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Abstract

We consider an OLG model (of a socialization process) where con-
tinuous traits are transmitted from an adult generation to the children.
A weighted social network describes how children are influenced not
only by their parents but also by other role models within the society.
Parents can invest into the purposeful socialization of their children
by strategically displaying a cultural trait (which need not coincide
with their true trait). Based on Nash equilibrium behavior, we study
the dynamics of cultural traits throughout generations. We provide
conditions on the network structure that are sufficient for long–run
convergence to a society with homogeneous subgroups. In the special
case of quadratic utility, the condition is that each child is more in-
tensely shaped by its parents than by the social environment. Our
model also represents an extension of the classical DeGroot model
of opinion formation for which we introduce strategic interaction in
choice of expressed opinions (in our setup: traits). We show that un-
der strategic interaction convergence is slower and for convergence we
need more restrictive necessary and sufficient conditions than in the
DeGroot model.
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tural persistence, opinion dynamics
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1 Introduction

Economic behavior is fundamentally shaped by individual value systems,
cultural traits, culturally transmitted preferences, opinions, beliefs, etc. The
question of how these traits are formed is hence of central interest. We
present an OLG model where children’s cultural traits are formed by learn-
ing from their parents’ behavior and by learning from the behavior of other
individuals through local interaction. Parents are aware of their influence on
the children’s adopted cultural traits as the children’s role model and may
choose their behavior acordingly, yielding strategic interaction between par-
ents of each generation in choice of behavior. The dynamics of the resulting
traits is the central object of study in this paper.

There is already a rich body of empirical and theoretical studies on the
topic of trait formation (see Bisin and Verdier, 2010 for a survey). In this
paper we study a theoretical model that largely follows this literature, but
deviates from it with respect to the following three aspects: (a) traits are not
formalized as dichotomous variable, but as continuous variable. This seems
to be more adequate in many applications, e.g. risk preferences, patience,
political attitudes, generosity, discounting preferences, trust attitudes, etc.
(b) We (do not assume that agents are equally likely to interact with any
other member of the society, but) introduce a weighted network to cap-
ture the interaction structure. This potentially incorporates the geographic
structure as well as distinctive personal relationships. (c) In our model,
parents anticipate that their behavior has consequences for the formation of
their children’s traits and they adjust their behavior accordingly. Thereby
the behavioral choices of parents can be reduced to the strategic choice of
how to display a certain trait. In particular, in their choice of behavior,
parents face a trade-off between own utility loss and improvements in their
childs adopted trait (which parents evaluate with respect to their own utility
function).

With these assumptions, our model has a close connection to the litera-
ture on opinion formation which is based on the model by DeGroot (1974).
The DeGroot framework elegantly captures pillar (a) and (b) of our model.
Pillar (c) however, goes beyond this framework and it turns out that the
introduction of strategic interaction is a fruitful extension of the classic De-
Groot model in both contexts dynamics of opinions and dynamics of cultural
traits.

In the main results of this paper, we show that each adult deviates from
its true trait into the opposite direction of the behavior in the relevant envi-
ronment, in order to countervail the (subjectively negative) influence of the
environment on its child (Proposition 1). That is, if an adult perceives that
the environment will influence its child into some direction (e.g. that reli-
gion is less important than for the parent itself), then it adjusts its behavior
into the opposite direction (e.g. by going even more frequently to church).
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While existence of a Nash equilibrium in every period is guaranteed (Propo-
sition 2), the main focus of our present work is the analysis of the dynamic
evolution of the adopted traits. First, we show by a simple 2-player example
(Example 1) that a sufficient condition for convergence is that children are
primarily influenced by their parents (with weight larger than 1/2). More-
over, we illustrade in Example 1 that in our model the set of cultural traits
does not always converge. This is true even for conditions such that opin-
ion dynamics of the DeGroot model converge. Thus, introducing strategic
interaction to the DeGroot model may lead to non-convergence.

The central question is therefore under which conditions on the inter-
action network and the socialization incentives the dynamics converge. We
apply a number of linear algebra results to make use of results on the conver-
gence of the left product of matrices, in particular by Lorenz (2005, 2006).
With this approach we obtain a general convergence result: if the social
learning matrix (which represents the interaction network) belongs to the
class of so called symmetric ultrametric matrices, then the dynamics always
converge (Proposition 4). This (very strong) assumption on the network
structure can be relaxed when assuming particular functional forms of util-
ity. Specifically, we study the case of quadratic utility functions. With
quadratic utility funtions, we are able to identify some necessary and some
sufficient conditions for convergence, which coincide if the interation struc-
ture (the weighted network) is symmetric: it must be positive definite, which
is implied by symmetry and diagonally dominance of the underlying social
learning matrix. Moreover, we show that if the socialization incentives are
‘not too strong’ (i.e. if the model is close to the DeGroot model), then the
sequence of the transformed matrices also converges for an arbitrary aperi-
odic social learning matrix. Finally, we show that the speed of convergence
depends on the network structure and is reduced by the parents’ socializa-
tion efforts. Thus, by introducing strategic interaction speed of convergence
is lower than in the DeGroot model.

Empirical Evidence In the formation of cultural traits, strong correla-
tions have been found between the cultural traits of parents and the cultural
traits of their children. This is shown in multiple studies, e.g. Dohmen et al.
(2009) for risk preferences and for trust; Arrondel (2009) for risk preferences;
Fernandez et al. (2004) for female labor force participation; Branas-Garza
and Neuman (2007) for religious norms. This indicates the importance of
parents in the process of developing a personality, particularly, in the for-
mation of traits. But not only the parents affect the socialization of a child,
there are also role models outside the family who have a significant impact
on the process of trait formation. Thus, an OLG model where children
are influenced by parents and neighborhood seems suitable to model the
dynamics of cultural traits.
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For cultural traits, empirical literature usually documents the persis-
tence of heterogeneous traits (and opinions) in many applications. Today’s
heterogeneity is based on resilience of once formed traits.1 Examples for the
resilience of traits are female labor force participation (Alesina et al., 2011),
the level of trust in various Italian cities (Guiso et al., 2008), anti-semitism
in German cities (Voigtlaender and Voth, 2011), a preference for education
(Botticini and Eckstein, 2005), and many more.

A central question is why history has not led to one homogeneous society.
Our modeling approach enables us to analyze the conditions under which
homogeneous or heterogeneous societies emerge and the speed of this process.
We thereby put an emphasis on the following two variables:

(i) The interaction structure. Empirically measured heterogeneity strongly
corresponds to geographic structure. E.g. Tabellini (2008) shows that trust
differs substantially across countries. Geographical differences might only
occasionally be made directly responsible for the observed heterogeneity.
Rather the persistence is an effect of the interaction structure which is only
to some extent based on geographical distances.

(ii) The socialization incentives: Persistence of heterogeneous traits has
not only been found across different locations but also within one local area.
In other words, the “melting–pot” hypothesis has not found empirical sup-
port, as e.g. orthodox Jewish communities in the United States show.2 In
the context of dichotomous traits, a theoretical explanation of this phe-
nomenon is based on the idea of cultural substitution, i.e. minorities invest
more into socialization to their own trait than majorities (Bisin and Verdier,
2001). In our framework of continuous traits and local interaction, we also
study a similar mechanism.

Related Literature Our present work stands in close relation to two
distinct strands of literature. The first one is the small existing literature
on the cultural formation of continuous traits.3 Important early treatments
of the topic are Cavalli-Sforza and Feldman (1981) in a theoretical, and
Otto et al. (1994) in an empirical context. More recently, Bisin and Topa
(2003) proposed a representation of the formation of continuous cultural
traits. Their approach is though restricted to the family’s choice of its weight

1Or as Bisin and Verdier, 2010 put it: “the resilience of cultural traits and cultural
heterogeneity are two sides of the same coin. It is not surprising then that the evidence re-
garding the resilience of ethnic and religious traits across generalizations is quite pervasive
and it nicely complements the evidence on cultural heterogeneity.”

2In principle, this might also be an effect of the interaction structure—if there is only
limited interaction between the Jewish community and outsiders.

3Compared to the small literature on continuous traits, there exists a well established
literature on the (probabilistic) transmission of discrete (dichotomous) traits. See Bisin
and Verdier (2010) for an exhaustive overview.
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in the child’s socialization process.4 The issue of the behavioral choice as
socialization investment is part of the framework of Pichler (2010b) and
further analyzed in Pichler (2010a).

We base our model on this framework. The main difference of our model
to the existing literature on the cultural formation of continuous traits is
that we explicitly introduce a social network into the model.

The second branch of literature related to our work is the literature on
opinion dynamics (in social networks) introduced by DeGroot (1974) (see
e.g. Jackson (2008) for a discussion). In the basic DeGroot-model individ-
uals exchange opinions by reporting their opinions and update according to
a weighted average of other individual’s opinions. Convergence of opinions
is then obtained under mild conditions on the interaction structure (strong
connectedness and aperiodicity). A variation of this model is introduced
by DeMarzo et al. (2003) where the individuals’ own beliefs can vary over
time. The convergence result is similar to that of DeGroot (1974) with ad-
ditional assumptions on the self–trust weights. Moreover, DeMarzo et al.
(2003) study the speed of convergence. In Lorenz (2005) and Lorenz (2006)
the whole interaction structure is allowed to change over time. Under some
conditions, i.e. type-symmetry (if i puts some weight on the opinion of j
the j also puts some weight on the opinion of i), positive self-belief and
non-convergence to zero of the positive entries, convergence to a consensus
is obtained. Other studies on convergence of opinion dynamics include that
of Krause (2000), Hegselmann and Krause (2002), Weisbuch et al. (2002),
and Golub and Jackson (2010).5 Both our evolving cultural traits and the
evolving opinions in DeGroot (1974) are modeled as a variable in an inter-
val of the real line. Moreover in both models, interaction takes place on a
weighted (row stochastic) network. So far, however, the literature on opin-
ion formation has not considered strategic interaction, i.e. it is assumed in
this literature that all players report their opinion truthfully in every pe-
riod. Our work presents, hence, also a generalization of the DeGroot model
such that strategic interaction in expressed opinions is introduced. We show
that strategic interaction leads to overstatement of opinions (Proposition 1)
a similar, but less extreme behavior as in Kalai and Kalai (2001), where
polarization is obtained. As a consequence, convergence cannot be as easily
obtained as in the DeGroot model. For instance, we show that even in a two
player setting opinions may not converge under the assumptions of DeGroot
(1974) (cf. Example 1) when agents do not report their opinions truthfully.
Moreover for the case of convergence, we show that the speed of which is
reduced by introducing this kind of strategic interaction.

4The same is true for the approach of Panebianco (2010), who considers the evolution
of inter–ethnic attitudes.

5The additional objective of the latter paper is to show conditions under which a noisy
opinion profile can converge to its mean.
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2 Formation of Cultural Traits

2.1 Model

Consider an overlapping generations society which is populated by the adults
of a finite set of dynasties, N = {1, . . . , n}. At the beginning of any given
period t ∈ N, adults reproduce asexually and have exactly one offspring, thus
the population size is constant. With respect to one type of trait (e.g. risk
preferences), let I ⊆ R be a convex compact set that contains all possible
intensities for that trait. Each adult is characterized by a certain value of the
trait φi(t), which we call its trait intensity (henceforth: TI). The (column)
vector Φ(t) := (φ1(t), . . . , φn(t))

′ represents the TIs in the population at
time t.

Any adult has to make socio–economic choices each of which displays
a certain trait intensity.6 We call the choice of an adult its displayed trait
intensity (henceforth: DTI) and denote it by φd

i (t). Let the (column) vector

Φd(t) :=
(

φd
1(t), . . . , φ

d
n(t)

)′
collect the DTIs of the adults. Importantly, the

DTI φd
i (t) is the choice variable of each adult and may be different from its

true TI φi(t).
The society is connected by a social network represented by a n × n-

matrix Σ. In order to account for relative influences, we assume that Σ is a
row stochastic matrix, that is σij ≥ 0 ∀i, j ∈ N , and

∑

j∈N σij = 1. Σ de-
scribes a weighted, possibly directed, social network between the dynasties.
A zero entry (σij = 0) means that there is no personal interaction between
two dynasties, e.g., based on geographical distance. An entry σij > 0 rep-
resents the relative importance of adult j as a role model for child i. We
can think of this as the relative cognitive impact (of the socialization in-
teractions), which can be based on interaction time as well as on differing
pre–dispositions of the children for the social learning from the adults. A
diagonal element σii (of Σ) represents the weight of the parent in the social-
ization process of its child. Factors that determine this parental socialization
success share could include the social interaction time of the parent with its
child, as well as the effort and devotion that the parent spends to socialize
its child.7

Children are assumed to learn from the adults’ observable behavior, i.e.
the DTIs, according to the weights of relative importance. Thus, the traits
of the children generation are formed by

Φ(t+ 1) = ΣΦd(t). (1)

6Pichler (2010b) first introduced such a model. We employ here the framework of
Pichler (2010b) without explicitly modeling the socio-economic choices that lead to the
displayed trait intensities.

7See e.g. Grusec (2002) for an introductory overview of theories on determinants of
parental socialization success.
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Remark 1. The basic model by DeGroot (1974) is mathematically equiva-
lent to our model – except for one ingredient. In our model, we introduce
a strategic choice variable, namely the ‘articulated opinions’, i.e. the DTIs.
In DeGroot (1974) a simple dynamic model is studied which can be captured
by Φ(t+1) = ΣΦ(t). This can be interpreted in the sense that parents always
tell the truth and there is no strategic interaction.

Let us denote φd
Ni
(t) :=

∑

j∈N\{i}
σij

1−σii
φd
j (t), the representative DTI of

child i’s social environment. Then the trait formation process in (1) can
be interpreted as a weighted average between the DTI of the environment
(φd

Ni
(t)) and the DTI of the parents (φd

Ni
(t)):

φi(t+ 1) = σiiφ
d
i (t) + (1− σii)φ

d
Ni
(t).

We assume that all individuals carry over the TI that has been formed
in their child period into their adult period.

In the adult period then, this adopted TI φi(t) guides socio–economic
choices. Formally, an adult has to choose a DTI φd

i (t) ∈ I. We assume that
this choice is evaluated with respect to two utility components: own utility
and inter–generational utility. Let ui : I 7→ R represent an adult’s own
utility from the DTI, φd

i (t), and let vi : I 7→ R represent the utility of an
adult derived from its child’s adopted TI, φi(t + 1), the inter–generational
utility component.

The following specifies the assumptions on each adult’s utility.

Assumption 1 (Parental Utility Function). The utility for an adult i ∈ N ,
at time t ∈ N is given by

ui

(

φd
i (t) |φi(t)

)

+ vi (φi(t+ 1) |φi(t)) (2)

with

(a) ui (· |φi(t)) being single–peaked with peak φi(t), i.e. strictly increasing /
decreasing ∀φd

i (t) ∈ I such that φd
i (t) < / > φi(t),

(b) vi (· |φi(t)) being single–peaked with peak φi(t), i.e. strictly increasing /
decreasing at all φi(t+ 1) ∈ I such that φi(t+ 1) < / > φi(t),

(c) ui (· |φi(t)) and vi (· |φi(t)) being continuous and twice continuously dif-
ferentiable at their peaks.

In part (a) we assume that ui is decreasing in the difference of the DTI
from the TI. Intuitively, this means that adults prefer choosing behaviors
(DTIs) that are as close as possible in line with their traits (TIs). As an
example, consider an adult’s choice of articulated opinion. If this does not
coincide with the adult’s adopted opinion, then the adult is lying. Lying
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can cause dis–utilities in terms of cognitive dissonance (see Festinger, 1957)
or in terms of the fear of being revealed. Intuitively, these dis–utilities are
strictly increasing in the ‘degree of the lie’.

In part (b) we assume that vi is decreasing in the difference between the
parent’s TI and the TI that its child forms.8 There are two basic motivations
to consider this case. The first one is that parents simply have an intrinsic
desire that their children develop a “personality” (TI) that is as similar
as possible to their own personality. For example, empirical evidence is
in line with “Protestants, Catholics, and Jews having a strong preference
for children who identify with their own religious beliefs and making costly
decisions to influence their children’s religious beliefs.” (Bisin and Verdier,
2010) The second motivation is based on a special form of parental altruism,
called imperfect empathy (Bisin and Verdier, 1998). Parents care about the
well–being of their children, but can only evaluate their child’s utility under
their own (not the child’s) utility function—which attains its maximum at
the TI of the parent.9 Part (c) and the additive separability of the two utility
components are technical assumptions which significantly reduce analytical
complexity.

2.2 The Adults’ Decisions

Given that we consider only the behavioral (DTI) choices of the adults, in
any period t ∈ N, the optimization problem of each adult i ∈ N is

max
φd
i (t)∈I

ui

(

φd
i (t) |φi(t)

)

+ vi (φi(t+ 1) |φi(t)) (3)

s.t. φi(t+ 1) = σiiφ
d
i (t) + (1− σii)φ

d
Ni
(t).

The optimization problem (3) embodies the trade-off between own utility
losses (by choosing a DTI that deviates from the true TI) and eventual
improvements in the location of the child’s adopted TI.

In any given period, the optimization problem of an adult i ∈ N de-
termines the set of best reply DTI against the representative environment’s
DTI, subject its adopted TI (which is also the socialization target for its
child). For every adult i ∈ N , we will thus denote the elements of the best
reply set as φd

i (t)
(

φi(t), φ
d
Ni
(t)

)

, which we abbreviate as φd
i (t)(·). Further-

more, together with the representative DTI, any such best reply DTI also
determines a location of the child’s TI (through the rule of trait formation
(1)), φi(t+ 1)

(

φd
i (t), φ

d
Ni
(t)

)

.
Since both the own utility and inter–generational utility function are

single–peaked, Assumption 1 (c) implies that both functions have zero slope

8See Pichler (2010b,a) for a more general representation that allows for different so-
cialization targets.

9There is a form of myopia in this line of interpretation: parents do not anticipate that
their children might deviate from their TI.
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at their peaks. Thus, adults perceive no (own) utility losses for marginal
deviations of their DTI from their TI, respectively no (inter–generational)
utility losses for marginal deviations of their child’s TI from the target TI.

Proposition 1 (Characterization of Best Replies). Let Assumption 1 hold.
Then, ∀t ∈ N, ∀i ∈ N , the sets of best reply DTIs are non–empty and satisfy
the following characterization.

(a) If σii(t) = 0, then φd
i (t)(·) = φi(t) and φi(t+1)

(

φi(t), φ
d
Ni
(t)

)

= φd
Ni
(t).

(b) If σii(t) = 1, then φd
i (t)(·) = φi(t), thus φi(t+ 1)

(

φi(t), φ
d
Ni
(t)

)

= φi(t).

(c) Let σii(t) ∈ (0, 1). Then, it holds generically that sign
(

φd
i (t) (·)− φi(t)

)

=
− sign

(

φd
Ni
(t)− φi(t)

)

,10 while it always holds that

sign
(

φi(t+ 1)
(

φd
i (t)(·), φ

d
Ni
(t)

)

− φi(t)
)

= sign
(

φd
Ni
(t)− φi(t)

)

.

Proof. Non–emptiness as well as parts (a) and (b) are trivial. Part (c)
follows as a straightforward corollary from the proof of Proposition 1 in
Pichler (2010b).

The (generic) results of Proposition 1 (c) are illustrated in Figure 1
below. In the left interval (both intervals correspond to the set of possible
DTIs I) the context of the adult’s decision problem is depicted. In the right
interval a corresponding best reply choice is stylized. As can be seen both
from Proposition 1 (c) directly, as well as from the graphical illustration,
the results feature two dominant characteristics.

φi(t+ 1)

φd

Ni
(t)

φd

i
(t)

φi(t) •

•

σi(t) ∈ (0, 1)

•

•

•

•

Figure 1: Characterization of Best Replies

10The non–generic case holds if the deviation of the best reply DTI from the adopted
TI into the ‘desired’ direction is not possible, i.e. if the adopted TI of an adult coincides
with (the relevant) one of the boundaries of I. Then, the best reply DTI will coincide
with the adopted TI (i.e. with the boundary).
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The first concerns the generic location of the best reply choices. If the
representative DTI does not coincide with the optimal TI, then parents
countervail the respective socialization influence on their children by choos-
ing DTI that deviates from their adopted TI.11 This deviation is always into
the opposite direction as the deviation of the representative DTI from the
optimal TI (if such a choice is available). That this holds for very small
deviations of the representative DTI from the optimal TI is due to the fact
that marginal investments into socialization are (utility) costless (while as
the resulting strictly positive decrease in the distance of the child’s adopted
TI from the optimal TI yields a strictly positive inter–generational utility
gain).

The second dominant characteristic concerns the location of the chil-
dren’s adopted TIs that results out of the parental best reply choices. The
adult’s deviation from the utility peak is never extreme enough such as to
induce that the child’s adopted TI would exactly coincide with the adult’s
TI. Hence, there is always a strictly positive difference of the adopted TI of
a child from the target TI. Thereby, the direction of this difference always
accords with the direction of deviation of the representative environment’s
DTI from the target DTI.

To study the dynamics of cultural transmission of traits we will assume
that every adult plays a best response to the behaviors (DTI choices) of
others, i.e. its neighbors. Hence, we assume that a Nash equilibrium is
played in every period. To ensure existence of such we assume the following.

Assumption 2 (Concavity). For any adult i ∈ N , the functions ui (· |a)
and vi (· |b) are concave.12

Together with Assumption 1, Assumption 2 guarantees existence of Nash
equilibrium which is shown using standard techniques.

Proposition 2 (Nash Equilibrium Existence). Let Assumptions 1 and 2
hold. Then, for every t ∈ N, a Nash equilibrium in DTI choices exists.
Denote this Φd∗(t) :=

(

φd∗
1 (t), . . . , φd∗

n (t)
)′
.

Proof. In Appendix 5.1.

3 Dynamics (of Cultural Traits)

We first describe the steady states (subsection 3.1), then study convergence
to a steady state in the general case (subsection 3.2) and, finally, in a special
case (subsection 3.3).

11Obviously, if the representative DTI exactly coincides with the optimal TI, then par-
ents have no incentives to do so (since the adopted TI of an adult child will then anyhow
coincide with the optimal TI).

12Note that under Assumption 1 both utility functions are already strictly quasi–
concave.
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3.1 Steady States

A steady state is a rest point of the dynamics of cultural traits, as defined
below.

Definition 1 (Steady States). A steady state is a profile of TIs such that
Φ(t+ 1) = Φ(t).

To characterize the steady states of the dynamics, we have to introduce
some additional notation related to the interaction matrix Σ. We say that
there exists a connection from i to j in Σ, denoted by i → j, if there exists a
k ∈ {0, ..., n} such that Σk

ij > 0. Two dynasties communicate, denoted by i ∼
j, if i → j and j → i. A dynasty i is self-communicating if i → i. Trivially,
∼ defines an equivalence relation on the set of self-communicating dynasties
and, hence, this set can be partitioned into equivalence classes, called self-
communicating classes. Denoting each non self-communicating dynasty as a
single class, ∼ partitions the dynasty set into communication classes P(Σ) =
{N1, ..., Np} such that for all L ∈ P(Σ), L is either a self-communicating class
or a non self-communicating dynasty. A communication class L ∈ P(Σ) is
called essential if for all i ∈ L there does not exist a j /∈ L such that i → j.
A communication class is called inessential if it is not essential.

Proposition 3 (Steady States). Under Assumptions 1 and 2, the following
holds in any steady state Φ(t):

(a) Φ(t) = Φd(t), i.e. all adults behave as they are.

(b) The TIs of the dynasties in an essential communication class L ∈ P(Σ)
coincide, i.e. φi(t) = φj(t) ∀i, j ∈ L.

(c) The TIs of the dynasties in an inessential communication class I ∈
P(Σ̂) are convex combinations of the TIs of the communication classes
J ∈ P(Σ̂) such that I → J .

Proof. In Appendix 5.2.

To see that part (a) must hold, note that per definition, in any steady
state, the children adopt the same TIs as their parents have. From Propo-
sition 1, we know that such a constellation can only be subject to (Nash
equilibrium) individual best replies if the representative DTIs of all children
coincide with the parents’ adopted TIs. In such a case, all parents behave
as they are. Parts (b) and (c) of the Proposition are also straightforward.

3.2 Convergence (Main Result)

Given this steady state description it now remains to derive conditions under
which the sequence of TIs actually converges to any such rest point. The
following example shows that in case of only two connected dynasties, such
a condition is easy to obtain.

10
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Example 1 (Two Dynasties). Consider the simplest case of a non–degenerate
essential communication class, i.e. that of two parent–child pairs in any
given period. Assume also that for all i = 1, 2, 1

2 ≤ σii < 1 so that the
parents are the ‘primary socialization sources’ of their children. Then, it
holds that the distance between the adopted TIs φ(t) of the adult members of
both dynasties strictly declines in every period t and converges to the same
point. To see that this is true, let φ1(t) be the dynasty with the lower TI
in period t. Then it will be also the dynasty with the lower TI in period
t + 1, since φ1(t + 1) = σ11φ

d
1(t + 1) + (1 − σ11)φ

d
2(t + 1) and φ2(t + 1) =

(1 − σ22)φ
d
1(t + 1) + σ22φ

d
2(t + 1), σ11 > 1 − σ22, and φd

1(t + 1) < φd
2(t + 1)

by Proposition 1. Moreover, by Proposition 1, φ1(t+ 1) ∈ (φ1(t), φ
d
2(t)) and

φ2(t+ 1) ∈ (φd
1(t), φ2(t)), yielding the assertion.

Indeed, we show in Proposition 5 that given the interaction matrix Σ is
symmetric, the assumption σii ≥ 1/2 is also necessary for convergence in
the quadratic utility case, where ui

(

φd
i (t) |φi(t)

)

= −(φd
i (t) − φi(t))

2 and
vi (φi(t+ 1) |φi(t)) = −βi(φi(t + 1) − φi(t))

2. Consider, for instance, the
latter case of quadratic utility functions and let σii = .01 and βi = 1.13 Then
the Nash equilibrium choices are φd

i (t) ≈ 1.11φi(t) − .11φj(t) for distinct
φi(t) and φj(t) and the adopted TIs are φi(t + 1) ≈ −.1φi(t) + 1.1φj(t)
for every t ∈ N (we show how the Nash equilibrium DTI choices can be
calculated in (6)). It is straightforward to see that the adopted TIs φi(t+1)
and φj(t+1) lie outside the interval [φi(t), φj(t)] for every period t (as long
as the boundary conditions are not binding) and hence do not converge.14

From this example, we can learn two important lessons. First, the se-
quence of adopted TIs does not always converge. This is in contrast with the
classical DeGroot model. Second, assuming some structure on the underly-
ing interaction network Σ can guarantee convergence. This is summarized
in the following Remark.

Remark 2. A necessary and sufficient condition for convergence (without
hitting a boundary) in the two–dynasties case is that the parents of both
dynasties are the ‘primary socialization sources’ of their children (σ11, σ22 ≥
1/2). In contrast, in the model by DeGroot (1974) strong connectedness
and aperiodicity of Σ are necessary and sufficient for convergence which
translates in the two–player case to σ11, σ22 ∈ (0, 1). Hence by introducing
strategic interaction into the DeGroot model the conditions for convergence
need to be stronger.

13We show in Proposition 5 that for the symmetric case if σii < .5 there exists a β such
that the dynamics does not converge.

14It is easy to see that assuming boundaries does not matter for convergence in this
case. If one boundary condition is binding (say the smaller boundary), then the interval
of adopted TI’s [φi, φj ] moves into the other direction until the boundary condition is not
binding which implies that both adopted TI’s lie outside the interval again. For simplicity
we assume for the analysis of the quadratic utility case no boundaries.
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Let us first consider the general case where the utility functions ui and
vi only have to satisfy Assumption 1 and 2. To embed the dynamical sys-
tem into a tractable (linear) form, consider the following result, which is
straightforwardly implied by Propositions 1 and 2.

Corollary 1 (Nash Equilibrium Map). Let Assumptions 1–2 hold. Then,
there exists a Nash equilibrium map B∗ : In 7→ R

n
+, such that for every

i ∈ N and for every t ∈ N, B∗ (Φ(t)) = (b∗1(t), . . . , b
∗
n(t))

′ satisfies

φd∗

i (t)− φi(t) = b∗i (t) · (φi(t)− φ∗
i (t+ 1))

where φ∗
i (t + 1) :=

∑

j∈N σijφ
d∗
j (t). This map has the property that if for

any i ∈ N σii = 0, then b∗i (t) = 0, ∀t ∈ N.

Proof. Follows immediately from the best reply characterization of Propo-
sition 1 and the Nash equilibrium existence of Proposition 2.

The Nash equilibrium map simply represents the Nash equilibrium DTI
choices in terms of their deviations from the adults’ adopted TIs relative to
the deviation of the children’s adopted TIs from the socialization targets.
This representation can equivalently be written as φd∗

i (t) + b∗i (t)ΣiΦ
d∗(t) =

(1 + b∗i (t))φi(t), for every i ∈ N . Defining B(t) := diag (b∗1(t), . . . , b
∗
n(t)), we

thus obtain15

(I +B(t)Σ)Φd∗(t) = (I +B(t))Φ∗(t)

so that
Φd∗(t) = (I +B(t)Σ)−1 (I +B(t))Φ∗(t)

and hence
Φ∗(t+ 1) = Σ (I +B(t)Σ)−1 (I +B(t))Φ∗(t).

For this representation to be well defined, it is sufficient that either Σ is
diagonally dominant (since then I + B(t)Σ is strictly diagonally dominant,
thus invertible) or symmetric positive semidefinite (the assumptions used
in our main results will imply in particular that Σ is symmetric positive
definite).16

Finally, denoting M(t) := Σ (I +B(t)Σ)−1 (I +B(t)), it follows that

Φ∗(t+ 1) = M(t) . . .M(0)Φ(0) = M(t, 0)Φ(0), t ∈ N\{0} (4)

where M(t, 0) denotes the backward accumulation M(t, 0) := M(t) ·M(t −
1) · . . . ·M(0).

15diag(y) denotes a diagonal matrix with diagonal entries specified by y.
16To see the latter, note that I +B(t)Σ and I +B(t)

1

2ΣB(t)
1

2 have the same eigenval-

ues. Now since Σ is symmetric, B(t)
1

2ΣB(t)
1

2 is also symmetric and since Σ is positive

semidefinite and B(t) ≥ 0, B(t)
1

2ΣB(t)
1

2 is positive semidefinite. Thus B(t)Σ has non-
negative and real eigenvalues which implies that all eigenvalues of I+B(t)Σ are non-zero,
thus I +B(t)Σ is invertible.

12
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This allows us to resort to linear algebra results on the convergence of left
products of matrices. Specifically, Lorenz (2005, 2006) provided convergence
results for left products of row stochastic matrices—while as (for our specific
context) not sufficient results are available on the left product convergence
of more general matrices (that have row sum one, but with possibly negative
entries). However, to guarantee that the individual M(t) are row stochastic
in every period t ∈ N, we have to endow the social learning matrix Σ with
sufficient structure which is given by the following definition.

Definition 1 (Symmetric Ultrametric Matrix). A n× n-matrix Σ is sym-
metric ultrametric if

(i) Σ is symmetric,

(ii) σii ≥ max {σij : j ∈ Ni}, ∀i ∈ N ,

(iii) σij ≥ min {σik;σkj}, ∀i, j, k ∈ N .

To motivate the symmetry property in our context, remember the basic
determinants of the relative socialization successes that different unrelated
adults have with the children. These determinants consist of the relative so-
cial interaction time on the one hand, and potentially differing social learn-
ing pre–dispositions on the other hand. Thus, for any pair of children, the
required symmetry can be achieved by requiring the relative social interac-
tion time that any one of the two children has with the parent of the other
child to be identical, together with the assumption that all children have
identical social learning pre–dispositions. Property (ii) is the generalized
‘primary parental socialization’ condition. It simply means that among all
adults, the parents have the largest socialization influence on their children
(respectively, among all adults, they spend the largest time share with their
children). In general, the third property requires a sort of consistency of the
socialization patterns. It states that for any triple i, j, k ∈ N , if the social-
ization influence of j on child i is strictly smaller than that of k on child i,
then it must not hold that k has a strictly larger socialization influence on
child j than on child i (since σkj = σjk). This requirement can be inter-
preted as ruling out the existence of dynasties that have a ‘too dominant’
social learning influence on other dynasties.

In the case of symmetric ultrametric matrices Σ, any communication
class L ∈ P(Σ) is essential due to the symmetry of Σ. For the following
result, let PΣ(i) ⊆ N be such that PΣ(i) ∈ P(Σ) and i ∈ PΣ(i) (the element
of the partition P (Σ) which i belongs to). For some n × n matrix A and
J ⊆ N , let AJ denote the matrix A restricted to the set of dynasties J ⊆ N .
Finally, a consensus matrix is a row stochastic matrix where all rows are
identical. We now get the following convergence result.

13



Büchel–Hellmann–Pichler

Proposition 4 (Convergence I). Let Assumptions 1 and 2 hold. If Σ is sym-
metric ultrametric, then limt→∞M(t, 0) exists. Moreover, limt→∞M(t, 0)L =
K(L) for all L ∈ P, such that K(L) is a consensus matrix, and limt→∞M(t, 0)ij =
0 if and only if j /∈ PΣ(i).

Proof. In Appendix 5.3.

Endowing the social learning matrix Σ with sufficient structure, we thus
arrive at a general result: In the long-run the communication classes of a
society (these are the components of the social network) will end up with
the same TIs. In the proof, we show first that each element M(t) of the left
product (4) is row stochastic. While it is straightforward to show that the
rows of each M(t) sum up to one, we make use of a number of linear algebra
results on inverses of symmetric ultrametric matrices and inverse–positive
matrices to show that M(t) is positive.17 Second, we can show that the
entries ofM(t) corresponding to strictly positive entries of Σ can be bounded
away from zero. This is due to the linearity of the determinants of the
minors of M(t) in all individual b∗i (t)s, and the boundedness of E. In the last
step, we construct a sequence of sub-accumulations of M(ts+1, ts)s∈N such
that for each element the minimal strictly positive entry can be uniformly
bounded away from zero, which also implies type-symmetry and a strictly
positive diagonal. For the sequence of sub-accumulations M(ts+1, ts)s∈N
we can then apply the convergence result by Lorenz (2005), which implies
that the adopted TIs of each connected subset converge to the same point,
respectively they reach a consensus.

Note finally that the necessity to guarantee that allM(t) are row stochas-
tic significantly reduces the convergence path types that we can analytically
address. Basically, we have to restrict our glance to dynamics that are anal-
ogous to that obtained in the DeGroot–model. This follows since M(t) row
stochastic implies that sequence of TIs is such that all next–period TIs lie
in the interval formed by the minimum and the maximum TI of the current
period. However, the structure of our model is inherently more general.

3.3 The Dynamics of Cultural Traits with Quadratic Utility
Functions

For the convergence result in Proposition 4, we needed the assumption of
symmetric ultrametric interactions matrix Σ. This is mainly due to the
generality of both utility components ui and vi. Suppose now that the

own utility components is given by ui
(

φd
i (t) |φi(t)) = −

(

φd
i (t)− φi(t)

)2
and

the inter–generational utility component is given by vi (φi(t+ 1) |φi(t)) =

17For literature on inverses of symmetric ultrametric matrices refer to Nabben and Varga
(1993, 1994), Martinez et al. (1994), and for results on inverse–positive matrices see e.g.
Fujimoto and Ranade (2004).

14
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−βi (φi(t+ 1)− φi(t))
2. Assume further that all parents can unrestrictedly

choose their displayed preference intensities (I = R), or in other words that
the set of possible DTIs would be unbounded. Then, in every period t ∈ N

the parents i ∈ N face the unrestricted optimization problems

min
φd
i (t)

(

φd
i (t)− φi(t)

)2
+ βi (φi(t+ 1)− φi(t))

2. (5)

From the first order conditions, it immediately follows that in this case
B∗ (·, β) = (β1σ11, . . . , βnσnn)

′. This has the consequence that ∀t ∈ N,
B(t) = B = diag (β1σ11, . . . , βnσnn). Thus,

M(t) = M = Σ(I +BΣ)−1 (I +B), (6)

and finally
Φ∗(t) = M tΦ(0).

Compared to our general representation, this form has a significant advan-
tage: It transforms the problem of the convergence of the left–product of
matrices into one of the convergence of the powers of one matrix.

Proposition 5 (a) and (b) give a (generically) sufficient and necessary
condition on Σ to obtain convergence.

Proposition 5 (Convergence II). Let the parental optimization problems be
as in (5). Then, the following holds.

(a) If Σ is symmetric positive definite, then for every β ∈ R
n
+ it holds that

all eigenvalues of M are real and in the interval (0, 1] (with at least one
eigenvalue equal to 1). Thus, generically limt→∞M tΦ(0) exists and is
a steady state (for Φ(0) arbitrary).18

(b) Let Σ have a strictly positive diagonal. If for some eigenvalue λ of Σ we
have Re(λ) < |λ|2,19 then there is a β ∈ R

n
+ such that the spectral radius

of M is strictly larger than 1. Thus, the sequence
{

Φ∗(t) = M tΦ(0)
}

t→∞
does not converge (for Φ(0) arbitrary).

Proof. In Appendix 5.4.

Proposition 5 (a) shows that symmetric positive definiteness (henceforth:
PD) is generically sufficient for convergence. Even more, Σ PD guarantees
that all eigenvalues of M are real and located in the interval (0, 1]. For
a symmetric matric a sufficient condition for positive definitieness is that
Σ is strictly diagonally dominant, i.e. ∀i ∈ N Σii >

1
2 . This means that

each parent’s influence on its child is larger than the influence of the social

18“Generically” applies to all cases where the geometric multiplicity of the 1–eigenvalue
equals its algebraic multiplicity; see also Lemma 3 in Appendix 5.4.

19Re(λ) means the real part of eigenvalue λ.
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environment. Part (b) addresses matrices that are not PD and states the fol-
lowing necessary condition for convergence (subject to any β): Re(λ) ≥ |λ|2

for any eigenvalue λ of the matrix Σ, i.e. the real part of each eigenvalue
is larger than the squared absolute value of this eigenvalue. (This property
is violated, e.g. if the real part is negative.) Invoking symmetry of Σ, the
property Re(λ) ≥ |λ|2 simplifies to λ ≥ λ2 and thus to λ ∈ [0, 1] since
symmetric matrices only have real eigenvalues. Moreover, Σ invertible im-
plies that zero is not an eigenvalue of Σ such that Σ satisfies this property
if and only if Σ is positive definite since symmetric matrices with strictly
positive eigenvalues are PD (and eigenvalues larger than 1 are precluded by
row stochasticity). Therefore, we get the following corollary for symmetric
matrices Σ with a strictly positive diagonal: M t (generically) converges if
and only if Σ is positive definite.

As has been mentioned above, the present special case of our general
model is basically a transformation of the DeGroot model. Given that con-
vergence is satisfied in the latter, it is intuitive that we also obtain con-
vergence if the transformation (as induced by the parental socialization in-
centives, which are embodied in β) is small enough. This is confirmed as
follows.

Proposition 6 (Convergence III). Let the parental optimization problems
be as in (5). Then, for every irreducible Σ with strictly positive diag-
onal, there exists a nonempty neighborhood N (0 |Σ) ⊂ R

n
+,

20 such that
∀β ∈ N (0 |Σ)∪ 0, the sequence

{

Φ∗(t) = M tΦ(0)
}

t→∞
converges (for Φ(0)

arbitrary).

Proof. In Appendix 5.5.

In the proof of this Proposition, we show first that if Σ has a strictly pos-
itive diagonal, then it has a simple Perron–Frobenius eigenvalue of 1 where
the absolute value of all other eigenvalues is located in the interval (0, 1).
Now, the eigenvalues are continuous in the underlying matrices. Thus, it
must be possible to at least slightly perturb Σ such that the resulting ma-
trix M also has a unique eigenvalue 1 with the absolute value of all other
eigenvalues in the interval (0, 1). Hence, M t converges. Notably, this holds
even though M might have negative entries.

Propositions 6 and 5 show that convergence either requires a special net-
work structure (PD) or that socialization incentives are not too strong (βi
small). However, even if convergence is assured, the question remains at
which rate a steady state is approached. Computing matrix powers after

20N (0 |Σ) means that the size of the neighborhood around β = 0 depends on Σ.
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diagonalizing a matrix shows that the speed of convergence is determined
by the rate the power series of each eigenvalue approaches zero. The smaller
the absolute eigenvalues (except eigenvalue 1), the higher the speed of con-
vergence. To conclude this section we compare the speed of convergence of
M t with Σt. Since both matrices Σ and M have 1 as an eigenvalue (see
Proposition 5), convergence speed is governed by the second largest eigen-
value. Let the eigenvalues of Σ and M be ordered according to size, i.e.
|λ1(Σ)| > |λ2(Σ)| ≥ ... ≥ |λK(Σ)| and |λ1(M)| > |λ2(M)| ≥ ... ≥ |λK(M)|,
such that multiple eigenvalues may occur.21 Then convergence of M t is
slower than convergence of Σt if λ2(M) > λ2(Σ), which indeed holds, as is
established by the following proposition.

Proposition 7 (Speed of Convergence). If Σ is symmetric positive definite
and βi > 0 for all i ∈ N , then the eigenvalues of M (which are real and
positive) satisfy: λk(M) > λk(Σ) for all 2 ≤ k ≤ K.

Proof. In Appendix 7.

We prove this result by applying a Theorem by Ostrowski (1959). In

fact, it implies for any k that λk(M) = λk(Σ)
λk(Σ)+θk(1−λk(Σ)) , where θk is a

real number in the interval (0, 1). More precisely, the boundaries of θk
are mini∈N

1
1+σiiβi

≤ θk ≤ maxi∈N
1

1+σiiβi
. The largest eigenvalue of Σ

λ1(Σ) = 1 leads to the largest eigenvalue of M , i.e. λ1(M) = 1. For all
other eigenvalues, we get the following.

Remark 3. If the socialization incentives βi approach zero for all i ∈ N ,
then θk approaches one and hence the eigenvalues of M approach the eigen-
values of Σ. Note that if βi = 0 for all i ∈ N , we are back in the classical
DeGroot model. The introduction of strategic interaction leads to overshoot-
ing and, as a consequence, to slower convergence for the strategic interaction
case compared to the DeGroot model (Proposition 7). Moreover, if the social-
ization incentives βi grow for all i ∈ N , then the eigenvalues of M approach
1, thus convergence speed becomes slower and slower.

4 Conclusions

In this paper, we introduce a model of cultural transmission of traits within
a finite population. Interaction ties are captured by a social network struc-
ture. In the related literature on cultural transmission of traits usually a
continuous player set is assumed and interaction itself is global (see among

21Note that for irreducible matrices Σ and M there is always a unique largest eigenvalue.
With our assumptions in Prop.7 we even show that all eigenvalues a real and positive of
both Σ and M , and thus all inequalities are strict and the eigenvalues are equal to their
absolute values.
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others, Bisin and Verdier, 2010 and Pichler, 2010b). We show in this paper
that not only the socialization incentives, but also the interaction structure
matters for the question of whether a homogeneous society is observable in
the long–run or not.

We identify necessary conditions on the network structure in the quadratic
utility case (Proposition 5) and sufficient conditions in both the quadratic
utility and the general utility case (Propositions 4 and 5). These conditions
have a quite intuitive interpretation. If interaction is symmetric, then pos-
itive definiteness of the network is necessary and sufficient for convergence
in the quadratic utility case. Positive definiteness is obtained, e.g. if par-
ents have a stronger influence on their children than the social environment.
Moreover, the speed of convergence is reduced by the parents’ socialization
efforts (Proposition 7).

This exercise yields three possible answers to the puzzle of the long–term
persistence of heterogeneous cultural traits. First, if the interaction struc-
ture does not satisfy some special properties and if socialization incentives
are strong enough, then the traits of a society do not converge (at all) to
a steady state. Second, convergence to a steady state does not imply ho-
mogeneity of traits in the whole society but only within subgroups of it.
(Those subgroups are determined by the interaction structure.) Third, even
if convergence to a homogeneous society or subgroup is guaranteed, the con-
vergence might happen at a very low pace (the speed of convergence depends
on the interaction structure and it is reduced by the parents’ socialization
efforts) thereby matching empirical results of persistance of cultural traits.

To obtain a convergence result in the general case, we had to endow
the social learning network with sufficient structure. For addressing more
general convergence types of our model, we are limited by the insufficient
availability of results on the convergence of the left–product of matrices that
are not (in general) row–stochastic—and hope for more research on this issue
in the future. Interestingly, our model is also very close to that of opinion
formation dynamics of DeGroot (1974) and the succeeding literature. The
opinion dynamics have been studied so far only with respect to truth telling,
omitting the possibility of exaggerating as strategic choice in discussion. We
show that the introduction of this kind of strategic interaction leads to cases
of non-convergence while the opinion dynamics in DeGroot (1974) almost
always converge. Hence, the conditions for convergence that we identify
require more structure on the underlying network.

As benchmark model we studied the case of fixed interaction structure
over time. Such an property is also assumed in models of opinion dynamics.
While our model is robust to small vanishing perturbations on the inter-
action structure, it would be interesting to study also the network itself as
a choice variable of parents of each generation. We leave this interesting
question to further research.
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5 Proofs

5.1 Proof of Proposition 2

From equation (1), it follows that ∀i ∈ N , φi(t + 1) is concave in φd
i (t),

thus also all vi (φi(t+ 1) |φi(t)) are concave in φd
i (t) (by Assumption 2).

This implies that the target functions of the optimization problems of all
parents are concave (and continuous). Since also the DTI choice set is
compact and convex, a non–empty, upper hemicontinuous and convex set of
DTI best replies exists for any parent (Berge’s Theorem of the Maximum).
Thus, a fixed point, i.e. a Nash equilibrium, exists (Kakutani’s Fixed Point
Theorem).

5.2 Proof of Proposition 3

(a) That in any steady state, parents choose their adopted TI as DTI is
directly implied by Proposition 1 (c).

(b) Given (a), it follows that the set of steady states given Σ coincides with
the set {Φ ∈ In |ΣΦ = Φ}. Hence, it is immediate that if the TIs of all mem-
bers of an essential communication class are identical, then ΣLΦL = ΦL,
where ΣL is the restriction of Σ to some essential communication class L,
and ΦL is its vector of adopted TIs. We proceed by showing that steady
state TIs cannot differ within an essential communication class. To show a
contradiction, suppose that for an essential communication class L ∈ P(Σ),
|L| ≥ 2, there exists i, j ∈ L with φi 6= φj . Denote by φ̄L := max{φi|i ∈ L}
the maximal TI in communication class L. Since L is a communication class
it follows that there exists an i ∈ {l ∈ L : φl = φ̄L} and a j ∈ {l ∈ L|φl 6= φ̄L}
such that σij > 0. Moreover, due to maximality of φ̄L and the fact that L
is essential, σik = 0 for all k ∈ N with φk > φ̄L. Thus, ΣiΦL 6= φi implying
that this cannot be a steady state.

(c) This is also straightforward. Suppose that for some inessential communi-
cation class I ∈ P(Σ) with connections to other dynasties J := {j ∈ N |i →
j, i ∈ I} the set of TIs ΦI is not included in conv(φj |j ∈ J). W.l.o.g.
we have φ̄I := max{φi|i ∈ I} > max{φj |j ∈ J}. Since I is a communica-
tion class and is inessential with all outside connections being to dynasties
with TIs strictly less than φ̄I , we get (similarly to (b)) for some player
k ∈ {i ∈ I|φi = φ̄I} that there exists j ∈ N and φj < φ̄I such that σkj > 0.
Again, due to maximality of φ̄I and all other connections being to dynas-
ties with TIs strictly less than φ̄I , we get that ΣkΦI 6= φk, implying that
this cannot be a steady state. Hence, all TIs of the dynasties in inessential
communication classes I ∈ P(Σ) are convex combinations of the TIs of the
communication classes J ∈ P (Σ) such that I → J .
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5.3 Proof of Proposition 4

This proof is organized in three essential steps. In the first step, we will
show that if Σ is symmetric ultrametric, then M(t) is row stochastic for
every t ∈ N. In the second step we will show that for every i, j ∈ N with
Σij > 0 there exists a δij > 0 such that for every t ∈ N, mij(t) ≥ δij . We
use these results to show in the third step that the backward accumulation
matrices are type symmetric and have a strictly positive diagonal. This
allows us to apply Theorem 2 of Lorenz (2005) to conclude that the desired
convergence result holds. For the first step, we also need the following.

Lemma 1 (Unit Eigenvectors). Let Σ be positive definite. Then, ∀x ∈ R
n,

∀t ∈ N, M(t)x = x iff Σx = x (i.e. x is a unit–eigenvector of M(t) if and
only if x is a unit–eigenvector of Σ).

Proof. Note that M(t) = Σ (I +B(t)Σ)−1 (I+B(t)) =
(

Σ−1 +B(t)
)−1

(I+
B(t)). That the latter representation is well defined if Σ is positive definite
follows since Σ is then invertible and also its inverse is positive definite.
Thus, also Σ−1 + B(t) is positive definite and invertible. Given this, both
the ‘if’ and the ‘only if’ direction of the proof can be directly seen from the
following sequence of transformations: Σx = x ⇔ x = Σ−1x ⇔ (B(t) +
I)x = (B(t) + Σ−1)x ⇔ M(t)x = (B(t) + Σ−1)−1(B(t) + I)x = x.

1. In the first step of the (main) proof, we show that if Σ is symmetric
ultrametric, then M(t) is row stochastic for every t ∈ N. To do so, note
first that since Σ is symmetric ultrametric, it is also positive definite (see
below). Hence, by Lemma 1 (and setting x = (1, 1, ..., 1)′) the row entries
of M(t) = [mij(t)] sum up to one since the same holds for Σ. Thus, M(t) is
row stochastic if and only if M(t) has non-negative entries (that is M(t) ≥
0). Now, since I + B(t) is a diagonal matrix with strictly positive entries,
M(t) = Σ (I +B(t)Σ)−1 (I +B(t)) is non-negative if and only if

Σ (I +B(t)Σ)−1 =
(

Σ−1 +B(t)
)−1

is non-negative (that this representation is well defined if Σ is positive defi-
nite has been discussed in the proof of Lemma 1). In other words, we have
to check whether Σ−1 +B(t) is inverse–positive.

Now, since Σ is symmetric ultrametric, it follows that its inverse is a
diagonally dominant Stieltjes matrix (see Nabben and Varga (1993, 1994),
Martinez et al. (1994)), i.e. a real symmetric positive definite matrix with
positive diagonal and negative off-diagonal entries. Thus, also Σ−1 + B(t)
is a diagonally dominant Stieltjes matrix. In particular, it is an M–matrix,
the class of which is inverse–positive (on this issue, see e.g. Fujimoto and
Ranade (2004)). Hence, M(t) has only non-negative entries.
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2. For the second step, we show first, that the map b∗i (t) = b∗i (φi(t), φ
d
Ni
(t))

is bounded for every i ∈ N.

Lemma 2 (Boundedness of B∗(t)). Let Assumptions 1–2 hold. Then, ∀i ∈
N b∗i is bounded for every φd

Ni
(t), φ(t) ∈ I. In particular,

lim
φd
Ni

(t)→φi(t)
b∗i (φi(t), φ

d
Ni
(t)) =

σiiv
′′
i

(

φi(t)|φi(t)
)

u′′i (φi(t)|φi(t)) + σ2
iiv

′′
(

φi(t)|φi(t)
) < ∞.

Proof. Note that for x := φi(t), y := φd
Ni
(t), and f(x, y) := φd∗

i (x, y) b∗i is
defined by

f(x, y)− x = b∗i (x, y) ((1− σii)x− (1− σii)y) . (7)

Let x ∈ I be given and without loss of generality assume that y ≥ x.
First, note that for every y ∈ I such that x 6= y it holds by Proposition 1
that 0 ≤ b∗i (x, y) ≤ 1

1−σii

x−xmin

x−y , where xmin := min{z ∈ I}. Further, by
Proposition 1 we get for σii = 1 that b∗i (x, y) = 0 for all y > x.

Hence we are left to show that limy↓x b
∗
i (x, y) < ∞ for σii < 1. Since x

is fixed, we denote f(y) := f(x, y), abusing notation. We get from (7),

lim
y↓x

b∗i (x, y) = lim
y↓x

1

1− σii

f(y)− x

x− y
= −

1

1− σii
f ′(x),

given differentiability of f at the point x, which we show subsequently.
By the first order condition, f(y) solves u′i(f(y)|x) + σiiv

′
i(σii(f(y) + (1 −

σii)y)|x) = 0. With the implicit function theorem,

f ′(x) = −
(1− σii)σiiv

′′
i

(

σii(f(x) + (1− σii)x)|x
)

u′′i (f(x)|x) + σ2
iiv

′′
(

σii(f(x) + (1− σii)x)|x
) . (8)

By Proposition 1, we have f(x) = x, and hence by Assumption 1 the right
hand side is well defined. We get

lim
y↓x

b∗i (x, y) = −
1

1− σii
f ′(x)

=
σiiv

′′
i

(

x|x
)

u′′i (x|x) + σ2
iiv

′′
(

x|x
) ,

which is by Assumption 2 positive and bounded.

Now we continue to show that for every i, j ∈ N with σij > 0 there exists
a δij > 0 such that mij(t) ≥ δij for every t ∈ N. Again, since I + B(t) is a
diagonal matrix with strictly positive entries, we can restrict our attention
to the matrix

(

Σ−1 +B(t)
)−1

=: A(t) = [aij(t)]. Consider any i, j ∈ N
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such that σij > 0. Since A(t) is non-negative by step (1), it follows that
sign (aij(t)) ∈ {0, sign (σij)}.

Let us rule out the case sign (aij(t)) = 0 for σij(t) > 0. To do so, let us
compare

aij(t) = (−1)i+j

∣

∣Σ−1 +B(t)
∣

∣

ij

|Σ−1 +B(t)|
vs. (−1)i+j

∣

∣Σ−1
∣

∣

ij

|Σ−1|
= σij

where |·|ij denotes the determinant of the ij adjoint matrix. Note that

since Σ is positive definite, the same holds for its inverse and Σ−1 + B(t).
It follows that the determinants of the matrices Σ−1 and Σ−1 + B(t) are
strictly positive.

Moreover, note that for all i, j ∈ N ,
∣

∣Σ−1 + diag (b∗1(t), . . . , b
∗
n(t))

∣

∣

ij

and
∣

∣Σ−1 + diag (b∗1(t), . . . , b
∗
n(t))

∣

∣ are linear in every individual element of
{b∗1(t), . . . , b

∗
n(t)} (to verify this most easily, consider the Leibniz formula).

Since we have |Σ−1 +B(t)| ≥ 0 for all b∗1(t), . . . , b
∗
n(t) ≥ 0, it holds that

∂(−1)i+j |Σ−1 +B(t)|ij
∂bk

≥ 0 (9)

and
∂|Σ−1 +B(t)|

∂bk
≥ 0, (10)

because otherwise the determinant would switch signs due to linearity in bk,
for all k ∈ {1, ..., n}.

Now, since b∗i is bounded by Lemma 2, we have bk(t) ∈ [0, b̄] for all t ∈ N.
By linearity of |Σ−1 +B(t)|ij and |Σ−1 +B(t)| in bk(t) for all k ∈ {1, ..., n}
and compactness of [0, b̄], we thus get existence of a minimum:

δ̂ij := min
k∈{1,...,n}

min
bk(t)∈[0,b̄]

= (−1)i+j

∣

∣Σ−1 +B(t)
∣

∣

ij

|Σ−1 +B(t)|
≤ (−1)i+j

∣

∣Σ−1
∣

∣

ij

|Σ−1|

Note that 0 < δ̂ij since both of nominator and denominator are bounded
and strictly positive due to (9) and (10) and because of boundedness of bk.

Thus, if σij > 0 then aij(t) ≥ δ̂ij for all t ∈ N. Multiplication with the
diagonal matrix I + B(t) does not change this fact, even though the mini-
mum might be attained at different values of bk ∈ [0, b̄] and k ∈ {1, ..., n}.
Thus, for all i, j ∈ N such that σij > 0 there exists a δij > 0 such that
mij(t) ≥ δij for all t ∈ N.

3. In the last step, we show that given the above, the left product of the
matrices M(t)M(t− 1) . . .M(0) converges such that the adopted TIs of all

22
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dynasties of a connected subset are identical (respectively, the communica-
tion classes in P(Σ) reach a consensus). Note that all communication classes
of Σ are essential by symmetry of Σ. By the definition of P (Σ) we have that
for all L ∈ P (Σ) and for all i, j ∈ L there exists a k ∈ {0, ..., |L|} such that
Σk
ij > 0. Note that P (Σ) = P(M(t)) for all t ∈ N since σij > 0 implies

mij(t) ≥ δ for all t ∈ N as shown above and, since every communication
class of Σ is essential, mij(t) = 0 if j /∈ PΣ(i).

22 Hence, for all L ∈ P (Σ)
and for all i, j ∈ L there exists a k ∈ {0, ..., |L|} such that M(t+ k, t)ij > 0
for all t ∈ N.23

Now, consider a sequence of time steps (ts)s∈N such that t0 = 0 and
ts+1 = ts + L̄, where L̄ := max{|L| : L ∈ P (M)}, and consider the sequence
of accumulations

(

M(ts+1, ts)
)

s∈N
. By the rules of matrix multiplication, we

get that for any two row stochastic A,B with a positive diagonal, (AB)ij > 0
if and only if Aij > 0 or Bij > 0. Hence, for any L ∈ P (Σ) and for all
i, j ∈ L, M(t+ |L|, t)ij > 0 for all t ∈ N since M(t) is row stochastic with a
positive diagonal. Moreover, M(t + |L|, t)ij = 0 if j /∈ PΣ(i) since P (Σ) =
P(M(t)) for all t ∈ N. Thus, for the accumulations M(ts+1, ts) it holds
that M(ts+1, ts)ij > 0 if and only if j ∈ PΣ(i). In particular, M(ts+1, ts) is
type-symmetric for all s ∈ N.

For a non-negative matrix A let min+(A) denote the lowest positive
entry of A. We have shown above that there exists a δ > 0 such that σij > 0
implies mij(t) ≥ δ for all t ∈ N. Note that for any i, j ∈ L ∈ P (Σ) there
exists a k ≤ |L| and a sequence of dynasties (il)0≤l≤k with i0 = i and ik = j

such that σil,il+1
> 0, implyingM(t+k, t)ij ≥

∏k−1
l=0 mil,il+1

(t+l) ≥ δk. Thus,
for the accumulations M(ts+1, ts) it holds that M(ts+1, ts)ij ≥ δts+1−ts if j ∈
PΣ(i) and M(ts+1, ts)ij = 0 else. Hence, min+

(

M(ts+1, ts)
)

≥ δts+1−ts =

δ|L̄|.
In summary, we have shown that the backward accumulation matri-

ces
(

M(ts+1, ts)
)

s∈N
have a uniform lower bound of the positive entries

min+
(

M(ts+1, ts)
)

≥ δ|L̄|, are type symmetric and have a strictly positive
diagonal. By Lorenz (2005), Theorem 2, we get the desired result for the
sequence

(

M(ts+1, ts)
)

s∈N
. Since limk→∞

∏k
s=0M(ts+1, ts) = limt→∞M(t),

we also establish the statement of the Proposition.

5.4 Proof of Proposition 5

For both parts of the proposition, we will apply the following Lemma (see
e.g. Friedberg and Insel (1992)).

Lemma 3 (Convergence). Let A be a square matrix with complex or real
entries. Then, the sequence

{

At
}

t→∞
converges if and only if the following

22Recall, PΣ(i) ⊆ N is such that PΣ(i) ∈ P (Σ) and i ∈ PΣ(i) (the element of the
partition P (Σ) which i belongs to).

23Recall that M(t′, t) denotes the accumulation M(t′, t) = M(t′)M(t′ − 1) . . .M(t).
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two conditions are satisfied.

(i) If λ is an eigenvalue of A, then either λ = 1 or λ lies in the open unit
disc of the complex plane, i.e. |λ| ∈ (−1, 1).

(ii) If 1 is an eigenvalue of A, then its algebraic multiplicity equals its
geometric multiplicity.

Let us denote by Λ(A), the set of eigenvalues of a matrix A and let
λ(A) ∈ Λ(A). Moreover, if z is a complex number, then we denote by Re(z)
the real part and by Im(z) the imaginary part of z.

Proof of part (a) We will show that condition (i) of Lemma 3 is satisfied.
To see this, note first that by definition M = Σ(I + BΣ)−1(I + B) = (B +
Σ−1)−1(I + B),24 which implies that M−1 = (I + B)−1(B + Σ−1). Let
B̃ := (I + B)−1, i.e. for every i ∈ N , b̃ii =

1
1+σiiβi

, hence B̃ is a diagonal

matrix with entries in (0, 1). Then, B̃B = I − B̃, and

M−1 = B̃(B +Σ−1) = I − B̃ + B̃Σ−1 = I + B̃(Σ−1 − I). (11)

First, note that since Σ is assumed to be symmetric positive definite,
so is Σ−1 and (Σ−1 − I) and the eigenvalues of all matrices are real and
positive.

Second, the matrices B̃(Σ−1 − I) = B̃1/2[B̃1/2(Σ − I)] and B̃1/2(Σ−1 −
I)B̃1/2 have the same eigenvalues,25 where B̃1/2 is the diagonal matrix with

entries
(

B̃1/2
)

ii
=

√

b̃ii.Moreover it is easily checked that B̃1/2
(

Σ−1 − I
)

B̃1/2

is positive definite and symmetric, i.e. has only positive real eigenvalues.
Thus, also the eigenvalues of M−1 (and hence those of M) are real and
positive.

Now, since Σ is row stochastic, we have |λ(Σ)| ≤ 1, which implies that
λ(Σ−1) ≥ 1. Thus, λ(Σ−1−I) ≥ 0 (subtraction of I decreases all eigenvalues
by 1). By above, we have λ(B̃(Σ−1 − I)) ≥ 0, which implies λ(I + B̃(Σ−1 −
I)) ≥ 1, i.e. λ(M−1) ≥ 1, and hence all eigenvalues ofM are real and located
in the interval (0, 1]. Furthermore, since M has row sum one (see Lemma
1, using x = (1, 1, ..., 1)′), at least one eigenvalue must be equal to 1. Thus,
M t converges, i.e. M∞ := limt→∞M t exists, and since 1 is an eigenvalue of
M , M∞ 6= 0. Denoting Φ(∞) := M∞Φ(0) it is easy to see that Φ(∞) is a
steady state since MΦ(∞) = MM∞Φ(0) = M∞Φ(0) = Φ(∞).

24That this representation is well defined if Σ is positive definite has been discussed in
footnote 16.

25This holds since for any two n× n matrices A,B the eigenvalues of AB are the same
as the eigenvalues of BA, although the eigenvectors may differ.

24
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Proof of Part (b) Let Σ have a strictly positive diagonal and let there be
an eigenvalue λ̃(Σ) that satisfies Re(λ̃(Σ)) < |λ̃(Σ)|2. The latter is equiva-

lent to Re(λ̃−1(Σ)) < 1, simply because z−1 = Re(z)
Re2(z)+Im2(z)

+ −Im(z)
Re2(z)+Im2(z)

i

and |z|2 = Re2(z) + Im2(z) for any complex number z ∈ C. Note that
λ̃−1(Σ) is an eigenvalue of Σ−1. Now let for each i : βi =

k
σii

, k ∈ R, so that
B = kI. We show that if k is large enough, then M has an eigenvalue with
absolute value larger than 1 and hence condition (i) of Lemma 3 is violated.

To do so, we will use M−1 = (I + B)−1(B + Σ−1) = (I + kI)−1(kI +
Σ−1) = ((1+k)I)−1(kI+Σ−1) = 1

1+k (kI+Σ−1). Now, since Re(λ̃(Σ−1)) =

Re(λ̃−1(Σ)) < 1, we have Re(λ̃(kI +Σ−1)) < 1+ k, because λ̃(kI +Σ−1) =
k + λ̃(Σ−1). For k large enough, we must have |λ̃(kI +Σ−1)| < 1 + k.26 To
see that this must hold, denote ǫ := 1−Re(λ̃(Σ−1)) and we get:

|λ̃(kI +Σ−1)|2 = Re2(λ̃(kI +Σ−1)) + Im2(λ̃(kI +Σ−1)

= (1− ǫ+ k)2 + Im2(λ̃(Σ−1))

= (k + 1)2 + Im2(λ̃(Σ−1)) + ǫ2 − 2ǫ− 2ǫk,

which is smaller than (1 + k)2 for k > Im2(λ̃(Σ−1))+ǫ2−2ǫ
2ǫ . Thus, we get for k

large enough,

1

1 + k
|(λ̃(kI +Σ−1))| =

∣

∣

∣

∣

λ̃

(

1

1 + k
(kI +Σ−1)

)∣

∣

∣

∣

= |λ̃(M−1)| < 1

and hence |λ̃(M)| > 1 so that condition (i) of Lemma 3 is violated.

5.5 Proof of Proposition 6

As by Lemma 3 above, for the convergence of the powers of a matrix A it
is sufficient that 1 is exactly one eigenvalue of A and all other eigenvalues
are in the interval (−1, 1). To prove the proposition, we will in a first step
apply the Perron-Frobenius Theorem (henceforth: PFT) for a regular row–
stochastic matrix A: (i) The spectral radius of A is 1 (the largest eigenvalue
in absolute value). (ii) For all other eigenvalues λ it holds that |λ| < 1.
(iii) The eigenvalue 1 is simple.Consider any row stochastic Σ such that Σ is
irreducible with strictly positive diagonal. This implies that Σ is regular, so
that by the PFT for regular row stochastic matrices, Σ has simple eigenvalue
1 and all other eigenvalues are in (−1, 1).

Let us now consider the transformationsM = Σ(I +BΣ)−1 (I+B). In a
first step, we do have to guarantee that I+BΣ is invertible, so thatM exists.
Note that strict diagonal dominance would be sufficient for non–singularity.

For strict diagonal dominance, we require that 1+ βi

(

σii −
∑

j∈Ni
σij

)

> 0

holds for every i ∈ N . Since Σ has a strictly positive diagonal, this is always
satisfied if e.g. β ≤ 1.

26If λ̃−1(Σ) is a real number, then this holds trivially.
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Büchel–Hellmann–Pichler

Given this, it follows again by the continuity of the eigenvalues that there
exists a non–empty neighborhoodN (0 |Σ) ⊂ R

n
+ such that ∀β ∈ N (0 |Σ)∪0

both I+BΣ is strictly diagonally dominant andM has exactly one eigenvalue
equal 1 and n−1 eigenvalues in the interval (−1, 1). Thus, M t converges.

5.6 Proof of Proposition 7

For positive definite symmetric and row stochastic matrices Σ convergence
of Σt, t → ∞ is trivially implied and generic convergence of M t, t → ∞ is
already established by Proposition 5. To show that convergence of M t is
slower than convergence of Σt for t → ∞ we show that all eigenvalues of M
are real and λk(Σ) < λk(M) for all 2 ≤ k ≤ K.

By (11) we have that M−1 = I + B̃(Σ−1 − I) with B̃ being a diagonal
matrix with entires 0 < b̃ii < 1 for all βi > 0. Thus,

λk(M
−1) = 1 + λk(B̃(Σ−1 − I)) = 1 + λk(B

1/2(Σ−1 − I)B1/2).

where the latter equality is again due to the fact that B̃(Σ−1 − I) and
B̃1/2(Σ−1 − I)B̃1/2 have the same eigenvalues. Moreover, by the proof of
Proposition 5 we have that (Σ−1− I) and B̃1/2(Σ−1− I)B̃1/2 are symmetric
and positive definite.

Since
(

B̃1/2
)∗

= B̃1/2 and B̃1/2 is non–singular,27 and (Σ−1− I) is sym-

metric, we get by Theorem 1 in Ostrowski (1959) (see also Horn and Johnson
(2010)) that λk(B̃

1/2(Σ−1−I)B̃1/2) = θkλk(Σ
−1−I), where θk are real num-

bers such that λK(B̃1/2B̃1/2) ≤ θk ≤ λ1(B̃
1/2B̃1/2). Since B̃1/2B̃1/2 = B̃ is

diagonal with entries 0 < b̃ii < 1 it holds that λk(B̃
1/2(Σ−1 − I)B̃1/2) <

λk(Σ
−1 − I) for all k such that λk(Σ

−1 − I) > 0. The latter is satisfied for
λk(Σ) < 1, and thus for all λk(Σ) such that 2 ≤ k ≤ K.

Hence, for 2 ≤ k ≤ K :

λk(M
−1) = 1 + λk

(

B̃(Σ−1 − I)
)

< 1 + λk

(

Σ−1 − I
)

= 1 + λk(Σ
−1)− 1 = λk(Σ

−1),

which implies that λk(M) > λk(Σ) for all 2 ≤ k ≤ K proving the
statement and implying that convergence ofM t is slower than Σt for t → ∞.

27The asterisk denotes the complex conjugate transpose.
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