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Dealing with heterogeneity, nonlinearity and club

misclassification in growth convergence:

A nonparametric two-step approach.∗ †
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Summary. Classical growth convergence regressions fail to account for various sources

of heterogeneity and nonlinearity. While recent contributions are able to address either

the one or the other, we present a simple two-step method to address both issues. Based

on a slightly augmented version of a recently proposed algorithm to identify convergence

clubs, we formulate a flexible nonlinear framework which allows to analyze convergence

effects on both individual and club level, while alleviating potential misclassification in

the club formation process using simultaneous smoothing over the club structure. The

merits of the method are illustrated for data on different aggregational levels.
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1 Convergence, heterogeneity, and nonlinearity

Classical econometric convergence analysis in the sense of Mankiw et al. (1992),

Barro et al. (1991) and Barro and Sala-i-Martin (1992) is based on the concept

of absolute β-convergence, the latter meaning that poor countries or regions

grow faster than rich ones. The workhorse is a linear regression model for cross-

sectional data

log(yi,t)− log(yi,0)
def
= gi,t = α− β log(yi,0) + ui,t. (1)

For each region i, 1 ≤ i ≤ N , the growth rate of per capita income gi,t in

region i – calculated over an a priori fixed time period 0 to t – is explained

by its respective initial log per capita income log(yi,0). In this framework ui,t

is assumed to be an idiosyncratic error term. Following from economic theory

(see Barro and Sala-i-Martin, 2004), the parameter of paramount interest β is

defined as β
def
= 1− exp(−ρt), with convergence parameter ρ measuring the speed

of convergence. Absolute β-convergence is assumed if ρ > 0 and consequently

β > 0. Then countries with a smaller per capita income grow faster than rich

countries such that income differences decrease1.

Two strands of criticism confront classical growth convergence analysis. First of

all, the concept of β-convergence could be invalid due to neglected heterogeneity,

that is the relationship between gi,t and log(yi,0) in (1) may depend on parameters

indexed by cross-section (for fixed t), say αi,t and βi,t (e.g., Masanjala and Papa-

georgiou 2004, Alfò,Trovata and Waldmann 2008, Canarella and Pollard 2004).

Second, the lack of functional flexibility of the classical parametric formulation

and estimation of (1) and hence the potential of neglected nonlinearities (e.g.,

Kalaitzidakis et al. 2001, Liu and Stengos 1999, Maasoumi, Li and Racine 2007,

Quah 1993,1997, Henderson 2010).
1Please note that all of the considerations in this paper can be readily applied to models of

conditional convergence, e.g., Haupt and Petring (2011).
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Addressing the first issue, Durlauf and Johnson (1995) and Canova (2004) use

(1) within groups of countries with common convergence behavior in the group

and heterogeneous behavior between groups. Phillips and Sul (2003, 2007a,b,

2009), hereafter PS, argue that classical convergence analysis based on (1) is

prone to deliver inconsistent results and invalid convergence tests due to potential

heterogeneity in the convergence parameter β over time, countries, and individual

technology levels. PS show that due to omitted heterogeneity the error term

in (1) includes endogenous variables and variables which are correlated with

dependent and independent variables. As a remedy PS suggest to enable a

variation of the transition parameter and growth rate over districts and time2.

They propose a nonlinear dynamic factor model

log(yi,t) = ai,t + xi,tt =

(
ai,t + xi,tt

µt

)
µt

def
= bi,tµt, (2)

where xi,t is an individual technology process parameter, bi,t is the idiosyncratic

time-varying element and µt a common trend factor measuring global technolog-

ical progress.

Then bi,t can be interpreted as the transition path of economy i to the global

growth path µt and is calculated as the log per capita income of district i in

period t. By eliminating the global growth component, the relative transition

path

hi,t = log(yi,t)/N
−1

N∑
i=1

log(yi,t) = bi,t/N
−1

N∑
i=1

bi,t

measures the transition element for economy i in period t in relation to a cross-

section average. Then global convergence — all countries have the same fraction

2Note that heterogeneity of parameters in (1) may also occur across the conditional distribu-

tion of the growth rates git. Haupt and Petring (2011) apply quantile regression estimation

and test but do not find empirical evidence in favor of such types of heterogeneity using

the data from Mankiw et al. (1992). Hence this issue will not be pursued here.
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of global per capita income — is assumed to be present if

hi,t → 1, for all i, as t →∞. (3)

The log t regression of Phillips and Sul (2007a,b, 2009)

log (H0/Ht)− 2 log(log(t)) = a + γ log(t) + ut (4)

now tests (3) using the mean square transition differential Ht = N−1
∑N

i=1(hi,t−
1)2. In case of global convergence Ht → 0 as t → ∞. The authors show that

Ht ∼ A/log(t)2t2α as t → ∞, where A ≥ 0 is a constant and α equals the

rate of cross-section transition variation dissolving over time. Under the null

hypothesis the regressor diverges to ∞ and under the alternative the regressor

diverges to −∞. A negative value, however, does not necessarily imply that

there is divergence but that there may exist some convergence clubs instead of

global convergence. Using a one-sided t-test we test the null hypothesis of γ ≥ 0.

For comparing the concept of β-convergence and the concept of PS we have to

concentrate on the initial and final period because β-convergence doesn’t consider

intermediate periods. Independently from their initial income in 0, all countries

or regions have the steady-state per capita income in T (the mean income of T )

if convergence in this sense is fulfilled over the period from [0, T ] . In empirical

samples we assume that the points don’t lie exactly on a line but they spread

sparsely around the mean. Specifying the relation in a linear regression model

yields to

log(yi,T = α + b log(yi,0) + ui,T , (5)

where b = 0 under convergence in per capita hypothesis. Assuming b = 1 − β

(5) is equal to classical β-convergence modeling. Thus, convergence in the sense

of PS is a special case of β-convergence where β = 1.

The problem of potential nonlinearities in growth (and convergence) regressions

has been addressed recently by applying fully nonparametric methods for regres-

4



sion and specification testing (e.g., Haupt and Petring, 2011, and the literature

cited therein). The authors use a local linear kernel estimator with a gener-

alized product kernel function proposed by Racine and Li (2004) and Li and

Racine (2008). Using the data from Mankiw et al. (1992) they find consider-

able evidence for parametric misspecification and a superior performance of a

nonparametric model, though no evidence for heterogeneity across the growth

distribution. Using the data from Phillips and Sul (2009) in this paper we show

that nonlinearities still may pose a problem, even on club level.

The contribution of this paper is to propose a new method to simultaneously

address nonlinearity and heterogeneity in a convergence club model. In order to

allow for heterogeneity, model (1) is extended to allow for club-specific conver-

gence parameters. The resulting model is tested for parametric misspecification

against a fully nonparametric alternative. Whenever the former linear model is

rejected, the latter nonlinear model is used to estimate convergence effects. Basi-

cally, to pursue such an approach we apply two steps: First we discuss potential

pitfalls, slightly augment the clubbing algorithm of PS and address issues aris-

ing from potential misspecification of their approach for testing the convergence

condition (3). Second, we formulate a flexible nonlinear regression framework for

studying growth convergence allowing for the estimation of club specific conver-

gence effects which — in contrast to models on the club-level — do not suffer

from potential errors in the classification of members and non-members.

The remainder of the paper carefully describes the proposed two-step procedure

and its application to various data sets. In Section 2 we review the clubbing

algorithm of PS, discuss potential pitfalls, and suggest a simple remedy for a

potential problem of the algorithm (step 1). Section 3 discusses the specification

search of a club-level convergence regression model and estimation of fully non-

parametric regressions (step 2). The potential problem of club misclassification

and consequences for regression inference are highlighted in Section 4. Finally,
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in Section 5 we apply the proposed method to study data on different levels of

aggregation from the countries of the Penn World Tables, Japanese prefectures,

and districts from reunified Germany, respectively.

2 Convergence club identification

To identify convergence clubs PS use a clubbing algorithm consisting of four

steps

<1.> (Cross-section ordering): Order countries according to the log(yi,t) in final period.

<2.> (Form a core group of k∗, 2 ≤ k∗ < N , countries):

<2.1> Find the first two highest successive countries for which the log t test statistic

tk ≥ −1.65. If the condition does not hold for any k = 2, drop the country

with highest log(yi,t) and restart the procedure with the remaining countries.

<2.2> Start with the k = 2 countries identified in 2.1, increase k proceeding with the

subsequent country

from order, run the log t regression, and calculate tk. Stop increasing k if

convergence hypothesis fails to hold (i.e. tk < −1.65). Take the k∗ countries

with the highest test statistic from all k countries satisfying the convergence

hypothesis for core group.

<3.> (Sieve the data for new club members):

<3.1> Form a complementary core group with all remaining countries.

<3.2> Add one country at a time from the complementary core group to the core

group, run the log t regression, add the country to a club candidate group if

the convergence test statistic is greater than a critical value c∗ = 0. Form a

convergence club of the candidate group and the core group.

<4.> (Recursion and stopping rule): Form a second group from all countries which fail

the sieve condition in step 3 and run log t regression. If the convergence hypothesis

cannot be rejected, all remaining countries form a new convergence club. Otherwise,

for the remaining countries start again with step 2 for finding a new k∗.
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<5.> (Club merging): Run log t regression for all groups of subsequent clubs. Merge those

clubs fulfilling the convergence hypothesis commonly.

Composing the clubs in accordance to this algorithm does not ensure that the

convergence hypothesis holds for each respective club. PS (2007) are aware of

this problem and propose to increase the critical value c∗ for raising the power

of the corresponding test. Such a remedy, however, does not work in general, for

instance for the German district-level data discussed in Section 5.2 or when we

replace the initial cross-section ordering rule by an (equally plausible) alternative,

Thus, we may want to augment step <3.> of the algorithm in a way such that

convergence is assured using a data-based criterion.

<3.3> If the countries from core and candidate group hold convergence hypothesis com-

monly, go to step 4. If not, form a convergence club with the candidate country with

highest test statistic and the core group. Add one candidate country at a time to

convergence club, run log t regression and add the country with highest test statistic

to the convergence club. Continue adding new countries to the convergence club

until no further candidate country fulfills convergence hypothesis.

In all empirical applications discussed in Section 5 we find that the shape of

observed points in the log t regression (4) to be parabolic and convex for con-

vergence clubs. This is due to the construction of the regressor. Under the null

hypothesis Ht converges to zero as t →∞ as a monotonically decreasing convex

function. Calculating H0/Ht inverts this shape into a monotonically increasing

convex function. Taking the logarithm damps the curvature or even linearizes the

curve. The second part of the regressor 2 log(log(t)) is a monotonically increasing

concave curve. Subtracting this second concave part from the first convex/linear

curve leads to a parabolic and convex trajectory. Thus, under the null we expect

a nonlinear regression relationship. Those results suggest that the interpretation

of the log t regression should be handled with care.
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3 Estimation of club-based convergence regression

We want to apply a classical convergence analysis in the sense of Mankiw et al.

(1992) while allowing for data-driven heterogeneity and nonlinearity. Thus, in a

first step, we assign the regions to clubs using the algorithm discussed above. In

a second step we include a categorical club variable clubi in (1)via the j dummy

variables clubi,j which are equal to 1 if country i is in club j. The resulting

baseline model allows to estimate a regression line δj + πj log(yi,0) for every club

j, 1 ≤ j ≤ m, i.e.

gi,t =
m∑

j=1

δjclubi,j +
m∑

j=1

πj log(yi,0) · clubi,j + ui,t. (6)

In contrast to the classical convergence model (1), the baseline model (6) allows

for a considerable degree of heterogeneity. However, there are very small clubs for

several applications and thus the interpretation of the parameters for those clubs

should be handled with care. The main point of criticism, however, is that this

model may suffer from potential misclassification of the club composition (see

Section 4). Furthermore, the model does not allow for further nonlinearities.

In order to address the problem of potential nonlinearities we can employ a fully

nonparametric alternative

gi,t = G(log(yi,0), clubi) + ui,t. (7)

This approach allows to estimate not only club-level effects — which Durlauf

and Johnson (1995) interpret to represent averages of the underlying individual

effects for each country — but further nonlinearities. The approach allows to

consider mixed data with both continuous (here: initial income log(yi,0)) and

categorical (here: clubi, an ordered categorical variable) covariates.

In model (7) for every log(yi,0) a linear model for its direct neighborhood of size

λ is estimated. The latter regression can be estimated by a local linear kernel
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estimation with general regression function G(). The points get different weights

given by a weighting function W (), the generalized product kernel presented by

Racine and Li (2004)

W (z0, zi, λ) =
2∏

k=1

wk(z0k, zik, λk)

The idea is that all types of covariates are smoothed with a certain weighting

(kernel) function corresponding to the scale level of the covariate, assigning an

individual smoothing parameter (the bandwidth) to each covariate. For the

continuous variable log(yi,0) a second order Gaussian kernel wk(z0k, zik, λk) =

λk
−1φ (zik − z0k/λk) is used, where φ is the standard normal density and λ ∈

(0,∞). Due to the Gaussian distribution, points close to log(yi,0) (zik ≈ z0k) get

higher weights than points lying near the boarder of the neighborhood. For the

ordered categorical variable clubi we use a kernel function of Racine and Li (2004)

wk(z0k, zik, λk) = λ
|zik−z0k|
k . The bandwidth λk lies in the interval [0, 1]. For a

value of λk = 0, the kernel wk(z0k, zik, 0) is an indicator function for category

zik and for λk = 1 the kernel function is constant over all categories. Thus, the

variable is irrelevant. In contrast to a classical (frequency) approach, the obvious

advantage of this method is potential smoothing of categorical variables. Hence,

we are even able to estimate convergence behavior for small club sizes.

The resulting minimization problem is a weighted local least squares problem

min
α(z0),β(z0)

n∑
i=1

[gi,t − α(z0)− (log(yi,0)− log(y0,0))β(z0)]
2W (z0, zi, λ),

where z = (log(yi,0), clubi) is the vector of covariates and the “local” part is

considered by the dependence of the parameters α and β on z0. The remaining

problem consists of finding optimal values for the bandwidth vector λ. We obtain

λ using a data-driven least squares cross validation approach, where we minimize

the objective function CV (h) = n−1
∑n

i=1(gi,t − Ĝ−i(zi))
2M(zi), and Ĝ−i(zi) is

the leave-one-out kernel estimator of regression function, and M is a weighting
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function bounded between 0 and 1, usually set to M = 1 (see Li and Racine,

2004).

4 Assessing potential club member misclassification

4.1 Sensitivity of results with respect to the clubbing algorithm

In contrast to model based clubbing algorithms (e.g. Juárez and Steel, 2010),

the method of Phillips and Sul (2007a,b, 2009) discussed in Section 2 does not

provide estimates of the misclassification probabilities for each club member. A

first step towards exploring potential classification error is to check for hints on

the existence of positive error probabilities by inspecting whether the “selection

of core groups is robust to initial data orderings” (see Phillips and Sul, 2009,

footnote 11, p. 1170). Considering the problem of an unknown true ordering rule

(see Canova, 2004) we try different concepts in step <1.> and check whether

considerable differences in club composition are obtained. This indicates large

uncertainties which should be addressed in empirical convergence analysis.

As alternatives to the amount of final period income (final ordering), hereafter

denoted as ordering rule (I), as used by Phillips and Sul (2009) we employ the

following. (II) Order corresponding to the average income of all years (average

ordering) for capturing potential time series volatility. Phillips and Sul (2007)

propose to average over the last fraction of the sample to ensure a higher influence

of recent periods. (III) Another alternative is ordering according to the difference

between final period income and income in first period, capturing the income

change over time (difference ordering). (IV) Finally, combining the ideas on the

final period and capturing volatility, a decreasing weights ordering is employed.

We note that in all of our applications discussed below the use of different order-

ing rules leads to considerable differences in club sizes and composition, respec-

tively. For evaluating the empirical performance we compare the out-of-sample
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performance of the convergence regression models for ordering rules (I)-(IV).

As an a posteriori selection criteria for ordering rules we run a cross-validation

(e.g., Haupt and Petring, 2011) and choose the model with the smallest average

squared error of prediction.

4.2 Addressing misclassification in nonparametric regression

While there is no obvious remedy for the misclassification problem in the para-

metric model (6), the nonparametric model (7) may offer one. Data-driven band-

width selection for the club variable deals with the question of uncertainty of club

composition. Using the kernels proposed by Racine and Li (2004), the optimal es-

timated bandwidth is bounded between 0 and 1. A bandwidth of approximately

0 means that the influence of this variable is such that for estimating the function

(7) for a club only observations from this club are used. This occurs when the

functional form is sufficiently different with respect to the different clubs or if the

observations show sufficiently different convergence behavior. We can interpret

this in the sense that there is a rather low probability of misspecification, thus

the clubs are well chosen. With increasing values of the bandwidth the error

probability for club membership rises. If the bandwidth is considerably greater

than 0, observations from all clubs are used to estimated regression functions

for each club and thus, there is no influence of the variable. This suggests that

there is evidence in favor of an only weak or even non-existent club structure.

Thus, the bandwidth of the categorical club variable serves for an a posteriori

quantification of the classification (and underlying error probabilities) as a whole.

By using the nonparametric approach including the club variable we obtain in-

dividual influences of each observation while considering the uncertainty with

respect to club membership, instead of a single fixed convergence regression line

for each club in the parametric approach. The club-structure on the other hand

has the advantage of being backed up by economic theory. Although it may
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produce a faulty number and/or composition of clubs, the simultaneous smooth-

ing of the continuous and the categorical variable is capable of alleviating this

problem. In summary we include heterogeneity in the sense of Phillips and Sul,

reduce uncertainty of club composition, and capture potential nonlinearities, and

hence are able to address the main points of criticism of convergence regressions

in recent literature.

4.3 Addressing misclassification in parametric regression

Given a set of data the initial problem a researcher faces is choosing either

a parametric models such as (6) or a nonparametric model such as (7). In

the context of mixed continuous and categorical covariates as in the present

example this problem can be addressed by applying the test of Hsiao et al.

(2007) (hereafter HLR test), which is based on the generalized product kernel

estimator proposed by Racine and Li (2004) discussed in Section 3 above.

Using the same nonparametric configurations used for the nonparametric regres-

sion the HLR test checks if the parametric null model (6) is correctly specified.

Whenever the HLR test rejects the null we apply the fully nonparametric model,

enjoying the benefits discussed in the previous sections.

As the HLR test employs the bandwidths of the nonparametric regression, we are

able to assess the error probabilities already after applying the test. Thus, if the

test does not reject the parametric null hypothesis, we inspect the bandwidth λk

of the cluster variable: If λk is close to zero, the parametric and nonparametric

model work analogously and we may use the parametric model because there

are no hints for club misclassification. If the bandwidth λk is greater than zero

positive classification errors have a higher probability. In this case, however, we

can still estimate a nonparametric model for the theoretical price of efficiency

loss compared to the parametric model.
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5 Applications featuring different levels of aggregation

In the following subsections the proposed method is illustrated with applications

to three data sets based on different levels of aggregation — the countries from

the Penn World Tables, the prefectures of Japan, and the districts from reuni-

fied Germany. These applications allow replication of our method and previous

results in a wide sense. We use different levels of aggregation because we ex-

pect different levels of heterogeneity. Regions on district level come with similar

technology and thus regions on this level converge to a similar or even the same

steady state. This is the reason why the concept of absolute convergence is gener-

ally used for disaggregated data. However, different countries behave much more

heterogeneously, because there are highly differing levels of technology. This is

the reason why countries typically converge to different steady states. Classical

convergence analysis captures this problem by extending (1) with additional co-

variates (e.g. investment rate, human capital) determining different steady states

(see Sala-i-Martin, 1996). In our approach we use the concept of absolute con-

vergence for all levels of aggregation because we allow for different steady states

on club level by capturing the club variable. Independently from the aggregation

level members of one club are assumed to offer homogenous convergence behavior

and thus, we can assume similar steady states in a club. With respect to the

aggregation level our empirical results reveal considerable differences in nonlin-

earity and heterogeneity, while we do not find clear evidence on the sensitivity

of results with respect to the ordering rules discussed above3.

3All computations in this paper are done using the software R, version 2.11.0, and version

0.40-4 of the np-package of Hayfield and Racine (2008). Of course, data and code are

available from the authors.
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5.1 Penn World Table country-level data

Using our two-step procedure we analyze convergence for Penn World Table

(PWT) data of 152 countries over the years from 1970 to 2003. As global con-

vergence is clearly rejected (p-value ≈ 0), the clubbing algorithm is applied.

Table 1 displays parameter estimates and standard deviations before and after

club merging for ordering rules (I)-(IV).

Final ordering (I) offers seven convergence clubs and no diverging countries4

while one third of the countries are members of the first club. After merging six

clubs remain. Using the other ordering rules we get different results. Average

ordering (II) produces basically nine convergence clubs, but using club merging

the number of clubs can be reduced to six clubs and the divergence group and

similarly to final ordering, the first club is the biggest one and consists of 67

countries, while the other clubs are much smaller. The divergence group has six

members. Difference ordering (III) produces only five non-mergeable convergence

clubs (and one diverging country), while also 67 of the countries are members

of the first convergence club. Decreasing weights ordering (IV) generates seven

clubs which persist after merging. About half of the countries belong to the first

club. In summary, the composition and number of convergence clubs seems to

be highly sensitive with respect to the choice of the ordering rule.

The convergence behavior of the six clubs using final ordering (I) is displayed in

Figure 1, where the relative transition coefficients are plotted against time. A

closer look at the respective club members listed in Table 18) may raise some

suspicion. For example Club 1 contains the USA and Botswana (e.g., Phillips and

Sul, 2009). In absolute values the per capita income of the USA in 1970 is about

17429 US Dollars, compared to 1184 US Dollars in Botswana. Though in absolute

values this gap rises considerably until 2003 (see Figure 2), in relative numbers it
4Using the same data, Phillips and Sul (2009) only identify five convergence clubs. For those

clubs, however, we find the same parameter estimates and standard deviations.
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decreases over time. While in 1970 the per capita income in Botswana is about

7% of the per capita income in the USA, in 2003 it is about 23%. Botswana also

catches up in international comparison with respect to the relative transition

coefficients hit. In 1970 the per capita income in Botswana lies at about 80%

(USA: 110%) of the cross-country average, while it rises to 91% in 2003 (USA:

105%). Thus, although the absolute incomes between these two countries differ

extremely, the countries converge in the sense of Phillips and Sul as the respective

hit converge to 1.

In Figure 3 the box-plots of income in final period are displayed for the six clubs

found by final ordering (I). While the incomes inside the clubs are close to each

other, the income distribution between the clusters is very heterogeneous. For

the same clubs in Figure 4 we display scatter plots of the log t regressions (4).

The shape suggested by the trajectories in clubs 1 to 4 is parabolic and convex

and thus may be interpreted in a way that in initial periods there are hints for

divergence, while over the years we observe convergence because of a positive

slope. For club 5 we detect more complex nonlinearities and convergence is

assumed because γ is not significantly negative but the regressand decreases at

the end of the period, indicating that there is no convergence5. Thus, to avoid

a misinterpretation of the estimation and test results, the inspection of the log t

regression scatter plots seems to be highly recommended.

The clustering algorithm may also be sensitive with respect to the respective

time horizon. Thus, for the Penn World Table data we exemplarily analyze for

final ordering whether number, size, and composition of clusters is constant for

different time periods. We compare the results for the whole time horizon from

1970 to 2003 with consecutively shorter partial time spans, one from 1978 to 2003

and the other from 1986 to 2003. The reason why we choose both periods such

that they also end in 2003 is that the income in the final period is the ordering

5Note that for other ordering rules and data sets, more clubs exhibit such a behavior.
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criteria. Using the same final period enables to analyze how the length of the

time horizon affects the cluster composition and the number of clusters.

Table 2 displays numbers, sizes, and compositions of clusters for the complete

time horizon 1970 to 2003 and the period from 1978-2003, respectively. The

cluster sizes for the complete time horizon is given in the last column containing

the row sums, the clusters of the partial period 1978 to 2003 are given in the

last row containing the column sums. For the partial horizon we find an addi-

tional convergence club and a divergence group. Although the number of clusters

changed, their composition is quite stable as countries belonging to the first clubs

over the complete horizon predominantly also are members of the first clubs in

the partial horizon (and vice versa). As can bee seen from Table 3, the number

of clusters rises to eight and one divergence group when comparing the shorter

partial period from 1986 to 2003 to the complete time horizon. Again, though

the number of clusters varies over time, the club composition seems to be quite

stable over time. This results support the assumption that the club structure can

be included as an ordered categorical variable when analyzing β-convergence.

Step one reveals hints for non-robust club sizes and club compositions with re-

spect to ordering rules and time horzion as well as neglected nonlinearities in

log t regressions. Both findings raise the question if potential misclassification

of convergence clubs will affect estimation and inference within this framework.

Thus, in the second step, we analyze the robustness of the club compositions

resulting from the differing ordering rules (I)-(IV). For each ordering rule we

estimate the parametric model (6) and the nonparametric model (7) and apply

the HLR test. Finally, by running an out-of-sample cross validation analysis

we select an optimal ordering rule according to lowest average squared error of

prediction (ASEP).

The output for a classical β-convergence regression (1) is given in Table 4. The

estimated convergence coefficient is negative, but there is no statistical signifi-
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cance. Advancing to the baseline model (6) including the club variable6 suggests

strong evidence for the existence of heterogeneity. The estimated coefficients are

displayed in Table 5 and the resulting club-level regression lines can be seen in

Figure 57. The convergence coefficients are significant for convergence club one

to five, but not for the sixth club (which consists of only two countries). The

p-values of HLR tests (see column 3 of Table 6) are approximately equal to zero

in all four cases suggesting the application of the nonparametric model (7). Table

6 displays the resulting bandwidth for nonparametric models. For ordering rules

(I)-(IV) the estimated bandwidth for continuous regressor is smaller or equal to

its standard deviation (1.09), respectively, also indicating a nonlinear influence

of the regressor log(yi,0).

Overall, the clubs seem to be well chosen because the bandwidth of the club

variable is very small independently from the respective choice of ordering rule.

An out-of-sample cross-validation, however, offers a clear ranking for ordering

rules with respect to ASEP. The pairwise comparison of the models given in Table

7 reveals that ordering rule (I) suggested by Phillips and Sul (2009) dominates

all other ordering rules for the present data.

5.2 District-level data from reunified Germany

For this application data on the 439 German administrative districts are taken

from the regional data base of the statistical agencies of Germany for per capita

income measured as the GDP divided by the corresponding number of citizens for

the years 1996 to 2005. The log t regression for German regional data suggests

clear evidence against global convergence (p-value ≈ 0), but we are able to find

6We only present results for ordering rule (I) because later on we find that this rule performs

best. The results for other ordering rules are similar.
7The estimated coefficients for quartile regression are similar to mean regression. Thus, there

is no more heterogeneity over the conditional distribution of the regressand.
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the clubs summarized in Table 8 for the four ordering rules and classification

before merging and after merging. Again, difference ordering produces fewest

number of clubs, only eight before and five after merging. Average and decreasing

weights ordering reveal highest number of clubs, 24 before and ten respectively

eight after merging. Notably, the first two clubs and the divergence group for

almost all orderings except difference ordering are very small while for difference

ordering the first club includes about 25% of data and the divergence group even

one third. Figure 6 plots the relative transition coefficients over time for the

convergence clubs and the diverging group of final ordering. The plots support

the convergence hypothesis for the clubs and show diverging behavior of the

diverging group. The boxplots in Figure 7 reveal the heterogeneity (homogeneity)

between (within) the clubs.

Analyzing log t regression scatter-plots for regional data offers similar results to

the PWT data. Figure 8 exemplifies the results for final ordering. Most of the

convergence clubs offer a parabolic and convex shape which means a nonlinear

relationship but no harm for convergence interpretation. But, for the second

club the regressand becomes smaller in the last period which rises doubt on the

club convergence

Investigating β-convergence yields to the regression output displayed in Table

9. The estimated coefficient is significantly negative. The estimated coefficients

of the baseline model (6) briefed in Table 10 offer β-convergence for all clubs,

but divergence for the divergence group. The estimated regression lines for the

ten convergence clubs after merging are displayed in Figure 9. As the p-values

in Table 11) reveal, for ordering rules (I) and (II) the hypothesis of correct

parametric specification of the baseline model (6) cannot be rejected at any

reasonable significance level, while there are hints for misspecification in (III) and

(IV). For assessing the quality of clubbing we estimate nonparametric models

for all cases. The estimated bandwidths are displayed in Table 11. With the
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exception of (II) the bandwidths for log(yi,0) point to nonlinear influences of the

regressor. The bandwidths for the club variable are all close to zero. Thus,

club compositions are well chosen for all ordering rules. The out-of-sample cross

validation analysis offers a strict ranking of ordering rules (I)Â(IV)Â(II)Â(III),
where Â means that the ordering rule on the left has a lower ASEP than the rule

on the right.

5.3 Prefecture-level data from Japan

In addition to PWT data on country-level and german regional data on district-

level we analyze an in-between — data on 47 Japanese prefectures between 1956

and 19908. The results on merged clubs are displayed in Table 13. Using final

ordering and difference ordering we find three convergence clubs which can be

merged to two clubs. Average ordering and decreasing weights ordering propose

exactly the same results. There are four convergence clubs and one divergence

group consisting of three countries. After merging there are only two clubs

and one divergence group. The relative transition coefficients over time for the

convergence clubs after merging are exemplarily shown for final ordering in Figure

10, where club convergence is indicated as the transition coefficients converge to

one. Again, heterogeneity between clubs can be observed from Figure 11. The

scatter-plots of log t regression for final ordering displayed in Figure 12 show

quite different results than for the other examples. For all three clubs the first

half of the time horizon show parabolic and convex points. In the second half,

the points of clubs one and three stagnate in contrast to convergence assumption.

The results of log t regressions should be handled with care. Analyzing classical

β-convergence (1) proposes a positive coefficient which is significant on 10%-level

8The data of Barro and Sala-i-Martin (2004) are downloaded from

http://www.columbia.edu/∼xs23/data.htm at June 15, 2011.
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(see Table 14)9. Thus, there are no hints for β-convergence over all prefectures.

The estimated convergence coefficients for the baseline model reveal negative

signs for both clubs, which are, however, not significantly different from zero

(see Table 15). The estimated regression lines are plotted in Figure 13.

Investigating parametric misspecification the HLR test has small p-values (with

maximum of around 11%) for all ordering rules. For all ordering rules the band-

width of clubi is approximately 0.01 or even smaller. Thus, the clusters seems

to be well chosen for all methods. The bandwidth for log(yi,0) proposes a linear

influence of this variable for ordering rule (I) and (III) and a nonlinear influence

for (II) and (IV). The p-values and bandwidths for nonparametric regression can

be found in Table 16. The out-of-sample cross-validation offers the following

sequence of ordering rules (I)Â(III)Â(II)=(IV).

6 Conclusion

As classical convergence regressions often fail to account for heterogeneity and

nonlinearity and recent contributions are able to address either the one or the

other, a simple two-step method is proposed to address both issues. Employing a

slightly augmented version of the clubbing algorithm of Phillips and Sul (2007a,b,

2009) in step one, we find (i) considerable sensitivity of results on convergence

club structures with respect to different initial data orderings. Further, (ii)

visual inspections of log t regression scatter plots reveal that the “convergence

interpretation” of the results of such a linear regression should be handled with

care. As a second step we propose the use of a nonparametric test and regression

which allows to analyze convergence effects on both individual and club level

while alleviating potential misclassification in the club formation process using

simultaneous smoothing over the club structure.

9Again, we only present results for initial ordering.
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Three empirical exercises using data on different levels of aggregation, countries

from the Penn World Tables, Japanese prefectures, and districts from reunified

Germany, respectively, illustrate the proposed two-step approach. For all applica-

tions, we find considerable evidence for club-based heterogeneity in convergence

analysis by adding the clubs identified in step one as a categorical covariate. Our

nonparametric estimation results suggest that the club composition is well cho-

sen. An out-of-sample analysis reveals that initial ordering rule for starting the

club identification algorithm (in step one) proposed by Phillips and Sul performs

best.
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A Tables and Figures

A.1 PWT country-level data

(I) Final ordering (II) Average ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [50] 0.38 (0.04) Club 1 [50] 0.38 (0.04) Club 1 [67] 0.09 (0.03) Club 1 [67] 0.09 (0.03)
Club 2 [30] 0.24 (0.03) Club 2 [30] 0.24 (0.03) Club 2 [8] 0.36 (0.04) Club 2 [18] 0.03 (0.03)
Club 3 [21] 0.11 (0.03) Club 3 [21] 0.11 (0.03) Club 3 [10] -0.001 (0.02)
Club 4 [24] 0.13 (0.06) Club 4 [38] -0.44 (0.07) Club 4 [12] -0.01 (0.06) Club 3 [12] -0.01 (0.06)
Club 5 [14] 0.19 (0.11) Club 5 [21] 0.03 (0.05) Club 4 [23] 0.04 (0.05)
Club 6 [11] 1.00 (0.17) Club 5 [11] 1.00 (0.17) Club 6 [2] 0.10 (0.31)
Club 7 [2] -0.47 (0.84) Club 6 [2] -0.47 (0.84) Club 7 [9] 0.07 (0.05) Club 5 [16] 0.06 (0.10)

Club 8 [7] 0.15 (0.12)
Club 9 [10] 1.39 (0.15) Club 6 [10] 1.39 (0.15)
Group 10 [6] -2.04∗ (0.02) Group 7 [6] -2.04∗ (0.02)

(III) Difference ordering (IV) Decreasing weights ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [67] -0.003 (0.007) Club 1 [67] -0.003 (0.007) Club 1 [73] 0.01 (0.03) Club 1 [73] 0.01 (0.03)
Club 2 [32] 0.71 (0.06) Club 2 [32] 0.71 (0.06) Club 2 [24] 0.09 (0.02) Club 2 [24] 0.09 (0.02)
Club 3 [42] -0.05 (0.05) Club 3 [42] -0.05 (0.05) Club 3 [22] 0.05 (0.05) Club 3 [31] -0.05 (0.05)
Club 4 [4] 1.48 (0.09) Club 4 [4] 1.48 (0.09) Club 4 [9] 0.08 (0.06)
Club 5 [6] 0.43 (0.12) Club 5 [6] 0.43 (0.12) Club 5 [2] 0.08 (0.19) Club 4 [2] 0.08 (0.19)
Group 6 [1] Group 6 [1] Club 6 [7] 0.15 (0.11) Club 5 [15] -0.07 (0.12)

Club 7 [8] 1.411 (0.18)
Group 8 [7] -1.80∗ (0.02) Group 6 [7] -1.80∗ (0.02)

Table 1: Results of clubbing algorithm for PWT data. Club sizes (in brackets), esti-
mates for γ and standard errors of the log t regression (4) are displayed for
different ordering rules. a) of each ordering rule gives the initial classification
before club merging, b) gives the final classification after merging.

25



1970 1980 1990 2000

0.
7

0.
9

1.
1

Club 1
R

el
at

iv
e 

Tr
an

si
tio

n

1970 1980 1990 2000

0.
8

0.
9

1.
0

1.
1

Club 2

R
el

at
iv

e 
Tr

an
si

tio
n

1970 1980 1990 2000

0.
7

0.
8

0.
9

1.
0

1.
1

Club 3

R
el

at
iv

e 
Tr

an
si

tio
n

1970 1980 1990 2000

0.
9

1.
0

1.
1

1.
2

Club 4

R
el

at
iv

e 
Tr

an
si

tio
n

1970 1980 1990 2000

0.
95

1.
00

1.
05

1.
10

Club 5
R

el
at

iv
e 

Tr
an

si
tio

n

1970 1980 1990 2000

0.
97

0.
99

1.
01

1.
03

Club 6

R
el

at
iv

e 
Tr

an
si

tio
n

Figure 1: Relative transition coefficients over time for convergence clubs resulting
from final ordering after merging, corresponding to (I) b) in Table 1.
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Figure 2: Relative transition coefficients over time and absolute per capita income
over time of USA and Botswana.
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Figure 3: Boxplots of income in final period divided by the convergence clubs result-
ing from final ordering after merging, corresponding to (I) b) in Table 6.

27



2.6 2.8 3.0 3.2 3.4

−
1.

4
−

1.
2

−
1.

0

Club 1

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

2.6 2.8 3.0 3.2 3.4

−
1.

50
−

1.
40

−
1.

30

Club 2

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

2.6 2.8 3.0 3.2 3.4

−
1.

45
−

1.
35

Club 3

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

2.6 2.8 3.0 3.2 3.4

−
2.

15
−

2.
00

−
1.

85

Club 4

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

2.6 2.8 3.0 3.2 3.4

−
2.

0
−

1.
6

−
1.

2
−

0.
8

Club 5

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

2.6 2.8 3.0 3.2 3.4

−
3

−
1

0
1

2

Club 6

log(t)

lo
g(

H
1/

H
t)

−
2*

lo
g(

lo
g(

t)
)

Figure 4: Scatterplots of the log t regressions (4) for clubs found by final ordering
after merging, corresponding to (I) b) in Table 1. Solid line is ordinary
least squares estimate.

Table 2: Comparison of club number, size, and composition for PWT data and final
ordering (I) for different time horizons. The club structure for complete
time horizon 1970 to 2003 (partial horizon from 1978 to 2003) is given in
rows (columns).

C1 C2 C3 C4 C5 C6 G7 nc

C1 49 0 0 0 0 0 1 50
C2 13 16 1 0 0 0 0 30
C3 0 10 8 3 0 0 0 21
C4 0 0 1 23 14 0 0 38
C5 0 0 0 0 4 7 0 11
C6 0 0 0 0 0 0 2 2
nc 62 26 10 26 18 7 3 152
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Table 3: Comparison of club number, size, and composition for PWT data and final
ordering (I) for different time horizons. The club structure for complete
time horizon 1970 to 2003 (partial horizon from 1986 to 2003) is given in
rows (columns).

C1 C2 C3 C4 C5 C6 C7 C8 G9 nc

C1 43 4 2 0 0 0 0 1 0 50
C2 5 10 13 2 0 0 0 0 0 30
C3 0 0 9 9 2 1 0 0 0 21
C4 0 0 0 4 8 22 4 0 0 38
C5 0 0 0 0 0 1 10 0 0 11
C6 0 0 0 0 0 0 0 1 1 2
nc 48 14 24 15 10 24 14 2 1 152

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5997 0.4037 1.49 0.1395
log(yi,0) -0.0126 0.0495 -0.25 0.7995

adj.R2=-0.006, AIC=-752.24, n=152

Table 4: OLS estimates of classical convergence model (1) for PWT data.
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Estimate Std. Error t value Pr(>|t|)
Club 1 5.9291 0.3352 17.69 0.0000
Club 2 4.1480 0.5241 7.91 0.0000
Club 3 4.0241 0.6178 6.51 0.0000
Club 4 2.9553 0.5387 5.49 0.0000
Club 5 7.1889 2.3127 3.11 0.0023
Group 6 11.3003 8.4093 1.34 0.1812
Club 1:log(yi,0) -0.5566 0.0373 -14.92 0.0000
Club 2:log(yi,0) -0.4191 0.0620 -6.75 0.0000
Club 3:log(yi,0) -0.4499 0.0780 -5.77 0.0000
Club 4:log(yi,0) -0.3899 0.0750 -5.20 0.0000
Club 5:log(yi,0) -1.0743 0.3279 -3.28 0.0013
Club 6:log(yi,0) -1.7197 1.1323 -1.52 0.1311

adj.R2=0.8486, AIC=-1014.564, N=152

Table 5: OLS estimates of baseline model (7) for PWT data.
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Figure 5: Estimated regression lines from the estimation displayed in Table 3 for the
five convergence clubs for PWT data.
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bandwidth of log(yi,0) bandwidth of club p-value of Hsiao-Li-Racine test
(I) 1.054 0.006 0.0125
(II) 0.839 0.01 ≈0
(III) 0.812 ≈0 ≈0
(IV) 1.1205 0.028 ≈0

Table 6: Estimated bandwidths for nonparametric baseline model estimation using
a mixed kernel estimation for PWT data and ordering rules (I)-(IV) and
p-values for Hsiao-Li-Racine tests.

(I) (II) (III) (IV)
(I) – 0.17 0.21 0.07
(II) 0.83 – 0.49 0.25
(III) 0.79 0.51 – 0.34
(IV) 0.93 0.75 0.66 –

Table 7: Pairwise comparisons of cross-validation performance. Number equals share
of B = 10, 000 replications in which model in column has smaller ASEP
(average squared error of prediction) than model in row for PWT data.
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A.2 German district-level data

(I) Final ordering (II) Average ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26)
Club 2 [5] 0.01 (0.05) Club 2 [5] 0.01 (0.05) Club 2 [3] 0.99 (0.30) Club 2 [3] 0.99 (0.30)
Club 3 [4] 0.19 (0.16) Club 3 [10] 0.03 (0.14) Club 3 [4] 0.34 (0.16) Club 3 [12] -0.08 (0.12)
Club 4 [6] 0.15 (0.16) Club 4 [8] 0.11 (0.15)
Club 5 [30] 0.09 (0.14) Club 4 [30] 0.09 (0.14) Club 5 [20] 0.08 (0.14) Club 4 [33] 0.02 (0.13)
Club 6 [24] 0.15 (0.16) Club 5 [72] -0.14 (0.11) Club 6 [13] 0.13 (0.16)
Club 7 [14] 0.12 (0.16) Club 7 [26] 0.08 (0.15) Club 5 [48] 0.01 (0.13)
Club 8 [14] 0.11 (0.15) Club 8 [8] 0.05 (0.15)
Club 9 [7] 0.03 (0.14) Club 9 [14] 0.11 (0.15)
Club 10 [13] 0.30 (0.15) Club 10 [33] 0.21 (0.15) Club 6 [86] -0.07 (0.12)
Club 11 [16] 0.20 (0.16) Club 6 [76] -0.07 (0.12) Club 11 [6] 1.42 (0.19)
Club 12 [33] 0.11 (0.15) Club 12 [17] 0.39 (0.17)
Club 13 [27] 0.16 (0.16) Club 13 [12] 0.07 (0.15)
Club 14 [90] 0.10 (0.15) Club 7 [90] 0.01 (0.15) Club 14 [18] 0.11 (0.16)
Club 15 [80] 0.15 (0.14) Club 8 [80] 0.15 (0.14) Club 15 [85] -0.05 (0.13) Club 7 [134] -0.13 (0.11)
Club 16 [56] 0.04 (0.11) Club 9 [56] 0.04 (0.11) Club 16 [2] 0.66 (1.97)
Club 17 [13] 0.09 (0.12) Club 10 [13] 0.09 (0.12) Club 17 [30] 0.06 (0.15)
Group 18 [4] -1.33∗ (0.03) Group 11 [4] -1.33∗ (0.03) Club 18 [17] 0.05 (0.15)

Club 19 [18] 0.04 (0.15) Club 8 [85] -0.18 (0.11)
Club 20 [26] 0.04 (0.14)
Club 21 [25] 0.03 (0.14)
Club 22 [16] 0.11 (0.15)
Club 23 [16] 0.56 (0.17) Club 9 [16] 0.56 (0.17)
Club 24 [8] -0.03 (0.12) Club 10 [8] -0.03 (0.12)
Group 25 [11] -1.39∗ (0.02) Group 11 [11] -1.39∗ (0.02)

(III) Difference ordering (IV) Decreasing Weights ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [67] -0.01 (0.01) Club 1 [114] -0.11 (0.09) Club 1 [5] 0.31 (0.09) Club 1 [5] 0.31 (0.09)
Club 2 [32] 0.66 (0.07) Club 2 [8] 0.11 (0.15) Club 2 [8] 0.11 (0.15)
Club 3 [41] 0.67 (0.15) Club 2 [83] -0.10 (0.07) Club 3 [24] 0.03 (0.14) Club 3 [32] 0.14 (0.37)
Club 4 [11] 0.36 (0.18) Club 4 [8] 0.18 (0.16)
Club 5 [27] 0.50 (0.09) Club 5 [26] 0.08 (0.15) Club 4 [48] 0.01 (0.13)
Club 6 [34] -0.07 (0.05) Club 3 [34] -0.07 (0.05) Club 6 [8] 0.05 (0.15)
Club 7 [24] 0.35 (0.67) Club 4 [24] 0.35 (0.67) Club 7 [14] 0.11 (0.15)
Club 8 [36] -0.09 (0.12) Club 5 [36] -0.09 (0.12) Club 8 [32] 0.21 (0.15) Club 5 [94] -0.14 (0.11)
Group 9 [148] -1.08∗ (0.04) Group 6 [148] -1.08∗ (0.04) Club 9 [14] 0.21 (0.16)

Club 10 [4] 1.21 (0.32)
Club 11 [4] 0.48 (0.12)
Club 12 [6] 0.34 (0.17)
Club 13 [12] 0.07 (0.15)
Club 14 [22] -0.01 (0.14)
Club 15 [46] 0.38 (0.14) Club 6 [141] -0.17 (0.11)
Club 16 [3] 0.52 (0.83)
Club 17 [81] -0.63 (0.13)
Club 18 [3] 3.16 (0.96)
Club 19 [5] 2.52 (0.58)
Club 20 [3] 0.82 (0.17)
Club 21 [53] -0.03 (0.11) Club 7 [72] -0.13 (0.11)
Club 22 [15] 0.94 (0.25)
Club 23 [4] 0.42 (0.24)
Club 24 [22] -0.10 (0.08) Club 8 [22] -0.10 (0.08)
Group 25 [17] -1.28∗ (0.03) Group 9 [17] -1.28∗ (0.03)

Table 8: Results of clubbing algorithm for German district data. Club sizes (in brack-
ets), estimates for γ and standard errors of the log t regression (4) are
displayed for different ordering rules. a) of each ordering rule gives the ini-
tial classification before club merging, b) gives the final classification after
merging.
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Figure 6: Relative transition coefficients over time for convergence clubs resulting
from final ordering after merging, corresponding to (I) b) in Table 6.
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Figure 7: Boxplots of income in final period divided by the convergence clubs result-
ing from final ordering after merging, corresponding to (I) b) in Table 6.
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Figure 8: Scatterplots of log t regression for clubs found by final ordering after merg-
ing, corresponding to (I) b) in Table 6. Solid line is ordinary least squares
estimate.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9115 0.1337 6.82 0.0000
log(yi,0) -0.0734 0.0135 -5.43 0.0000

adj.R2=0.0632, AIC=-790.441, N = 439

Table 9: OLS estimates of classical convergence model (1) for German district data.

35



Estimate Std. Error t value Pr(>|t|)
Club 1 10.0508 1.3900 7.23 0.0000
Club 2 8.6208 1.2689 6.79 0.0000
Club 3 5.4437 0.9146 5.95 0.0000
Club 4 5.2388 0.3163 16.57 0.0000
Club 5 4.8481 0.2306 21.02 0.0000
Club 6 5.2649 0.3290 16.00 0.0000
Club 7 5.4732 0.2214 24.72 0.0000
Club 8 5.5146 0.2706 20.38 0.0000
Club 9 5.4455 0.3927 13.87 0.0000
Club 10 5.2947 0.9082 5.83 0.0000
Group 11 -1.5484 0.2915 -5.31 0.0000
Club 1:log(yi,0) -0.8943 0.1284 -6.96 0.0000
Club 2:log(yi,0) -0.7807 0.1180 -6.62 0.0000
Club 3:log(yi,0) -0.4938 0.0862 -5.73 0.0000
Club 4:log(yi,0) -0.4851 0.0303 -16.00 0.0000
Club 5:log(yi,0) -0.4589 0.0228 -20.11 0.0000
Club 6:log(yi,0) -0.5093 0.0330 -15.41 0.0000
Club 7:log(yi,0) -0.5397 0.0226 -23.88 0.0000
Club 8:log(yi,0) -0.5519 0.0280 -19.74 0.0000
Club 9:log(yi,0) -0.5546 0.0412 -13.46 0.0000
Club 10:log(yi,0) -0.5499 0.0960 -5.73 0.0000
Group 11:log(yi,0) 0.1780 0.0293 6.07 0.0000

adj.R2=0.852, AIC=-1567.249, N = 439

Table 10: OLS estimates of baseline model (7) for German district data.
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Figure 9: Estimated regression lines from the estimation displayed in Table 8 for the
ten convergence clubs for German district data.

bandwidth of log(yi,0) bandwidth of club p-value of Hsiao-Li-Racine test
(I) 0.133 0.0002 0.61
(II) 16092882 0.007 0.99
(III) 0.121 0.0013 0.01
(IV) 0.176 0.0053 ≈0

Table 11: Estimated bandwidths for nonparametric baseline model estimation using
a mixed kernel estimation for German district data and ordering rules (I)-
(IV) and p-values for Hsiao-Li-Racine tests.
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(I) (II) (III) (IV)
(I) – 0.24 0.18 0.25
(II) 0.76 – 0.16 0.56
(III) 0.82 0.84 – 0.89
(IV) 0.75 0.44 0.11 –

Table 12: Pairwise comparisons of cross-validation performance. Number equals
share of B = 10, 000 replications in which model in column has smaller
ASEP (average squared error of prediction) than model in row for regional
data.

A.3 Japanese prefecture-level data

(I) Final ordering (II) Average ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [28] 0.09 (0.01) Club 1 [28] 0.09 (0.01) Club 1 [17] 0.12 (0.01) Club 1 [35] 0.01 (0.01)
Club 2 [17] 0.09 (0.01) Club 2 [19] 0.00 (0.01) Club 2 [10] 0.10 (0.01)
Club 3 [2] 0.10 (0.02) Club 3 [8] 0.05 (0.01)

Club 4 [9] 0.18 (0.00) Club 2 [9] 0.18 (0.00)
Group 5 [3] -0.47 (0.01) Group 3 [3] -0.47 (0.01)

(III) Difference ordering (IV) Decreasing Weights ordering
a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)
Club 1 [12] 0.23 (0.01) Club 1 [29] 0.08 (0.01) Club 1 [17] 0.12 (0.01) Club 1 [35] 0.01 (0.01)
Club 2 [17] 0.22 (0.01) Club 2 [10] 0.10 (0.01)
Club 3 [18] 0.02 (0.01) Club 2 [18] 0.02 (0.01) Club 3 [8] 0.05 (0.01)

Club 4 [9] 0.18 (0.00) Club 2 [9] 0.18 (0.00)
Group 5 [3] -0.47 (0.01) Group 3 [3] -0.47 (0.01)

Table 13: Results of clubbing algorithm for Japanese prefecture-level data. Club sizes
(in brackets), estimates for γ and standard errors of the log t regression
(4) are displayed for different ordering rules. a) of each ordering rule gives
the initial classification before club merging, b) gives the final classification
after merging.
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Figure 10: Relative transition coefficients over time for convergence clubs resulting
from final ordering after merging, corresponding to (I) b) in Table 11.
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Figure 11: Boxplots of income in final period divided by the convergence clubs re-
sulting from final ordering after merging, corresponding to (I) b) in Table
6.
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Figure 12: Scatterplots of log t regressions for clubs found by final ordering after
merging, corresponding to (I) b) in Table 11. Solid line is ordinary least
squares estimate.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1863 0.2885 11.05 0.0000

log(yi,0) 0.1037 0.0597 1.74 0.0891
adj.R2=0.042, AIC=21.17, N = 47

Table 14: OLS estimates of classical convergence model (1) for Japanese prefecture-
level data.

Estimate Std. Error t value Pr(>|t|)
factor(daten)1 3.9644 0.3179 12.47 0.0000
factor(daten)2 3.6674 0.8260 4.44 0.0001

factor(daten)1:bip -0.0273 0.0619 -0.44 0.6615
factor(daten)2:bip -0.0453 0.1898 -0.24 0.8124

adj.R2=0.2615, AIC=7.5555, N = 47

Table 15: OLS estimates of baseline model (7) for Japanese prefecture-level data.
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Figure 13: Estimated regression lines from the estimation displayed in Table 13 for
the two convergence clubs for Japanese prefecture-level data.

bandwidth of log(yi,0) bandwidth of club p-value of Hsiao-Li-Racine test
(I) 2721352 0.01 0.04

(II)/(IV)10 2.366 0.01 0.11
(III) 1776859 0.003 0.05

Table 16: Estimated bandwidths for nonparametric baseline model estimation using
a mixed kernel estimation for Japanese prefecture-level data and ordering
rules (I)-(IV) and p-values for Hsiao-Li-Racine tests.
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(I) (II)/(IV) (III)
(I) – 0.43 0.48

(II)/(IV) 0.57 – 0.57
(III) 0.52 0.43 –

Table 17: Pairwise comparisons of cross-validation performance. Number equals
share of B = 10, 000 replications in which model in column has smaller
ASEP (average squared error of prediction) than model in row for Japanese
prefecture-level data.
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A.4 Lists of countries/districts/prefectures in merged clubs using final
ordering

Table 18: PWT country level data
Club 1: Antigua, Australia, Austria, Belgium, Bermuda, Botswana, Brunei, Canada, Cape
Verde, Chile, China, Cyprus, Denmark, Dominica, Equatorial Guinea, Finland, France, Ger-
many, Hong Kong, Iceland, Ireland, Israel, Italy, Japan, Republic of Korea, Kuwait, Lux-
embourg, Macao, Malaysia, Maldives, Malta, Mauritius, Netherlands, New Zealand, Norway,
Oman, Portugal, Puerto Rico, Qatar, Singapore, Spain, St. Kitts and Nevis, St. Vincent
and the Grenadines, Sweden, Switzerland, Taiwan, Thailand United Arab Emirates, United
Kingdom, United States
Club 2: Argentina, Bahamas, Bahrain, Barbados, Belize, Brazil, Colombia, Costa Rica,
Dominican Republic, Egypt, Gabon, Greece, Grenada, Hungary, India, Indonesia, Mexico,
Netherlands Antilles, Panama, Poland, Saudi Arabia, South Africa, Sri Lanka, St. Lucia,
Swaziland, Tonga, Trinidad and Tobago, Tunisia, Turkey, Uruguay
Club 3: Algeria, Bhutan, Cuba, Ecuador, El Salvador, Fiji, Guatemala, Iran, Jamaica,
Lesotho, Federated States of Micronesia, Morocco, Namibia, Pakistan, Papua New Guinea,
Paraguay, Peru, Philippines, Romania, Suriname, Venezuela
Club 4: Benin, Bolivia, Burkina Faso, Cameroon, Cote d’Ivoire, Ethiopia, Ghana, Guinea,
Honduras, Jordan, Democratic Republic of Korea, Laos, Mali, Mauritania, Mozambique,
Nepal, Nicaragua, Samoa, Solomon Islands, Syria, Tanzania, Uganda, Vanuatu, Zimbabwe,
Cambodia, Chad, Comoros, Republic of Congo, The Gambia, Iraq, Kenya, Kiribati, Malawi,
Mongolia, Nigeria, Sao Tome and Principe, Senegal, Sudan
Club 5: Afghanistan, Burundi, Central African Republic, Guinea Bissau, Madagascar, Niger,
Rwanda, Sierra Leone, Somalia, Togo, Zambia
Club 6: Democratic Republic of Congo, Liberia
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Table 19: German district level data
Club 1: Wolfsburg(DFC)11, Frankfurt am Main(DFC), Schweinfurt(DFC)
Club 2: Düsseldorf(DFC), Ludwigshafen am Rhein(DFC),Stuttgart(DFC), Ingolstadt(DFC),
Regensburg(DFC)
Club 3: Mannheim(DFC), München(DFC), Erlangen(DFC), Aschaffenburg(DFC), Darm-
stadt(DFC), Koblenz(DFC), Ulm(DFC),Passau(DFC), Dingolfing-Landau, Bamberg(DFC)
Club 4: Hamburg(DFC), Bremen(DFC), Köln(DFC), Leverkusen(DFC), Münster(DFC),
Offenbach am Main(DFC), Wiesbaden(DFC), Kassel(DFC), Mainz(DFC), Heilbronn(DFC),
Baden.Baden(DFC), Karlsruhe(DFC), Heidelberg(DFC), Altötting, Freising, Landshut(DFC),
Straubing(DFC), Amberg(DFC), Weiden in der Oberpfalz(DFC), Bayreuth(DFC),
Coburg(DFC), Ansbach(DFC), Fürth(DFC), Nürnberg(DFC), Würzburg(DFC), Augs-
burg(DFC), Kempten im Allgäu(DFC), Memmingen(DFC), Teltow-Fläming, Merseburg-
Querfurt
Club 5: Braunschweig(DFC), Salzgitter(DFC), Emden(DFC), Oldenburg(DFC), Os-
nabrück(DFC), Essen(DFC), Krefeld(DFC), Rhein-Kreis Neuss, Bonn(DFC), Hochtaunuskreis,
Main-Taunus-Kreis, Trier(DFC), Main-Taunus-Kreis, Kaiserslautern(DFC), Landau in
der Pfalz(DFC), Freiburg im Breisgau(DFC), Biberach, Rosenheim(DFC), Hof(DFC),
Schwabach(DFC), Donau-Ries, Wismar(DFC), Dresden(DFC), Jena(DFC), Sömmerda,
Kiel(DFC), Vechta, Aachen(DFC), Dortmund(DFC), Offenbach, Böblingen, Rastatt, Bo-
denseekreis, Ravensburg, Günzburg, Saarbrücken(DFC), Saarpfalz-Kreis, Zwickau(DFC),
Eisenach(DFC), Flensburg(DFC), Bremerhaven(DFC), Fulda, Speyer(DFC), Heilbronn,
Pforzheim(DFC), Ortenaukreis, Rottweil, Tuttlingen, Pfaffenhofen an der Ilm, Starn-
berg, Weilheim-Schongau, Cottbus(DFC), Schwerin(DFC), Region Hannover, Wesermarsch,
Hersfeld-Rotenburg, Pirmasens(DFC), Hohenlohekreis, Ostalbkreis, Frankfurt Oder(DFC),
Wilhelmshaven(DFC), Bielefeld(DFC), Olpe, Zweibrücken, Ludwigsburg, Schwäbisch Hall,
Reutlingen, Mühldorf am Inn, Lichtenfels, Main-Spessart, Neu-Ulm, Potsdam(DFC), Ohrekreis
Club 6: Duisburg(DFC), Gütersloh, Bochum(DFC), Lahn-Dill-Kreis, Waldeck-Frankenberg,
Esslingen, Bad-Tölz-Wolfratshausen, Rosenheim, Deggendorf, Cham, Neumarkt in
der Oberpfalz, Kaufbeuren(DFC), Augsburg, Neubrandenburg(DFC), Dessau(DFC), Er-
furt(DFC), Lübeck(DFC), Neumünster(DFC), Pinneberg, Stormarn, Osterode am Harz,
Stade, Emsland, Mülheim an der Ruhr(DFC), Remscheid.(DFC), Wuppertal(DFC), Her-
ford, Hagen(DFC), Siegen-Wittgenstein, Bergstraße, Main-Kinzig-Kreis, Gießen, Marburg-
Biedenkopf, Main-Tauber-Kreis, Karlsruhe, Schwarzwald-Baar-Kreis, Konstanz, Dachau,
Neuburg-Schrobenhausen, Traunstein, Schwandorf, Kronach, Ansbach, Erlangen-Höchstadt,
Rhön-Grabfeld, Miltenberg, Ostallgäu, Chemnitz(DFC), Magdeburg(DFC), Nordfriesland,
Mönchengladbach(DFC), Mettmann, Minden-Lübbecke, Märkischer Kreis, Wetteraukreis,
Frankenthal (Pfalz, DFC), Worms(DFC), Germersheim, Rems-Murr-Kreis, Heidenheim,
Freudenstadt, Lörrach, Zollernalbkreis, Miesbach, Landshut, Weißenburg-Gunzenhausen, As-
chaffenburg, Kitzingen, Lindau(Bodensee), Oberallgäu, Saarlouis, Greifswald(DFC), Ros-
tock(DFC), Leipzig(DFC), Bitterfeld, Suhl(DFC)

11DFC=District-free city
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Club 7: Dithmarschen, Segeberg, Steinburg, Göttingen, Diepholz, Hameln-Pyrmont,
Hildesheim, Soltau-Fallingbostel, Verden, Cloppenburg, Oberhausen(DFC), Solingen(DFC),
Kleve, Rhein-Erft-Kreis, Euskirchen, Oberbergischer-Kreis, Gelsenkirchen(DFC), Borken,
Warendorf, Lippe, Paderborn, Ennepe-Ruhr-Kreis, Hochsauerlandkreis, Soest, Oden-
waldkreis, Limburg-Weilburg, Kassel, Schwalm-Eder-Kreis, Werra-Meißner-Kreis, Mayen-
Koblenz, Neuwied, Rhein-Hunsrück-Kreis, Westerwaldkreis, Bernkastel-Wittlich, Eifelkreis-
Bitburg-Prüm, Neustadt an der Weinstraße, Mainz-Bingen, Göppingen, Neckar-Odenwald-
Kreis, Rhein-Neckar-Kreis, Enzkreis, Waldshut, Tübingen, Alb-Donau-Kreis, Sigmaringen,
Berchtesgadener-Land, Ebersberg, Eichstätt, Erding, Garmisch-Partenkirchen, Landsberg
am Lech, Kelheim, Passau, Regen, Rottal-Inn, Tirschenreuth, Hof, Kulmbach, Wunsiedel
im Fichtelgebirge, Nürnberger-Land, Roth, Bad-Kissingen, Haßberge, Würzburg, Aichach-
Friedberg, Dillingen an der Donau, Unterallgäu, St. Wendel, Berlin(DFC), Brandenburg an der
Havel, Oder-Spree, Uckermark, Stralsund(DFC), Annaberg, Chemnitzer Land, Freiberg, Riesa-
Großenhain, Döbeln, Bernburg, Halle (Saale, DFC), Aschersleben-Staßfurt, Jerichower Land,
Wernigerode, Altmarkkreis Salzwedel, Gera(DFC), Wartburgkreis, Schmalkalden-Meiningen,
Gotha, Sonneberg, Saale-Orla
Club 8: Ostholstein, Rendsburg-Eckernförde, Goslar, Northeim, Holzminden, Nien-
burg Weser, Celle, Lüchow-Dannenberg, Lüneburg, Rotenburg Wümme, Uelzen, Delmen-
horst(DFC, )Ammerland, Friesland, Grafschaft Bentheim, Leer, Osnabrück, Viersen, We-
sel, Aachen, Düren, Rheinisch-Bergischer Kreis, Rhein-Sieg-Kreis, Coesfeld, Recklinghausen,
Steinfurt, Höxter, Hamm(DFC), Unna, Darmstadt-Dieburg, Rheingau-Taunus-Kreis, Vo-
gelsbergkreis, Altenkirchen (Westerwald), Bad Kreuznach, Birkenfeld, Cochem Zell, Rhein-
Lahn-Kreis, Vulkaneifel, Alzey-Worms, Donnersbergkreis, Südliche Weinstraße, Calw, Breis-
gau Hochschwarzwald, Emmendingen, Fürstenfeldbruck, Freyung-Grafenau, Straubing-Bogen,
Amberg-Sulzbach, Neustadt an der Waldnaab, Regensburg, Bamberg, Coburg, Forchheim,
Fürth, Neustadt an der Aisch-Bad Windsheim, Merzig-Wadern, Neunkirchen, Dahme (Spree-
wald), Oberhavel, Oberspreewald-Lausitz, Ostprignitz-Ruppin, Prignitz, Demmin, Müritz, Rü-
gen, Plauen(DFC), Mittweida, Stollberg, Bautzen, Meißen, Kamenz, Torgau-Oschatz, Wit-
tenberg, Weißenfels, Bördekreis, Weimar, Eichsfeld, Hildburghausen, Ilm-Kreis, Saalfeld-
Rudolstadt
Club 9: Herzogtum Lauenburg, Plön, Schleswig-Flensburg, Helmstedt, Peine, Schaumburg,
Cuxhaven, Harburg, Osterholz, Aurich, Oldenburg, Wittmund, Heinsberg, Bottrop(DFC),
Herne(DFC), Ahrweiler, Trier-Saarburg, Bad Dürkheim, Kaiserslautern, Kusel, Bayreuth,
Schweinfurt, Elbe-Elster, Potsdam-Mittelmark, Spree-Neiße, Bad Doberan, Güstrow, Lud-
wigslust, Parchim, Vogtlandkreis, Mittlerer Erzgebirgskreis, Aue-Schwarzenberg, Görlitz,
Hoyerswerda, Niederschlesischer-Oberlausitzkreis, Löbau-Zittau, Sächsische Schweiz, Weißer-
itzkreis, Delitzsch, Muldentalkreis, Anhalt-Zerbst, Köthen, Burgenlandkreis, Mansfelder
Land, Saalkreis, Sangerhausen, Halberstadt, Stendal, Quedlinburg, Schönebeck, Nordhausen,
Unstrut-Hainich-Kreis, Weimarer Land, Saale-Holzland-Kreis, Greiz, Altenburger Land
Club 10: Gifhorn, Wolfenbüttel, Barnim, Havelland, Märkisch Oderland, Mecklenburg-
Strelitz, Nordvorpommern, Nordwestmecklenburg, Ostvorpommern, Uecker-Randow, Zwick-
auer Land, Leipziger Land, Kyffhäuserkreis
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Group 11: Groß Gerau, Rhein-Pfalz-Kreis, Südwestpfalz, München

Table 20: Japanese prefecture level data
Club 1: Hokkaido, Miyagi, Fukushima, Niigata, Ibaraki, Tochigi, Gumma, Saitama, Chiba,
Tokyo, Kanagawa, Yamanashi, Nagano, Shizuoka, Gifu, Aichi, Mie, Shiga, Kyoto, Osaka,
Hyogo, Nara, Hiroshima, Fukuoka, Kumamoto, Oita, Kagoshima, Okinawa
Club 2: Aomori, Iwate, Akita, Yamagata, Toyama, Ishikawa, Fukui, Tottori, Shimane,
Okayama, Yamaguchi, Tokushima, Kagawa, Ehime, Saga, Nagasaki, Miyazaki, Wakayama,
Kochi
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