see however, that the agent does not have
to learn the true underlying Py. In this sense, nature might mislead
her to a wrong distribution.

We can now relax the time-consistency assumption in the main
result of this article. Note that time-consistency is a special case of
the Definition 6.1 given continuity from below as in that case the
sequence of instantaneous worst case measures is constant. Hence, we
achieve the more general result:

Proposition 6.2. Let (p;); be a not necessarily time-consistent dy-
namic coherent risk measure for which learning takes place. Then

lpe(X) —EF[-X |F]| — 0 Po-almost surely for t — oo

Proof. To make things clearer we will write the proof in terms of
penalty functions and not in terms of priors. We know that a coherent
risk measure has a robust representation of a convex risk measure with
a penalty

0 ifPeo,
oo else

ap(e) = {

where Q@ = {P|(a"™(PP)); = 0}, the set of priors. As we are in the case
of a coherent risk measure, we particularly have o™ (P}) = 0.

2Note, that existence is locally guaranteed by continuity from below. As we however
have not assumed time-consistency, the instantaneous worst case distributions at each time
period may differ, hence global existence is not necessarily fulfilled.
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First, note that in case a/"™(P) — oo for all P € Q3 our conver-
gence result cannot hold, as lim;_,, EF0[— X |F;] exists and is finite by
assumption.

Secondly, in the time-consistent (coherent as well as convex) case,
it suffices to assume a**(P) — 0 for some P € M®(IPy). This assump-
tion in the time-consistent case is equivalent to ai*®(P) — 0 for all P
for which a™®(P) < co by Theorem 5.4 in [Féllmer & Penner, 06].

Let us now turn to the proof itself: As (p;); is assumed continuous
from below, i.e. O is assumed to be weakly compact and non-empty,
we achieve an instantaneous worst case distribution at each time step,
i.e. at any ¢, there exists Py € M¢(Pp) s.t.

pr(X) =E% [-X|F] — o*"(P}) = E [ X| 7).

The proof is completed by showing the following convergence?

EHD:L[—XU‘}] — EFo [— X |Foo] for n,t — oo.

In order to do this we look at the following equation for n > ¢ which
uses the projectivity of the density, i.e. of the Radon-Nikodym deriva-

tive:
EPr [-X|F] = EPO[—X@ |72
dPO Fn '
Define the following sequence of random variables Y,, := —X % .

These have finite expectation and thanks to our assumption that learn-
ing takes place and the original Blackwell-Dubins result we have

dP,
Po[lim YV, = —X] =Py |- X —>= =-X| =1
of i, =P [ APy | 7. ]
Then, by Lemma 6.4, the assertion follows. O

Remark 6.3. Again, note that we have not assumed Py € Q

In the foregoing proof, we need a general martingale convergence
result as stated in [Blackwell & Dubins, 62], Theorem 2. We know
from Doob’s famous martingale convergence result that

EF[X|F] = Jim EF[X|Fu] Po— a.s.

30f course, convergence is trivial in this case due to triviality of the penalty function.
4By our assumptions we know:

o EPn[—X|F;] — EP[-X|F] for n — oo as P¥ — P by Portemonteau’s Theorem.
o EPn[—X|F;] — EPn[~X|F,)] for t — oo by Proposition 4.1.

The question now is, whether the result also holds when letting n,t — oo at once.
In the time-consistent case, where P} = PP} for all 4, j, this is immediate by Proposition
4.1.
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under suitable assumptions. The question is: If X,, 7, X in some
sense, is it true that

EF [ X, |F] = lim EF[X|F] Py —a.s.?

A positive answer is given in the following lemma.

Lemma 6.4. FizlP € M®(Py). Let (Yy,), be a sequence of F-measurable
random variables such that EF[sup,, |Y,|] < co. Assume Yy, —p_oo Y
Pg-almost surely for some F-measurable random variable Y. Then, it

holds®

lim EF [v,| 7] =E" [Y|F].

n,t—o00

Proof. We re-sample the proof in [Blackwell & Dubins, 62]: For k €
N, set Gy := sup{Y,|n > k}. If n > k, we hence have Y,, < Gj and
thus

E° [Vo| 7] < E¥ [G| 7] (2)

for all ¢. Together with Doob’s martingale convergence result and
Lebesgue’s theorem, we achieve

z = lim sup E¥ [Yo| Fi]

J—00 >4

< lim supE" [Gy| Fi]
J 70 t>5

lim EF (G| F

2 ER (Gl ]

and Leb
¢ < Jlim EF (G | F] = EP [V | F).

In the same token,

z:= lim inf E¥ [V, |F]>EF [Y|F],

Jj—oot,n>j
which completes the proof since

= lim inf EF [Y,|F] < lim sup EF [V, | F] = .

Jj—ootn>j J—=00 p t>4

5The convergence in the assertion of the lemma can also be shown in L*.
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Remark 6.5. Note, that the above new version of the fundamental re-
sult particularly holds for time-consistent dynamic coherent risk mea-
sures as then such a limiting P as in the Definition 6.1(b) always exists,
the worst case one. However, we particularly have an existence result
for the limit poo := limy_, o pt in the non time-consistent case and thus
a more general existence result than in [Féllmer & Penner, 00].

6.2 Non-Time-Consistent Convex Risk

As in the case of coherent risk measures, we now state our generaliza-
tion of the Blackwell-Dubins theorem when the dynamic convex risk
measure is not assumed to be time-consistent. As in the coherent case,
we assume that learning takes place, i.e. there exists P € M¢(Py) such
that the instantaneous worst case P} — P as ¢ — oco. Furthermore,
we have to assume af"™(P}) — 0 as t — o0:% As in the foregoing
proof, we achieve convergence of the conditional expectations under
the family of instantaneous worst case distributions to the conditional

expectation under Pg.

Proposition 6.6. For every risky project X as set out in the model
and dynamic convex risk measure (pt):, continuous from below but not
necessarily time-consistent, we have

lpe(X) —EF[-X |F]| — 0 Po-almost surely for t — oo

if learning takes place for an instantaneous worst case sequence (Py),
toward some P € M®(Py) and we have
QM (PY) — 0 Py-almost surely for t — oco.

Proof. Applying the procedure used in the proof of Proposition 6.2 to
the proof of Proposition 5.7 shows the assertion. O

7 Examples

In this section, we first consider dynamic entropic risk measures as a
prominent economic example of time-consistent dynamic convex risk
measures. From a preference based perspective, this example can
equivalently be stated in terms of multiplier preferences. In the sec-
ond part we state a counterexample serving as proof for Proposition
5.4 and 5.12. Lastly, we consider a dynamic risk measure that is not
time-consistent but satisfies the properties of Proposition 6.6.

SNote, again, we do not have to assume o (Pg) — 0.
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7.1 Entropic Risk

Here, we will have a look at time-consistent dynamic entropic risk
measure (pf);. Recall its Definition 3.10 in terms of

pi(X) :=dlogE [e_'yx‘ Fi]

for some model parameter § > 0. A fundamental result shows that
the robust representation of dynamic entropic risk is given in terms of
conditional relative entropy as penalty function, i.e. for all n, we have
for P € M¢(IPy) and penalty’s reference distribution Q € M*(Py)

. 1. 1 Z
o) = ~Hi(PIQ) = ;]EP {me

ft:|a

where Z; := % = the Radon-Nikodym derivative of P with respect
t

to Q conditional on F;.
The fundamental Blackwell-Dubins Theorem immediately shows
that |P(:|F) — Q(-|F)| — 0 for every P,Q € M*(Py). Hence, we have

that % — 1 Py-a.s. for t — oo and hence

o™ (P) = 0

showing Proposition 5.7 to hold. This is an alternative way to show
the last assertion in Theorem 6.3 in [Follmer & Penner, 06] directly.

7.2 Counterexample

To show necessity of continuity from below in Proposition 5.7 we con-
sider the following example introduced in [Féllmer & Penner, 06]:

The underlying probability space consists of the state space 2 =
(0,1] endowed with the Lebesgue measure Py and a filtration (F);
generated by the dyadic partitions of 2. This means F; is generated
by the sets Jy = (k27 (k + 1)27] for k = 0,...,28= 1. In this set-
ting [Follmer & Penner, 06] construct a time-consistent coherent and
therefore convex risk measures with af"(PPy) — 0 Pp-a.s. of the fol-
lowing form:

pt(X) = —esssup{m € L |m < X}.

That this sequence from all properties assumed in Proposition 5.7 is
only missing continuity from below (equivalent to weak compactness
of the set of priors) can be seen in the following way: Let ¢ be arbitrary
but fixed and X defined by virtue of

[0 forwe(0,(2—1)271],
X{w) = { 1 else.
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Then we can construct a sequence (X,,),, X,, /X, such that p,(X,,) =
0 for all n but p;(X) = —X # 0. This shows (p); not being continuous
from below.

Now we still have to show that for this construction the statement
of our proposition is not fulfilled. To verify this look at a set A assumed
to be F := o(J,>o Ft)-measurable such that Po[A] > 0 and Py[A° N
Jik] # 0 for all t and k. For this set, it holds

Jim |(14) ~ EF[~14 | 7] = lim [0+ Bo[A |F]| = Bo[4] > 0

and hence necessity of the continuity assumption is shown.

The skeptical reader might now object that such a set A might
not exist. For sake of completeness we briefly quote a set A from
[Follmer & Penner, 06] that satisfies our assumptions: Let A be de-
fined by virtue of its complement

co 201 ¢

A= U U2,

t=1 k=1

where U, denotes the ¢;-neighborhood and ¢; €]0,272].

7.3 A Non Time-Consistent Example

Our last example is not only worth considering as it constitutes a non
time-consistent convex risk measure satisfying the properties of our
main result but also as it explicitly states a learning mechanism by
virtue of the minimal penalty. To us it seems that this example is more
conveniently posed in a parametric setting. Hence, let a distribution
P? € Me(P%) on the measurable space (2, F) with filtration (F;); be
uniquely given by a parameter § € ©. Assume the parameter space ©
such that all induced distributions P?, 8 € ©, are equivalent to P% for
some fixed reference parameter 6y € ©. We have to add more structure
to the underlying reference space (Q,F, (Fi)i, P%): We fix (S, .A) as
a measure space where S describes the possible states of the world at
a fixed point in time ¢ and set Q := ®?:0 S¢, S¢ = 5. On this space
let F be the product o-field generated by all projections m; : 2 — S;
and let the elements of the filtration F; be generated by the sequence
Tl ..., Tt. We assume 0 = (0;); € O; every entity 0; characterizes
a distribution in M(S;) possibly dependent on (6;);<;. The family
0 = (6;); then defines a prior P € M¢(P%). Set 6 := (4, ...,60;) and
P% denote the marginal distribution at ¢ induced by 6;.

We now introduce a model for wich dynamic entropic risk measures
in Definition 3.10 serve as a vehicle: We choose the best fitting distri-
bution as reference distribution in the conditional relative entropy.

18
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Definition 7.1 (Experience Based Entropic Risk). A penalty (Gy); is
said to be achieved by experience based entropic learning if given as

ae(n) := SH,(P"[PY)

for§>0,n=(n): €O and 6 = (6;); achieved in the following man-
ner: Being at time t, the reference family 0 of parameters is achieved
by

b — 9:7, 1 < t,
! 0, i>t,
where 0; is the mazimum likelihood estimator given past observations.
The resulting convex risk measure (py); incorporating this very penalty
function is then called experience based entropic risk measure.

Remark 7.2. (&y); is well defined as penalty as inter alia shown in
[Féllmer & Schied, 04]. Hence, the model is well defined, i.e. (pi)¢ is
a dynamic convex risk measure, which also directly follows from the
azioms.

Now, as the reference distribution is stochastic, we achieve:

Proposition 7.3. Ezxperience based entropic risk is in general mnot
time-consistent.

Proof. As proof we construct the following counterexample. O

Example 7.4 (Entropic Risk in a Tree). Since our example is mainly
for demonstration purposes we restrict ourselves to a simple Coz-Ross-
Rubinstein model with 3 time periods. Each time period is independent
of those before. One could imagine that in every time period a different
coin is thrown and the result of the coin toss determines the realization
in the tree, e.g. from heads results up and from tails down. The payoffs
of our random variable X are limited to the last time-period and are
as shown in the figure below. For tractability reasons we also confine
ourselves to a single likelihood function I(- | 0). The probability for
going up in this tree will always be assumed to lie in the interval [a, b]
where 0 < a <b< 1.

Time-period 2: Since we want to show a contradiction to time-
consistency we will show that the recursive formula

pt(X) = pe(—pras(X)) forallt € [0,7] and s € N

19
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p € [a,b] 1

Figure 1: Cox-Ross-Rubinstein Model

is violated. So we start with the calculation of p2(X) for the different
sets in Fo

p2(X)(up, up)

0
=ess supE[-X | 7] (up,up) — E [ln <9i) | .7-"2] (up, up)
2

pE[a,b]
1
= sup (—Sp— l—i-p—phag —(1-=p)ln <p)>
pelad] b 1-0b

=In(be 4+ (1 —b)e!),

where the reference distribution P? induced by 0* is determined by the
following maximization:

0 = (6p,607,05), 65 € arg max((up | 62)
02€(a,b]

giving us the maximum-likelihood estimator for what happened in the
last time-period which we also think is the right distribution for the
next time-period.

The result of this computation can also be obtained by using a varia-
tional form which can for example be found in [Féllmer & Penner, 06]
and takes the following form

(X)) =IE"" [exp(—X) | F],

where PP is again the reference distribution the decision maker estab-
lishes by looking at the past, which, as we look at naive learning, will
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again only be what happened in the last period. Since this gives way
for an easier and quicker computation we will use this form for the
following calculations:

p2(X)(down, up) = pa(X)(up, down)
— InEY [exp(—X) | F2] (down, up)

1 1
—1In| et 4+ Z¢!
n<2e +26>,
if 5 € [a,0]

For the last possible event in time 2 our risk-measure takes the
following value:

p2(X)(down,down) = InEP [exp(—X) | 2] (down, down)
= In(ae' + (1 —a)e?).

Time-period 1: If for the next time-period we maintain the as-
sumption of time-consistency and make use of the recursive formula,
using the variational form as we did above will yield

P1(X)(up) = pr(—pa(X))(up) = I EX" [exp(pa(X)) | Fi] (up)

=1In (b (be P+ (1=b)e )+ (1—b)= (e '+ el)>

1 1 1
-1 2 -3 L SR P A SR R
n<be +<2—|—2b b)e +26

Now if we calculate py(X)(up) without the time-consistency assump-
tion meaning we cannot use the recursive formula we obtain the fol-
lowing equation:

N —

0.0
51(X) (up) = ess sup P4 [—X | ] (up) — EP [In < ! 3) | fl] (up)
p,q€[a,b] 0102

=1n (b2 +2b(1 — b)e™ ! + (1 — b)2¢') .

This clearly is in general not the same as we obtained under the as-
sumption of time-consistency. However if our dynamic experience
based entropic risk measure were time-consistent these calculations
should give us the same results. Hence this example clearly shows
us that the assumption of our risk measure being time-consistent only
leads up to contradictions and can therefore not be true.

Having observed experience based entropic risk (p;); not being
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time-consistent,” we show that it nevertheless satisfies the conditions
of Proposition 6.6. By standard results on conditional entropic risk
measures, (p¢); is continuous from below. Let us restrict ourselves
to the iid case: We know that we achieve §; — 0y, PP-a.s., where
0y = (0p); for some 0y inducing a marginal distribution in M (.S;).

Furthermore, Proposition 6.6 is applicable and hence, our gener-
alization of the Blackwell-Dubins theorem holds for experience based
entropic risk. Indeed: By definition of the penalty and our considera-
tions in Section 7.1, &™"(0) := 6 H(P|P?) — 0 ast — oo forall § € ©
by the fundamental Blackwell-Dubins theorem. Secondly, as the max-
imum likelihood estimator is asymptotically stable, i.e. 6, — By, the
conditional reference distributions IP’Q( |F¢) of the relative conditional
entropy converge. Hence the worst-case instantaneous distributions P}
converge as in Definition 6.1 due to continuity of the entropy and as the
effective domain of the penalty is given by conditional distributions,
a fact that is made particularly precise in [Maccheroni et al., 06b].

"More generally, it can be shown that learning leads to time-inconsistency in the en-
tropic case no matter what mechanism is used to achieve the reference distribution: A
reference distribution PY for experience based entropic risk is said to be obtained by gen-
eral learning if the family (6;); is a family of random variables. We call the resulting
dynamic convex risk measure (5¢); defined by virtue of aJ := H,(-|(6);) in the robust
representation general experience based entropic risk.

However, general experience based entropic risk (57); is in general not time-consistent.
Intuitively, the minimal penalty function uniquely defines a risk measure. Changing the
reference distribution due to learning results in a different minimal penalty and hence,
a distinct risk measure. More formally, this can be seen as follows: Let 6 = (91, ...) be

t
obtained by general learning and ‘6 such that P? = IP’G(~|]-'t). Let Z;14 := W*ié .
t41
f-t]

e [e<pt+1<xm<zﬁl>>>‘ ft}

Then, we have

t+19" z
T —X
[Zt+1e ‘]:"*1}

ta n Q
H(X) = IE®’ lel .

Zr
Ziy1

= p(=plp (X —In(——)))

7é ﬁg(_ﬁ?-&-l(X))a
if % # 1 a.s., i.e. if, intuitively speaking, learning actually takes place and, hence, the
reference distributions at distinct time periods differ.
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8 Conclusions

The major contribution of our results is to carry over the famous
Blackwell-Dubins theorem from probability distributions to convex
risk measures. We have shown that two agents with possibly distinct
risk assessments merely have to agree on sure and impossibly events
for their attitude towards a project to merge in the long run. Starting
with individual dynamic convex risk measures both act as expected
utility maximizers with respect to the true underlying distribution in
the limit. It is particularly striking that the results still hold when
time-consistency is not posed as an assumption.

We therefore introduced a generalization of the famous Blackwell-
Dubins theorem on “Merging of Opinions” to conditional expected
values. Existence of a worst case distribution due to continuity from
below and time-consistency then allowed for a further generalization
to coherent and convex risk measures. In particular, we have obtained
the existence of the limiting risk measure po, in that case.

By virtue of a counterexample, we have shown necessity of conti-
nuity from below for our result. However, we have shown that time-
consistency is not necessary for the Blackwell-Dubins type result to
hold. In particular, we have obtained a more general existence result
for the limiting risk measure p than in [Féllmer & Penner, 06].

Further research should be conducted in the direction of our re-
sults. First, of course, the riddle of explicitly constructing convex risk
measures by virtue of the penalty function is still to solve; in par-
ticular, how a learning mechanism might be introduced without de-
stroying the assumption of time-consistency. Weaker notions of time-
consistency that are satisfied in a “learning” environment should be
introduced along with a comprehensive theory allowing for solutions
of tangible economic and social problems.

In the article at hand, we have considered risky projects with final
payoffs, i.e. random variables of the form X € F. We have shown
convergence of convex risk measures to the conditional expected value
with respect to the true underlying distribution: a generalization of the
Blackwell-Dubins theorem to (not necessarily time-consistent) convex
risk measures for final payoffs. To us it seems being an interesting,
yet challenging, task to generalize our result to the case of convex risk
measures for stochastic payoff processes (X;); with respect to some
filtration (F;):, where each X; denotes the stochastic payoff in period ¢.
[Cheridito et al., 06] introduce dynamic convex risk measures for these
stochastic processes and elaborately discuss time-consistency issues
but do not inspect limiting behavior. A major difficulty in the case of
stochastic processes is that the assumption of equivalent distributions
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should be replaced by local equivalence, cp. [Riedel, 10]. Hence, the
main question turns out to be if the result still holds assuming local
instead of global equivalence as done here.
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