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1 Introduction
In Farrell and Maskin (1989), the concept of weak renegotiation-proofness (subsequently
abbreviated as WRP) is introduced and the authors provide a characterization of WRP
payoffs for general two-player games. In their Theorem 1 (p. 332), the authors give both
sufficient and necessary conditions for a strictly individual rational payoff to be weakly
renegotiation-proof. In this note, we use a counterexample to show that their proof of
the sufficient conditions fails at a particular step. While Farrell and Maskin (1989) are
very careful in many steps of the proof, they implicitly assume more of a structure on the
set of payoffs than actually exists. More specifically, they claim to obtain a payoff with
independent randomization, which is only obtainable with correlated strategies. However,
if correlated strategies were allowed, large parts of the proof would be unnecessary.

First, we introduce the basic notation as given in Farrell and Maskin (1989). Then,
we go through the arguments of the original proof before we point to the crucial and
erroneous claim in that proof. We use a counterexample to illustrate the problem, and
then prove an alternative result that replaces the erroneous claim and ultimately fixes
the proof.

2 Basics and Original Result
We adopt most of the original notation from Farrell and Maskin (1989), but denote sets
by calligraphy instead of regular letters since we need a more elaborate notation for our
proof.

Consider a two-player, single-stage game with players i = 1, 2. Each player i possesses
a finite set of actions, and we denote the simplex consisting of player i’s mixed actions
by Ai. We denote the set of both players’ actions by A ≡ A1 × A2. Let g : A −→ R2

be the vector of continuous payoff functions gi : Ai −→ R. The single-stage game g is
then defined by the set of payoffs and actions. We will denote the set of mixed-strategy
payoffs, i.e., the image of g, by

U =
{

(v1, v2) ∈ R2 | ∃ a ∈ A with g (a) = (v1, v2)
}

and the set of feasible payoffs in the repeated game by

V = co (U) .

For player i, the profit-maximizing deviation from action pair a = (a1, a2) is defined by
ci(a) = maxai gi(ai, aj), i 6= j, the minimax payoff1 is defined by vi = minaj maxai gi(ai, aj)

1While Farrell and Maskin (1989) normalize the minimax payoff to zero for both players, we omit
this normalization in the subsequent sections for a better illustration. This is immaterial to our results.
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and vmaxi = maxa1,a2 gi(a1, a2) is the maximal attainable payoff. The set of strictly
individual rational payoffs in the repeated game is given by

V∗ =
{
(v1, v2) ∈ V | v1 > v1, v2 > v2

}
.

In the repeated game, we consider the infinite repetition of the single-stage game g,
which will be denoted by g∗. Let t = 1, 2, . . . ,∞ denote the periods and the sequence
{ai (t)} denote a player’s action profile with ai (t) ∈ Ati. Note that we assume constant
action spaces Ati = Ai for all t. A t-history will be denoted by ht =

(
a (1) , . . . , a (t)

)
,

and H is the set of all such possible t-histories. A strategy σi for player i in the repeated
game is a function that defines an action ai ∈ Ai for every date t and history ht ∈ H.2
In every period, players receive the stage-game payoffs. Player i’s discounted average
payoff at time t is then given by (1− δ)

∑∞
τ=t δ

τ−tgi
(
a1 (τ) , a2 (τ)

)
, where δ < 1 is the

common discount factor for all players. The expected payoffs of strategy σ with discount
factor δ will be denoted by g∗(σ, δ), but we often omit δ and simply write g∗(σ).

A weakly renegotiation-proof equilibrium is defined as follows.

Definition 1 (Farrell and Maskin, 1989). A subgame perfect equilibrium σ is weakly
renegotiation-proof if there do not exist continuation equilibria σ1, σ2 of σ such that σ1

strictly Pareto-dominates σ2. If an equilibrium σ is WRP, then we also say that the
payoffs g∗(σ) are WRP.

2.1 Sufficient Conditions for Weakly Renegotiation-Proof Payoffs

Let us cite the conditions that Farrell and Maskin (1989) propose as sufficient for WRP
payoffs, which is the first part of their Theorem 1 (p. 332).

Theorem 1 (Farrell and Maskin, 1989). Let v = (v1, v2) be in V∗. If there exist action
pairs ai = (ai1, ai2) (for i = 1, 2) in g such that (i) ci(ai) < vi, while (ii) gj(ai) ≥ vj for
j 6= i, then the payoffs (v1, v2) are WRP for all sufficiently large δ < 1.

To prove this result, two steps have to be completed. First, one needs to construct
a sequence of actions to obtain v as a payoff of the repeated game such that no two
continuation payoffs along this path can be strictly Pareto-ranked. If the players could
use correlated strategies, this step would be trivial. As they can only use independent
randomizations, and the set of mixed-strategy payoffs is a peculiar subset of feasible
payoffs, this is not straightforward, as we show in the following section. Given this
sequence of actions for the normal phase of the game, one then needs to design punishment
paths such that v is a subgame perfect equilibrium and no continuation payoffs of the
equilibrium strategy can be strictly Pareto-ranked.

2Note that by the definition of a strategy σ, we ultimately assume that players can not only observe
the realized actions, but also the mixed strategies in the repeated game. Players can therefore condition
their strategies on all past private randomizations. This assumption is also made by Farrell and Maskin
(1989), but they remark that it is not strictly necessary (see their footnote 2 on p. 329).

3



3 The Error in the Proof of Farrell and Maskin (1989)
In the following text, we will go along the original proof of Theorem 1 and first discuss
the simple cases where the proof of Farrell and Maskin (1989) works. Then, we will give
a counterexample for the crucial step in their proof and offer a correction.

Clearly, for a mixed-strategy payoff v ∈ U , i.e., if there exists an action a such that
g(a) = v, there is not much to do as v can be obtained by playing action a in every period,
and trivially, all continuation payoffs along the path are equal to v. For a payoff v ∈ V∗\U ,
the folk theorem for observable mixed strategies without public randomization given in
Fudenberg and Maskin (1991, p. 434) yields that for a sufficiently large δ, we can find a
sequence of action pairs {â(t)} such that (1−δ)

∑∞
t=1 δ

t−1g
(
â(t)

)
= v. However, this does

not ensure that any two continuation payoffs of this sequence are Pareto-undominated,
as required by the definition of weak renegotiation-proofness.

Therefore, Farrell and Maskin (1989) construct normal-phase actions using one of
the action pairs a1 or a2 that are given by the hypotheses of the theorem. Given the
vectors g(a1) and v, one can construct the line l1 that starts in g(a1) and runs through
v. If all payoffs of the sequence {â(t)} were on this line, Lemma 1 of Farrell and Maskin
(1989, p. 355, subsequently denoted as Lemma FM1) yields that the Pareto condition
is satisfied. If, however, not all payoffs lie on l1, there must be actions a∗ and a∗∗ with
payoffs g(a∗) above and g(a∗∗) below l1.

So far, everything is true and works in all two-player games. However, on page 334,
Farrell and Maskin (1989) implicitly claim the following.

Claim 1. Let v ∈ V∗\U and suppose that a1, a2 in A satisfy the hypotheses of Theorem 1;
that is, ai satisfies

(i) gj(ai) ≥ vj, j 6= i,

(ii) ci(ai) < vi,

then, without loss of generality, there exists an action pair ã in A that satisfies

(a) g1(a1) < v1 < g1(ã), g2(a1) > v2 > g2(ã),

(b) v is a convex combination of g(a1) and g(ã).

If the players were able to play correlated strategies, they could easily randomize
between g(a∗) and g(a∗∗) to obtain a payoff on l1. However, as there is no public
randomization device, players cannot play correlated strategies and can only randomize
independently. As Farrell and Maskin (1989) rightly continue, if players randomize
independently between a∗ and a∗∗ with probabilities p ∈ (0, 1) and 1− p, the obtained
payoffs, denoted by Γ(p) = (Γ1(p),Γ2(p)), will lie above l1 for a sufficiently large p
and below l1 for a low p. As Γ(p) is continuous in p, they argue correctly that there
must exist a p∗ such that Γ(p∗) lies on l1. Clearly, if Γ(p∗) = v, the normal phase can
be implemented by requiring randomization between a∗ and a∗∗, but as we assumed
v ∈ V∗ \ U , this is not relevant here.
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To obtain v as a convex combination of Γ(p∗) and g(a1), we must have Γ1(p∗) > v1.
However, in the following counterexample, we show that there is no mixed-strategy payoff
Γ(p∗) on l1 with Γ1(p∗) > v1. Moreover, contrary to the claim by Farrell and Maskin
(1989) in their footnote 6 on page 334, the analogous construction with g(a2) and l2 does
not work either, which ultimately rejects Claim 1.

3.1 Counterexample to Claim 1

Consider the two-player game where Players 1 and 2 can choose between two pure actions
{u, d} and {l, r}, and the stage-game payoffs of the pure strategies are given by the payoff
matrix shown in Table 3.1.

l r

u (0, 0) (2, 2)
l (4, 0) (0, 0)

Table 3.1: Payoff matrix of the two-player strategic game.

For p, q ∈ [0, 1], we denote by a = (p, q) the mixed strategy in which Player 1
randomizes between u and d with probabilities 1 − p and p, respectively, and Player 2
randomizes between l and r with probabilities 1− q and q.

The set of feasible payoffs V is the convex hull of the payoff vectors (0, 0), (2, 2) and
(4, 0); i.e.,

V = co
({

(0, 0), (2, 2), (4, 0)
})

and the set of strictly individually rational payoffs is given by

V∗ =
{
v ∈ V|v1 >

4
3 , v2 > 0

}
.

In Figure 3.1, we illustrate how the set of mixed-strategy payoffs U is included in the set
of feasible payoffs V.

Let us consider the strictly individually rational payoff v = (5
2 , 1), which is not

obtainable with mixed strategies, i.e., v ∈ V∗ \ U . Then, consider the action pairs
a1 = (1

4 ,
7
8) and a2 = (1, 5

16). First, we show that a1 and a2 satisfy the conditions of
Theorem 1. For action a1, g(a1) = (23

16 ,
21
16), and thus g2(a1) > 1. For Player 1, the

maximal deviation payoff is given by c1(a1) = 7
4 , which is also in accordance with the

conditions. For the action pair a2, we obtain g(a2) = (11
4 , 0), and therefore g1(a2) > 5

2 .
Finally, Player 2’s maximal deviation payoff is given by c2(a2) = 0. Thus, the two actions
both satisfy Conditions (i) and (ii) of the theorem.

Next, as proposed by Farrell and Maskin (1989), we construct the line l1 and find
that if all payoffs of the normal phase sequence {â(t)} lie on l1, the average payoff would
not be v since there is no stage-game payoff x on l1 with x1 > v1. Graphically speaking,
there are no stage-game payoffs to the right of v as l1 does not intersect with U right of v
(see Figure 3.2). Thus, if we select two action pairs a∗ and a∗∗ with payoffs g(a∗) above
and g(a∗∗) below l1, and if players randomize between these two actions with parameters
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Player 1’s payoff

Player 2’s payoff

b

b

bb

v1 = 4
3

b

U
V \ U
V∗

b

v

Figure 3.1: Illustration of U and V∗.

p and q, respectively, the resulting payoff Γ(p, q) will certainly lie in U , in the dark-gray
area in Figure 3.2. While there exist p∗, q∗ such that Γ(p∗, q∗) lies on l1, in our example,
this will certainly be to the left of v, that is, Γ1(p∗, q∗) < v1.

Player 1’s payoff

Player 2’s payoff

b

b

b

U
V \ U

b

v

bc
g(a1)

l1

b

g(a2)

Figure 3.2: Construction with payoffs g(a1).

Thus, as Farrell and Maskin (1989) claim erroneously in their footnote 6 on page 334,
the analogous construction should work for Player 2 and l2. But, as one can clearly see
in Figure 3.3, this does not hold. There are no payoffs x on line l2 such that x1 < v1;
graphically speaking, l2 does not intersect with U left of v. Therefore, it is not clear how
to obtain v, and the proof is not correct at this step.

In general, the proof by Farrell and Maskin (1989) fails whenever the two action
profiles a1 and a2 are such that the constructed vectors l1 = g(a1) + λ(v − g(a1)) and
l2 = g(a2) + λ(v − g(a2)) do not intersect with the set of mixed-strategy payoffs U
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Player 1’s payoff

Player 2’s payoff

b

b

b

U
V \ U

b

v

bc
g(a1)

b

g(a2)

l2

Figure 3.3: Construction with payoffs g(a2).

for λ > 1. This is not to say, though, that there are no games where the proposed
construction works and Claim 1 holds true.
Note. In this example, v can still be constructed as required. If we choose the action
pair ã1 = (0, 1) that corresponds to the payoffs (2, 2), an extreme point of V, this action
pair satisfies the conditions of the theorem. Furthermore, if we construct the line l̃1 that
starts in g(ã1) and runs through v, it intersects with U right of v, and therefore Claim 1
holds. This, however, does not conflict with our point as the sufficient conditions of
Theorem 1 are stated to hold for any action pairs a1, a2 that satisfy the conditions of the
theorem. Moreover, in general n×m games, one cannot always find such an alternative
action pair ã that satisfies the conditions of the theorem. Nevertheless, to fix the proof
of Theorem 1, we will show that we can always find two action pairs to obtain v as a
convex combination, and that this already suffices if we also modify the subsequent steps
in the original proof of Farrell and Maskin (1989).

4 Corrected Proof of Theorem 1
For the proof of Theorem 1, we replace Claim 1 with the following proposition.

Proposition 1. Let v ∈ V∗ \ U . If there exist action pairs a1, a2 in A that satisfy the
hypotheses of Theorem 1, that is, ai satisfies

(i) gj(ai) ≥ vj, j 6= i,

(ii) ci(ai) < vi,

then there exist action pairs a1∗ and a2∗ in A that satisfy

(a) g1(a1∗) < v1 < g1(a2∗), g2(a1∗) > v2 > g2(a2∗),
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(b) v is a convex combination of g(a1∗) and g(a2∗).

Given the result of Proposition 1, we can continue with the proof of Theorem 1 as
follows. By Lemma FM1, we obtain that for a sufficiently large δ there exists a sequence
of actions {a(t)} with a(t) ∈ {a1∗, a2∗} that yields discounted average payoffs v. To
conclude the proof, we need to show that v can be established as a WRP equilibrium.
Therefore, one needs to define punishments to sustain v as a subgame perfect equilibrium
and that are such that there is no Pareto-ranking across any continuation equilibria of
the strategy.

If ai∗ satisfies the hypotheses of Theorem 1, it can be used to construct a penance
punishment strategy for player i, as suggested by Farrell and Maskin (1989, p. 335),
and the rest of the proof then follows their outline.3 In general, however, this is not the
case, and we need to construct a different punishment strategy to sustain v as a WRP
equilibrium.

Given the actions a1∗ and a2∗ from Proposition 1, we define

l∗ =
{
v ∈ V|v = (1− λ)g(a1∗) + λg(a2∗), λ ∈ [0, 1]

}
as the set of payoffs that lie on the line segment between g(a1∗) and g(a2∗). We will first
construct Player 1’s punishment and assume, without loss of generality, that g2(a1) > v2
holds.4

As c1(a1) < v1, there exists δ < 1 such that

(1− δ)vmax1 + δc1(a1) < v1

and ε1 > 0 such that

c1(a1) < v1 − ε1.

Since g2(a1) > v2, there also exists ε2 > 0 such that g2(a1) ≥ v2 + ε2, and therefore we
can find λ̂ ∈ [0, 1] that satisfies

v1 −
ε1
2 ≤ (1− λ̂)g1(a1∗) + λ̂g1(a2∗) < v1,

v2 ≤ (1− λ̂)g2(a1∗) + λ̂g2(a2∗) ≤ v2 + ε2.
(1)

Let λ̃ = minλ̂∈[0,1]{λ̂ satisfies (1)} be the minimal value for such λ̂ and denote the
corresponding payoff on l∗ by ṽ = (1− λ̃)g(a1∗) + λ̃g(a2∗). According to Lemma FM1,
there exists a sequence of g(a1∗) and g(a2∗), and a discount factor δp < 1 such that for
all δ ∈ [δp, 1), the expected average payoff is ṽ and all continuation payoffs along this
sequence can be limited to the line segment between ṽ and v. We denote the sequence
of actions by {ap(t)} with ap(t) ∈ {a1∗, a2∗} for all t.

3It can be shown that for every 2 × 2 game, one can always identify such an action pair a1∗.
4If g2(a1) = v2 but g1(a2) > v1, the subsequent punishment construction can be carried out for

Player 2. The case where both g2(a1) = v2 and g1(a2) = v1 hold is discussed in Appendix A.
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Analogously, there exists a sequence of g(a1∗) and g(a2∗), and a discount factor δn < 1
such that for all δ ∈ [δn, 1), the expected average payoff is v and all continuation payoffs
along this sequence can be limited to the line segment between v and ṽ. This shall
be the normal phase of the equilibrium strategy σ(v), and we denote the sequence of
actions by {an(t)} with an(t) ∈ {a1∗, a2∗} for all t. Note that, in general, δn 6= δp, and
we shall therefore take the maximum of the two in the following steps to ensure that the
continuation payoffs of {ap(t)} and {an(t)} are limited to the line segment between ṽ
and v. In the following, therefore, let δ > δ̄ = max{δn, δp}.

The punishment of Player 1 shall be carried out as follows: In the first period, play
action a1. Then, from period t = 1 on, follow the sequence {ap(t)} with average payoff
ṽ. If Player 1 cheats during her punishment, restart with action a1. The payoffs at the
beginning of her punishment are then given by p1 = (1− δ)g(a1) + δṽ, and all subsequent
continuation payoffs lie on the line segment between ṽ and v. This construction is
illustrated in Figure 4.1.

Player 1’s payoff

Player 2’s payoff

b v

bc

g(a1)

bc

g(a2)

bc

g(a1∗)

bc

g(a2∗)

bc
ṽ

bc

c1(a
1)

bc

p1

Figure 4.1: Construction of punishment for Player 1.

For the punishment of Player 2, we can adapt the construction for a penance punish-
ment strategy, as suggested by Farrell and Maskin (1989, p. 335): After a single deviation
of Player 2, play action a2 for a suitable number of periods t2 before returning to the
normal phase with expected average payoff v. If Player 2 cheats on her punishment,
restart with action a2 (for details see Farrell and Maskin, 1989).

If Player 1 cheats during the normal phase, she receives p1
1 < v1, which satisfies

(1− δ)vmax1 + δp1
1 < v1
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for a sufficiently large δ. As also p1
1 > v1 − ε1 for δ sufficiently large, Player 1 has no

incentive to cheat in the normal phase or on her own punishment. For Player 2, all
her continuation payoffs along Player 1’s punishment path are weakly greater than her
equilibrium payoff v2, and thus she has no incentive to deviate from punishing Player 1.
As the same holds for Player 2’s punishment, this strategy constitutes a subgame perfect
equilibrium. Formally, we can define the equilibrium strategy σ(v) as follows:

Play begins in the normal phase, in which players are to follow the sequence
{an(t)}. If Player 1 cheats in the normal phase, the continuation equilibrium
is “play a1 for 1 period, then follow the sequence {ap(t)}”. If Player 2 cheats in
the normal phase, the continuation equilibrium is “play a2 for t2 periods, then
return to the normal phase”. If a player cheats during her punishment, the
punishment begins again. If player i cheats during the opponent’s punishment,
then player i’s punishment begins immediately.

All continuation payoffs of the normal phase and all continuation payoffs of Player 1’s
punishment after the first punishment period lie on the line segment between ṽ and v.
Furthermore, all continuation payoffs of Player 2’s punishment lie on the line segment
between between v and g(a2), and therefore there is no Pareto-ranking between those
three equilibrium paths. Finally, as p1

1 < ṽ1 and p1
2 > ṽ2, none of the continuation payoffs

of σ(v) are Pareto-ranked, and therefore v is a WRP equilibrium.
Note. If the punishment for Player 1 as suggested by Farrell and Maskin (1989) was
followed, which is to play a1 for a suitable number of periods and then revert to the
sequence {an(t)}, all continuation payoffs of the punishment phase would lie on the line
segment between g(a1) and v, and therefore below the line l∗. Then, even for a sufficiently
large δ, it cannot be excluded that there is a strict Pareto-improvement from Player 1’s
punishment to the normal phase (see our discussion in Appendix B).

5 Proof of Proposition 1
As the proof of Proposition 1 is quite intricate, we will first give an elaborate outline of
the proof before we formally proof the result in Subsections 5.1–5.3.

We start with the trivial observation that for every v in V \ U , and therefore in the
interior of V, one can always find two payoffs v′ and v

′′ in U such that v is a convex
combination. However, it is not straightforward that the line segment between v′ and v′′

has a negative slope to satisfy Condition (a). This will generally depend on the payoff
structure of the game, and we therefore have to complete several steps to show that
Condition (a) is always satisfied, given the hypotheses of the theorem.

In a first step, we will prove Proposition 1 for 2× 2 games. As we are interested only
in those games where U is a strict subset of V, we will first give a general characterization
result of the set of mixed-strategy payoffs U in Subsection 5.1. While the set of feasible
payoffs V is generically a quadrilateral whose extreme points correspond to pure-strategy
payoffs, we show in Lemma 1 that any payoff v ∈ V \ U will be in a convex set that can

10



be characterized by an edge of V and a convex curve between the two end-points of this
edge. To show that Proposition 1 holds for 2 × 2 games, we must distinguish between
the following two cases.

If the edge is of a positive slope, the construction given by Farrell and Maskin (1989)
to show Claim 1 does not fail. That is, for at least one of the two action pairs a1 or a2

given by the hypotheses of the theorem, there exists an action pair ã ∈ A such that v is
a convex combination of g(ã) and g(ai), and thus Proposition 1 holds immediately.

If the edge is of a negative slope, we can use a parallel line that passes through v.
Due to the shape of V \ U , this line must intersect with two edges of V whose points
correspond to payoffs in U . That is, the two points of intersection yield action pairs a1∗

and a2∗ that fulfill the conditions of Proposition 1.
In the second step in Subsection 5.3, we extend the results for 2× 2 games to general

n×m games. While the set of payoffs is generically a polygon, we can identify for every
v ∈ V \ U a 2× 2 game such that v is in its respective convex hull of payoffs. Then, we
can use the result for 2× 2 games to finally complete the proof of Proposition 1.

5.1 Characterization of U in 2× 2 games

Consider a general 2× 2 game with a payoff-matrix of the following form(
A B
C D

)
, (2)

where A,B,C,D ∈ R2. For mixed strategies, we assign probabilities (1− p), p to rows
and (1− q), q to columns of (2). To characterize the set of mixed-strategy payoffs U , we
will distinguish between four different cases. These cases will be determined by the shape
of V, i.e., the convex hull of the pure-strategy payoffs A,B,C and D. In the following
text, we will therefore shift our analysis from the set of actions and payoff matrices to
the space of payoffs; that is, we will study the graphs produced by the payoff function
g.5

We will frequently make use of the following definitions.

Definition 2. For A,B ∈ R2, we will denote by AB the edge or line segment that
connects A and B. The infinite line through points A and B will be denoted by

←−→
AB, and

the vector that starts in A and connects A with B will be denoted by
−−→
AB. The triangle

with extreme points A,B and C will be denoted by ∆ABC.

Definition 3. We call a = (a1, a2) ∈ A a semi-pure strategy if one player plays a pure
strategy, while the other chooses a mixed strategy, in which either a1 or a2 is equal to a
standard unit vector. The set of payoffs from a semi-pure strategy is called an inducement
correspondence.6

5For example, see Robinson and Goforth (2005) for an elaborate discussion of this approach.
6It is the set of payoffs that one player can “induce” by playing a pure strategy. See also Robinson

and Goforth (2005).
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It is straightforward that for two payoffs of the matrix (2) that are either in the same
row or column, all payoffs on the edge between these two payoffs are obtainable with a
semi-pure strategy. Therefore the payoff matrix (2) yields six edges, AB, AC, AD, BC,
BD and CD, and four inducement correspondences, AB, AC, BD and CD.

Generically, the convex hull V of the four payoffs will be a quadrilateral in the payoff
space. As we are interested in those cases where U is a strict subset of V, the cases where
V is not a two-dimensional object are of no interest for the proof of Proposition 1. It
is straightforward to see that if all four points of (2) are equal, V is a singleton, and
therefore U = V. Also, if the four payoffs are such that V is a line, U = V holds.

If V is a two-dimensional object that is defined by at least three extreme points, the
issue is more complicated and U = V is generally not true. The set of mixed-strategy
payoffs is given by

U =
{
v ∈ V | v = (1− p)(1− q)A+ (1− p)qB + p(1− q)C + pqD; p, q ∈ [0, 1]

}
,

where v can be rewritten such that

U =
{
v ∈ V | v = A+ p(1− q)(C −A) + q(1− p)(B −A) + pq(D −A); p, q ∈ [0, 1]

}
.

Without loss of generality, we assume that
−−→
AB and

−−→
AC are linearly independent, i.e.,

A,B and C are not on a line. Then we can find parameters β, γ ∈ R such that we can
construct the point D as follows:

D = β(B −A) + γ(C −A).

For β, γ ∈ [0, 1] and β + γ ≤ 1, V is a triangle. That is, the point D is either on the
boundary or in the interior of the triangle defined by the extreme points A,B and C. In
all other cases, V will be a quadrilateral defined by the four extreme points A,B,C and
D. Two edges between these extreme points will necessarily lie in the interior of V, and
each one of these edges subdivides V into two triangles.

Depending on the parameters β and γ, i.e., on the position of D, there are three
different cases. For β < 0, γ > 0 and β + γ < 1, AC is an interior edge of V. For
β > 0,γ < 0 and β + γ < 1, AB is an interior edge of V. For β, γ > 0 and β + γ > 1,
AD is an interior edge of V. As we show in Lemma 1, we can neglect the last case in the
following definition.

Definition 4. Let V be a quadrilateral with extreme points A,B,C and D = β(B −
A) + γ(C − A) with β + γ < 1. If β < 0, γ > 0, AC divides V into two subtriangles,
∆ABC and ∆ACD. If β > 0, γ < 0, AB divides V into two subtriangles, ∆ABC and
∆ABD. We denote these subtriangles by

V1 = ∆ABC, V2 =

∆ACD, β < 0, γ > 0
∆ABD, β > 0, γ < 0

.
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Note that by definition, we have V1 ∪ V2 = V. Furthermore, for β < 0 < γ < 1 + β,
we have V1 ∩ V2 = AC, and for γ < 0 < β < 1 + γ, we have V1 ∩ V2 = AB. Using this
subdivision we obtain the following result.

Lemma 1. Let V be the convex hull of payoffs A,B,C and D and let A,B and C not
be on a line. Let β, γ ∈ R be such that D = β(B −A) + γ(C −A).

1. In the following cases, V is a triangle and V \ U is a convex set at the boundary of
V.

(a) β, γ ≥ 0 and β + γ < 1
(b) γ ≤ 0 and β + γ ≥ 1
(c) β ≤ 0 and β + γ ≥ 1
(d) β < 0 and γ < 0

2. If β, γ > 0 and β + γ ≥ 1, U = V.

3. If β + γ < 1 and β < 0 or γ < 0, V can be characterized such that V1 \ U and
V2 \ U are convex sets at the boundary of V1 and V2, respectively.

If V is a triangle and U 6= V, we obtain that U ⊂ V is the set of payoffs between the
two edges that are inducement correspondences and a convex curve between their distinct
endpoints. For a payoff matrix (2) and the parameters β, γ ≥ 0 with β + γ < 1, this is
the area between AB and AC and the curve between B and C that is below BC. An
exemplary graph is given in Figure 5.1, and in the proof of the lemma (in Appendix A),
we give an analytical expression for the boundary.

Player 1’s payoff

Player 2’s payoff

b

A

b
B

b

C

bc

D

U
V \ U

Figure 5.1: β, γ ∈ (0, 1) and β + γ < 1.

Player 1’s payoff

Player 2’s payoff

b

A

b
B

b

C

b

D

U
V \ U

Figure 5.2: β < 0,γ > 0 and β + γ < 1.

If V is a quadrilateral and U 6= V, as illustrated in Figure 5.2, the characterization of
U in the two subtriangles V1 and V2 is similar to the characterization of U where V is a
triangle. In the proof of the lemma (in Appendix A), we give an analytical expression
for the boundaries of U in the subtriangles.
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Given this characterization for the set of mixed-strategy payoffs, we can now proof
Proposition 1 for 2 × 2 games. As for the characterization, we will first consider those
games where V is a triangle, and then we will consider the general case where V is a
quadrilateral.

5.2 Proposition 1 for 2× 2 games

Lemma 2. Let V be the convex hull of payoffs A,B,C and D. Let β, γ ∈ R be such that
D = β(B −A) + γ(C −A). Then Proposition 1 holds.

Proof. Those cases where U = V can be excluded here. First, we will proof the lemma
for the case where V is a triangle. From Lemma 1, we have that one of the edges on
the boundary of V is not an inducement correspondence, and that this edge is also a
boundary of the set V \ U . In the following, we will distinguish between different cases
for the slope of this edge.

Without loss of generality, we assume that A,B and C are not on a line and that
β, γ ≥ 0, β+γ < 1. Then, the edge of V that is not an inducement correspondence is BC
(see also Figure 5.1). For the characterization, we first normalize A to zero and assume,
without loss of generality, that for the payoffs B = (B1, B2) and C = (C1, C2), we have
B1 ≤ C1.

First, consider those cases with B1 < C1, B2 > C2, where
←−→
BC has a negative slope,

as illustrated in Figure 5.3. As v ∈ V, the line l∗ that is parallel to
←−→
BC and runs through

v will intersect with both inducement correspondences AB and AC. Let these points of
intersections be v′ = l∗ ∩AB and v′′ = l∗ ∩AC. Since v′ , v′′ are mixed-strategy payoffs,
there are actions a1∗ and a2∗ such that g(a1∗) = v

′ and g(a2∗) = v
′′ . Clearly a1∗ and a2∗

satisfy the conditions of Proposition 1. The same holds true when
←−→
BC has an infinite

slope, i.e., when B1 = C1 and B2 > C2 or B2 < C2.
Second, assume that B1 < C1 and B2 ≤ C2, so that

←−→
BC has a non-negative slope.

Assume first that
←−→
BC lies above the origin; that is, it crosses the x-axis to the left of

the origin or is constant above the x-axis, as, for example, in Figure 5.4. Then, as in
the original proof, construct the line l1 that starts in g(a1) and runs through v. By the
hypothesis of Theorem 1, l1 has a negative slope and will therefore intersect with AC
at a point v′′ . Hence, the construction for Claim 1 works, and therefore Proposition 1
follows immediately with a1∗ = a1 and a2∗ such that g(a2∗) = v

′′ . For the case that
←−→
BC

lies below the origin, i.e., it crosses the x-axis to the right of the origin or is constant
below the x-axis, the analogous construction with l2 works, and therefore Proposition 1
holds as well.

The proof for the case where V is a quadrilateral uses the same approach. As in
Lemma 1, we consider the two subtriangles V1 and V2. Without loss of generality,
assume that v ∈ V1. Then, one of the edges on the boundary of V1 is not an inducement
correspondence, and this edge is also a boundary of the set V1 \U . We can now duplicate
the arguments from the case where V is a triangle to the subtriangle V1 to show that
Proposition 1 holds.
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Player 1’s payoff

Player 2’s payoff

b

A

b
B

b

C

bc

D

bc
v

′

bc

v
′′

b v

U
V \ U

Figure 5.3: V for
←−→
BC with negative

slope.

Player 1’s payoff

Player 2’s payoff

b

A

b
B

b C

b D

bc

g(a1)
bc
v

′′b

v

U
V \ U

Figure 5.4: V for
←−→
BC with positive slope.

5.3 Generalization to n×m games

To completely prove Proposition 1, we have to consider general n×m games with n,m ≥ 2.
The resulting convex hull of payoffs V in these games will generally be a polygon, as in
Example 1 below. As in the proof for 2× 2 games, we first characterize the set U . To do
so, we will make use of the following definition.

Definition 5. Let Π = (πij) ∈ Rn×m be the payoff matrix of the n×m game g. Then,
every two elements πij and πkl of Π with i 6= k, j 6= l, will induce a unique 2×2 submatrix

Πijkl =
(
πij πil
πkj πkl

)
.

We define the induced 2× 2 game g|ijkl of g as the 2× 2 game restricted to those pure
actions that yield payoff matrix Πijkl. The set of mixed-strategy payoffs obtainable in
g|ijkl will be denoted by U|ijkl.

By definition, we have U|ijkl ⊆ U for every induced 2× 2 game g|ijkl of g, and also

U{2×2} :=
⋃
i,j,k,l
i 6=k,j 6=l

U|ijkl ⊆ U . (3)

This characterization, together with Lemma 2, suffices to prove Proposition 1.

Proof of Proposition 1. Let v ∈ V∗ \ U . By (3) we have

V∗ \ U ⊆ V∗ \ U{2×2}.

Therefore, there exists an induced 2× 2 game g|ijkl of g such that v ∈ V∗ \ U|ijkl. By
Lemma 2, we have that for every v ∈ V∗ \U|ijkl with a1 and a2 as given in the hypotheses
of Theorem 1, there are always action pairs a1∗ and a2∗ that satisfy Conditions (a) and
(b) of Proposition 1.
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Example 1. Consider the following 2×4 game with pure-strategy payoffs A = (0, 2), B =
(1, 3), C = (5, 3), D = (5, 1), E = (6, 2), F = (3, 4), G = (1, 1) and H = (3, 0) according
to the payoff matrix

Π =
(
A B C D
E F G H

)
. (4)

The resulting convex hull of payoffs V and the set U{2×2} are illustrated in Figure 5.5.
Consider payoff v = (5.1, 2.75). As illustrated in Figure 5.5, v is not a mixed-strategy
payoff. It is close to the edge CE, which is not an inducement correspondence. This
edge induces the 2× 2 game g|ACEG with payoff matrix

ΠACEG =
(
A C
E G

)
.

As illustrated in Figure 5.5, v is in the convex hull of A,C,E and G. For this 2× 2 game,
we can apply Lemma 2 to show that Proposition 1 holds. Using the punishment strategy
developed in Section 4, v can be sustained as a WRP equilibrium.

Player 1’s payoff

Player 2’s payoff

bc

A

b
B

bc C

b

D

bc

E

b
F

bc

G

b

H

bc

v

U{2×2}

V \ U{2×2}

Figure 5.5: V is a polygon and v induces the 2× 2 game g|ACEG.

6 Conclusion
We have shown by means of a counterexample that the proposed proof of Theorem 1 in
Farrell and Maskin (1989) may fail. Given a strictly individually rational payoff v and two
action pairs a1 and a2 that satisfy the hypotheses of Theorem 1, these action pairs cannot
always be used to construct a sequence that yields an average payoff v. Nevertheless,
as we have shown in Proposition 1, given such action pairs ai, we can always find two
alternative actions such that their convex combination yields payoff v and that can be
used to define the normal phase of the game. For the punishment strategies, we can use
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the action pairs ai, although we need to design a different punishment as in the original
proof to ensure that no continuation payoffs of the strategy can be strictly Pareto-ranked.
Therefore, we prove that the sufficient conditions of Farrell and Maskin (1989) continue
to hold, and that an equilibrium strategy exists that sustains v as a WRP equilibrium.
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Appendix
A Proofs
In the proof of Theorem 1 in Section 4, we assumed that for i 6= j, at least one of the
inequalities gj(ai) ≥ vj is strict. In the following segment, we show that this is indeed
without loss of generality by discussing the case where g2(a1) = v2 and g1(a2) = v1 hold,
as illustrated in Figure A.1.

Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)

bc

g(a2)

bc

g(a1∗)

bc

g(a2∗)

bc
ṽ

bc

c1(a
1)

Figure A.1: Boundary case of Theorem 1.

Let a1 = (p1, q1) ∈ [0, 1]n×m, where p1 and q1 are vectors of probabilities over
pure actions such that p1 = (p1

1, . . . , p
1
n) with

∑n
i=1 p

1
i = 1, and q1 = (q1

1, . . . , q
1
m) with∑m

i=1 q
1
i = 1. By the hypotheses of the theorem, we have that g1(p, q1) < v1 for every

probability vector p ∈ [0, 1]n. If for Player 1 there is a probability vector p̃ ∈ [0, 1]n such
that g2(p̃, q1) > v2, we can use ã1 = (p̃, q1) to construct the punishment of Player 1. This
is illustrated in Figure A.2.

If there is no such p̃, as illustrated in Figure A.3, we need to find a different action for
Player 1’s punishment. We will therefore slightly perturb Player 2’s mixed strategy q1 by
ε > 0 to obtain an action pair a1(ε) that we can use to construct Player 1’s punishment.
We will need the following definition.
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Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)
bc

g(ã1)

bc

c1(a
1)

bc

bc

c1(a
1)

g(ã1)

Figure A.2: The alternative payoff g(ã1)
lies on g(·, q1).

Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)

bc

g(a1(ϵ))

bc

c(a1(ϵ))

bc

bc

c1(a
1)

bc bc

c1(a
1)

Figure A.3: The alternative action a1(ε)
is a perturbation of a1.

Definition A.1. Let q ∈ [0, 1]m be a probability vector. For ε > 0, we define Q(ε) to
be the set of probability vectors q(ε) that differ from q in every entry by at most ε:

Q(ε) =

q(ε) ∈ [0, 1]m
∣∣∣ |qj(ε)− qj | ≤ ε for all j ∈ {1, . . . ,m}, m∑

j=1
qj(ε) = 1

 .
Since c1(a1) < v1, there is an entry i ∈ {1, . . . , n} such that pi = 1 is a best response

to q1 and
∑m
j=1 q

1
j g1(aij) < v1. Then, there exists an ε > 0 such that for all q1(ε) ∈ Q1(ε),

we have
m∑
j=1

q1
j (ε)g1(aij) < v1.

Furthermore, we have that
n∑
i=1

m∑
j=1

piq
1
j (ε)g1(aij) < v1

for all p ∈ [0, 1]n, and therefore c1(·, q(ε)) < v1.
If g2

(
·, q1(ε)

)
≤ v2 for all q1(ε) ∈ Q1(ε), then g(·, q1) must be either an edge or an

extreme point of V, and consequently the construction for Claim 1 holds true. Otherwise,
there exists p ∈ [0, 1]n and q1(ε) ∈ Q1(ε) with g2(p, q1(ε)) > v2, and we can use a1(ε) =
(p, q1(ε)) to construct the punishment of Player 1.

Proof of Lemma 1. For the proof of Lemma 1, we first derive the characterization result
for those cases where V is a triangle. For better readability, we state this in a separate
lemma.

Lemma A.1. Let V be the convex hull of payoffs A,B,C and D, and let A,B and C
not be on a line. Let β, γ ∈ [0, 1] with β + γ ≤ 1 be such that D = β(B −A) + γ(C −A).
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1. If β + γ = 1, U = V.

2. If β, γ ∈ (0, 1) and β + γ < 1, V \ U is a convex set at the boundary of V.

Proof of Lemma A.1. First, and without loss of generality, we assume the payoff A to
be normalized to zero, i.e., A = (0, 0). For D = βB+ γC and with abuse of notation, we
can rewrite U as

U = Cp
(
(1− q) + qγ

)
+Bq

(
(1− p) + pβ

)
= Cp

(
1− q(1− γ)

)
+Bq

(
1− p(1− β)

)
.

Next, we define two functions x, y : [0, 1]2 −→ [0, 1] with x(p, q) = p
(
1− q (1− γ)

)
and y(p, q) = q

(
1− p (1− β)

)
such that U can be rewritten as

U = x(p, q)C + y(p, q)B.

In order to determine the set U , we will characterize its boundaries. Clearly, U is a
subset of the convex hull of V, and the sides AB and AC are obviously boundaries of U .
To completely characterize the shape of U , we need to determine the remaining boundary
of U between the two extreme points B and C. Depending on β and γ, U may not reach
the side BC, but rather lie below this edge. We can characterize this boundary that is as
close as possible to BC by determining the maximal value of y for each x. Geometrically
speaking, for every distance from A along the vector

−−→
AC, we want to find the maximal

distance that we can go along the vector
−−→
AB.

In formal terms, we will solve the optimization problem that yields the maximal value
of y for every given value of x, subject to p and q being from the unit interval. Given a
value x and γ > 0, p is implicitly defined as a function of x and q by p(x, q) = x

1−q(1−γ) .
Therefore, we can express the optimization problem only in x and q, i.e., maxq y(x, q),
and as we will make use of the Karush–Kuhn–Tucker (KKT) Theorem, we state it in the
following standard form:

max
q
q

(
1− x(1− β)

1− q(1− γ)

)
s.t. q ≥ 0

1− q ≥ 0 (A.1)
x

1− q(1− γ) ≥ 0

1− x

1− q(1− γ) ≥ 0
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With the Lagrange multipliers α1, . . . , α4 ≥ 0, the necessary conditions for a solution of
(A.1) are given by

1− x (1− β)(
1− q (1− γ)

)2 + α1 − α2 + α3
x(1− γ)(

1− q (1− γ)
)2 − α4

x(1− γ)(
1− q (1− γ)

)2 = 0 (A.2)

q ≥ 0 (A.3)
α1q = 0 (A.4)

1− q ≥ 0 (A.5)
α2(1− q) = 0 (A.6)
x

1− q(1− γ) ≥ 0 (A.7)

α3

(
x

1− q(1− γ)

)
= 0 (A.8)

1− x

1− q(1− γ) ≥ 0 (A.9)

α4

(
1− x

1− q(1− γ)

)
= 0 (A.10)

As y(x, q) is concave in q and all inequality constraints are linear, these necessary
conditions are also sufficient. Let us first discuss the general case for β ∈ (0, 1) and
γ ∈ (0, 1), that is, D is in the interior of V, as illustrated in Figure 5.1.
(1) Assume α1 > 0 holds.

From (A.4) we obtain q = 0 as a possible solution and from (A.6) it follows that
α2 = 0. Condition (A.7) is equivalent to x ≥ 0, and from (A.9) we obtain that x ≤ 1 must
hold. Assume α3 > 0. Then, by (A.8) x = 0 must hold, but (A.2) yields a contradiction
and thus α3 = 0 must hold. For α4 = 0, (A.2) is equivalent to 1 − x(1 − β) + α1 = 0,
which is again a contradiction. Therefore, it remains to check α4 > 0 and hence x = 1.
Condition (A.2) yields no contradiction, and therefore q = 0 is a solution if x = 1.
(2) Assume that α1 = 0 and α2 > 0 hold.

From (A.6) we obtain that q = 1 is a possible solution and from (A.7) we obtain that
x ≥ 0 must be satisfied. Also, by (A.9) we have that x ≤ γ has to hold. Assume α3 > 0.
From (A.8) we have that x = 0, and therefore α4 = 0 must be satisfied. Condition (A.2)
becomes 1− α2 = 0, and is therefore satisfied for α2 = 1.

For α3 = 0, assume first α4 > 0. That is, x = γ needs to hold. However, (A.2) then
becomes 1− 1−β

γ −α2−α4
1−γ
γ = 0, which is a contradiction as β+γ < 1. Therefore, α4 = 0

needs to hold. Condition (A.2) then reads 1 − x1−β
γ2 − α2 = 0 and yields x = (1−α2)γ2

1−β .
This is not in conflict with (A.7) and (A.9) for α2 ≤ 1, and therefore q = 1 is a solution
if x ∈ [0, γ2

1−β ).
(3) Finally, assume that α1 = 0 and α2 = 0 hold.

First, assume α3 > 0. Then, by (A.8) x = 0 has to hold, but this yields a contradiction
of (A.2). Therefore, α3 = 0 must hold. If we assume α4 = 0, we receive from (A.2) that
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q∗ = 1−
√
x(1−β)

1−γ is a possible solution. Condition (A.9) is only satisfied for x ≤ 1 − β.
We now check whether this is in accordance with conditions (A.3) and (A.5), i.e., that
q∗ ∈ [0, 1]. First, q∗ ≥ 0 if and only if x ≤ 1

1−β , which is already implied by x ≤ 1− β,
and which is therefore no additional constraint. Second, q∗ ≤ 1 if and only if x ≥ γ2

1−β ,
and therefore q∗ is a solution for x ∈ [ γ2

1−β , 1− β].
Finally, assume α4 > 0. Then, (A.10) yields q∗∗ = 1−x

1−γ as a solution candidate.
Inserting this into (A.2) yields that x > 1− β must hold. Condition (A.3) is satisfied if
and only if x ≤ 1, and (A.5) holds if and only if x ≥ γ. The latter is already implied by
x > 1− β, and therefore q∗∗ is a solution for x ∈ (1− β, 1].

Summarizing, we have obtained the following optimal qmax as a function of x

qmax(x) =


1, x ∈ [0, γ2

1−β )
1−
√
x(1−β)

1−γ , x ∈ [ γ2

1−β , 1− β]
1−x
1−γ , x ∈ (1− β, 1]

,

which yields for a given x the optimal ymax defined by

ymax(x) =


1− x(1−β)

γ , 0 ≤ x < γ2

1−β(
1−
√
x(1−β)

)2

1−γ , γ2

1−β ≤ x ≤ 1− β
(1−x)β

1−γ , 1− β < x ≤ 1

.

Therefore the remaining boundary of U , denoted by Umax, is defined as

Umax =
{
v ∈ U

∣∣∣ xC + ymax(x)B, x ∈ [0, 1]
}
. (A.11)

That is, we can describe this boundary of U between the points B and C as a tripartite
curve in the Cartesian plane with two linear parts, where either q = 1 or p = 1 holds,
and therefore the edge BD or CD is the boundary, respectively, and a non-linear part
defined by the curve

xC +

(
1−

√
x(1− β)

)2

1− γ B

for x ∈ [ γ2

1−β , 1− β].
In the following boundary cases, some of the previous steps are not necessary or need

to be considered differently. We will discuss them briefly.
If D is equal to one of the two extreme points B or C, the problem simplifies. For

β = 0, γ = 1, that is, D = C, the function x(p, q) reduces to p and y(p, q) = q(1 − p).
Thus, given a fixed value p, q = 1 is always the maximizer that corresponds to the edge
BD = BC. Therefore, the third boundary of U corresponds to the third side of V, and

22



therefore U = V holds. Analogously, for β = 1, γ = 0, that is, B = D, the same approach
yields U = V.

If β + γ = 1 holds, the point D lies on the edge BC, and again U = V holds. For
values of x ∈ [0, 1− β], q = 1 is the feasible maximizer of y, and therefore the edge BD
is the boundary of U . For x ∈ (1 − β, 1], q = 1−x

β is the feasible maximizer of y that
corresponds to p = 1. Therefore, the edge CD is the boundary of U and consequently
U = V.

If β = 0 and γ ∈ (0, 1), the point D lies on the edge AC. The tripartite boundary
Umax reduces to a bipartite one. For x ∈ [0, γ2), q = 1 is the feasible maximizer of y,
and therefore the edge BD is the boundary of U . For x ∈ [γ2, 1], q∗ = 1−

√
x

1−γ determines
the boundary of U .

Finally, if γ = 0, the implicit function p(x, q) is not well-defined for q = 1. Only if
x = 0 is this the case, and this directly yields that q = 1 is a feasible maximizer of y
if and only if x = 0. If also β = 0, then for x ∈ (0, 1], q∗ = 1 −

√
x is the maximizer,

and therefore the boundary is completely determined by the corresponding curve. If
β ∈ (0, 1) holds, for x ∈ (0, 1− β], q∗ = 1−

√
x(1− β) and for x ∈ (1− β, 1], q∗∗ = 1− x

are the respective solutions of (A.1).
It now remains to be shown that V \ U is a convex set for β + γ < 1. First, note that

V \ U is determined by the edge BC and the boundary Umax derived above. The set
V \ U can therefore be interpreted as a simple closed curve.7

A closed regular plane simple curve is convex if and only if its signed curvature is
either always non-negative or always non-positive (see, for example, Gray et al., 2006,
pp. 163–165). If we interpret Umax as a vector function

f : [0, 1] −→ R2, f(x) = xC + ymax(x)B,

we can easily show that f(x) is C2. Also, ∂2ymax(x)
∂2x ≤ 0 holds for all x ∈ [0, 1], and

therefore the signed curvature κ(x) = f ′′(x)
(1+[f ′(x)]2)3/2 is non-positive for all x ∈ [0, 1]. As

the signed curvature of the edge BC is also non-positive, the set V \ U is convex.

Now, we turn to the proof of Lemma 1. For those cases where V is a triangle, we can
use the characterization of the previous Lemma A.1. For the remaining cases, we use an
analogous approach for the two triangles V1 and V2.

Without loss of generality, we assume A to be normalized to zero, that is, A = (0, 0)
and D = βB + γC with β, γ ∈ R. First, we show that all parameter constellations given
in 1.(a) – 1.(d) yield that V is a triangle.

In 1.(a), for β, γ ∈ [0, 1] with β+γ ≤ 1, the convex hull of payoffs V is a triangle, and
therefore we can apply Lemma A.1. For γ = 0, β ∈ R, the point D lies on the straight
line

←−→
AB. For β = 0, γ ∈ R, D lies on

←−→
AC and for β + γ = 1, D lies on

←−→
BC.

7A curve is a simple closed curve if it is a connected curve that does not cross itself and ends at the
same point where it begins.
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In 1.(b), 1
β ,
−γ
β ∈ [0, 1] and 1

β −
γ
β < 1. Therefore, B = 1

βD −
γ
βC is in the interior of

the triangle ∆ADC. For 1.(c), analogous considerations yield that C = 1
γ −

β
γB is in the

interior of the triangle ∆ABD.
Finally, in 1.(d), if β, γ ≤ 0, the origin, that is, A = (0, 0) = D − β

1−β−γ (B −D) −
γ

1−β−γ (C −D) is in the interior of the triangle ∆DBC.
Next, we consider case 2 with β, γ > 0 and β + γ ≥ 1. If β + γ = 1, Lemma A.1

yields that U = V. If β + γ > 1, D is clearly above the edge BC, and this edge is an
interior edge of the quadrilateral V. Analogously to the proof of Lemma A.1, we solve
the optimization problem (A.1) to show that in this case U = V holds.

First, for γ < 1, we obtain

qmax(x) =

1, x ∈ [0, γ)
1−x
1−γ , x ∈ [γ, 1]

as the solution for (A.1), which yields the following optimal ymax for a given x:

ymax(x) =

1− x(1−β)
γ , 0 ≤ x < γ

(1−x)β
1−γ , γ ≤ x ≤ 1

.

If β < 1, the function y(x, q) is concave in q, and therefore the Karush–Kuhn–Tucker
(KKT) conditions (A.2) through (A.10) are both necessary and sufficient. If β ≥ 1, the
KKT conditions yield only necessary, but not sufficient, conditions. More specifically,
y(x, q) is strictly increasing in q, and therefore q = 1 is the feasible solution as long as
x < γ. For all x ≥ γ, the maximal value is determined by the linear function q(x) = 1−x

1−γ ,
and therefore coincides with ymax(x). Thus, the sides BD and DC are also boundaries
of U , and therefore U = V.

If γ = 1, x(p, q) reduces to p and y(p, q) = q(1− p). Thus, given a fixed value p, q=1
is always the maximizer that corresponds to the edge BD. Therefore, the sides BD and
DC are also boundaries of U , and therefore U = V.

For γ > 1, we obtain for x ∈ [0, 1]

qmax(x) = 1

as the solution for (A.1), which yields the following optimal ymax(x) for a given x:

ymax(x) = 1− x(1− β)
γ

.

If β > 1, the function y(x, q) is concave in q, and therefore the KKT conditions (A.2)
through (A.10) are both necessary and sufficient. If β ≤ 1, y(x, q) is strictly decreasing
in q, and therefore we need to compare ymax(x) with y(0, x). As 1− x(1−β)

γ > 0 for all
x ∈ [0, 1], ymax(x) is the solution of the optimization problem (A.1). Thus, the sides BD
and DC are also boundaries of U , and thus U = V.
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Finally, let us now consider the remaining parameter constellations of case 3, which
we will group into four different cases: i) β < 0, γ ∈ (0, 1], ii) β < 0, γ > 1 and β + γ < 1,
iii) β ∈ (0, 1], γ < 0 and iv) β > 1, γ < 0 and β + γ < 1. Four exemplary graphs for the
resulting quadrilaterals are given in Figures A.4–A.7. We will only discuss the cases i)
and ii), as iii) and iv) are obviously analogous.

b

A

b
B

b
C

b D

Figure A.4: β < 0, γ ∈ (0, 1)

b

A

b
B

b
C

b D

Figure A.5: β < 0, γ > 1
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b
B

b

C

b
D

Figure A.6: β ∈ (0, 1), γ < 0

b

A

b
B

b

C

b
D

Figure A.7: β > 1, γ < 0

i) First, let β < 0 and γ ∈ (0, 1]. In principle, we will follow the same approach as
in the proof of Lemma A.1, but we must add several considerations. First, we note that
y( 1

1−β , q) = 0 for all q ∈ [0, 1], and since β < 0, we have to separately study U for values
of p < 1

1−β , p >
1

1−β and p = 1
1−β . Thus, we effectively split up the convex hull of V

into the two subtriangles V1 = ∆ABC and V2 = ∆ADC, and therefore study U above
and below AC. Clearly, the edge AC is an inducement correspondence and is therefore
included in U .
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We will first determine U for p ∈ [0, 1
1−β ) and γ ∈ (0, 1). We can follow the same steps

as in the proof of Lemma A.1, and therefore solve (A.1), but for p ∈ [0, 1
1−β ) instead of

p ∈ [0, 1]. Then, given the Lagrange multipliers α1, . . . , α4 ≥ 0, the necessary conditions
for a solution of the new optimization problem can be stated as follows:

1− x (1− β)(
1− q (1− γ)

)2 + α1 − α2 + α3
x(1− γ)(

1− q(1− γ)
)2 − α4

x(1− γ)(
1− q(1− γ)

)2 = 0 (A.12)

q ≥ 0 (A.13)
α1q = 0 (A.14)

1− q ≥ 0 (A.15)
α2(1− q) = 0 (A.16)
x

1− q(1− γ) ≥ 0 (A.17)

α3

(
x

1− q(1− γ)

)
= 0 (A.18)

1
1− β −

x

1− q(1− γ) ≥ 0 (A.19)

α4

(
1

1− β −
x

1− q(1− γ)

)
= 0 (A.20)

As y(x, q) is a concave function of q, these conditions are also sufficient and we obtain
the optimal ymax(x) for x ∈ [0, 1

1−β ) as follows

ymax(x) =


1− x(1−β)

γ , 0 ≤ x < γ2

1−β(
1−
√
x(1−β)

)2

1−γ , γ2

1−β ≤ x <
1

1−β

.

Therefore, for p < 1
1−β and γ ∈ (0, 1),

Umax =
{
v ∈ U

∣∣∣ xC + ymax(x)B, x ∈ [0, 1
1−β )

}
is the boundary of U between the points B and C. That is, we can describe the boundary
of U between the points B and C as a bipartite curve in the Cartesian plane with a linear
part, where q = 1 holds, and therefore BD is the boundary, and with a non-linear part
defined by the curve

xC +

(
1−

√
x(1− β)

)2

1− γ B

for x ∈ [0, 1
1−β ). For γ = 1, as discussed in the special cases for triangles, x(p, q) = p,

and therefore q = 1 is the maximizer of y(p, q) for all p < 1
1−β . Thus, U is the triangle
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between AB, AC and BD. We have now completely characterized U in V1, i.e., above
AC for γ ∈ (0, 1].

For p > 1
1−β , still with abuse of notation, we rewrite U as follows:

U = C − (1− p)
(
1− q

β
(1− γ)

)
C + q

β

(
1− p(1− β)

)
(D − C)

Next, and analogously to the proof of Lemma A.1, we define two functions x̃(p, q) =
(1− p)

(
1− q

β (1− γ)
)
and ỹ(p, q) = q

β

(
1− p(1− β)

)
such that

U = C − x̃(p, q)C + ỹ(p, q)(D − C).

As in the proof of Lemma A.1, we now determine for each x̃ the maximal ỹ such
that C − x̃(p, q)C + ỹ(p, q)(D−C) is as close as possible to the edge AD. Geometrically
speaking, for every distance from C along the vector

−−→
CA, we want to find the maximal

distance that we can go in the direction of vector
−−−→
CD.

In formal terms, we will solve the optimization problem that yields the maximal value
of ỹ for every given value of x̃, subject to p > ( 1

1−β , 1] and q ∈ [0, 1]. Given a value x̃, p
is implicitly defined as a function of x̃ and q by p(x̃, q) = 1− βx̃

β−q(1−γ) .
8

Therefore, ỹ = q
(
1 + x̃(1−β)

β−q(1−γ)

)
, and we can express the optimization problem only

in x̃ and q:

max
q
ỹ(x̃, q)

s.t. q ∈ [0, 1] (A.21)
p(x̃, q) ∈ ( 1

1−β , 1]

However, for p > 1
1−β , ỹ is a strictly convex function in q, and we therefore only need

to consider the two boundary points q = 0 and q = 1. We have that ỹ(x̃, 0) = 0 and
ỹ(x̃, 1) = 1

β

(
β + x̃(1−β)

1− 1−γ
β

)
> 0 for all x̃ ∈ [0, 1 − γ

1−β ). This is equivalent to p ∈ ( 1
1−β , 1],

and thus q = 1 is the maximizer. This corresponds to the inducement correspondence
BD, and hence in V2, U is the triangle between AC, CD and BD.

Finally, for p = 1
1−β , we have that y(p, q) = 0 and x ∈ [ γ

1−β ,
1

1−β ]. That is, the
obtainable mixed-strategy payoffs for this value of p is a subset of the inducement corre-
spondence for q = 0, i.e., the edge AC.

In conclusion, we have characterized U in V by splitting up V into two triangles V1

and V2 such that U ∩V1 is analogous to Lemma A.1 and U ∩V2 is a triangle. Therefore,
V1 \ U and V2 \ U are convex sets at the boundary of V.

ii) Now, let β < 0, γ > 1 and β + γ < 1. For this parameter constellation, we can
follow the same approach as in i) and split up U into values of p < 1

1−β , p >
1

1−β and
p = 1

1−β .

8As β < 0 and β + γ < 1, the implicit function p(x̃, q) is well-defined for all x̃ and q.
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For p < 1
1−β and γ > 1, y(x, q) is a quadratic, convex function in q, and therefore

the KKT conditions (A.2)–(A.10) do not yield sufficient conditions. Thus, it suffices
to check the two boundary points q = 1 and q = 0. We have that y(x, 0) = 0 and
y(x, 1) = 1− x1−β

1−γ > 0 for all x ∈ [0, y
1−β ). This is equivalent to p ∈ [0, 1

1−β ), and thus,
for this range of p, in V1, U is the triangle between AB, AC and BD.

For p > 1
1−β , ỹ(x̃, q) is a concave function in q. Thus, the KKT Theorem yields

sufficient and necessary conditions for a solution of the optimization problem (A.21).
Given the Lagrange multipliers α1, . . . , α4 ≥ 0, these are:

1 + x̃ (1− β)β(
β − q (1− γ)

)2 + α1 − α2 − α3
x̃β(1− γ)(

β − q(1− γ)
)2 + α4

x̃β(1− γ)(
1− q(β − γ)

)2 = 0 (A.22)

q ≥ 0 (A.23)
α1q = 0 (A.24)

1− q ≥ 0 (A.25)
α2(1− q) = 0 (A.26)

1
1− β + x̃

β − q(1− γ) ≥ 0 (A.27)

α3

(
1

1− β + x̃

β − q(1− γ)

)
= 0 (A.28)

βx̃

β − q(1− γ) ≥ 0 (A.29)

α4

(
βx̃

β − q(1− γ)

)
= 0 (A.30)

(1) Assume α1 > 0.
From (A.24) we obtain q = 0 as a possible solution, and from (A.26) it follows that

α2 = 0. Condition (A.27) is equivalent to x̃ ≤ β
β−1 , and from (A.29) we obtain that

x̃ ≥ 0 must hold. Assume α3 > 0, then x̃ = β
β−1 must hold and (A.22) is satisfied for

suitable α1, α3, α4 ≥ 0. For α3 = 0 and α4 > 0, x̃ = 0 must hold, but then (A.22) yields
a contradiction as 1 + α1 > 0. For α3 = 0 and α4 = 0, 0 ≤ x̃ ≤ β

β−1 must hold, but then
1 + α1 + x̃(1− β) > 0, which also conflicts with (A.22). Therefore, q = 0 is a solution if
x̃ = β

β−1 .
(2) Assume that α1 = 0 and α2 > 0 hold.

From (A.26) we obtain that q = 1 is a possible solution. As β + γ < 1, (A.29)
yields that x̃ ≥ 0 must be satisfied, and by (A.27) we have that x ≤ β−1+γ

β−1 has to hold.
Assume α4 > 0. From (A.30) we have that x̃ = 0 must hold, and therefore α3 = 0.
Condition (A.22) is satisfied for α2 = 1.

For α4 = 0, assume first that α3 > 0. That is, x̃ = β−1+γ
β−1 needs to hold. But

then, (A.22) becomes 1 − β
β−1+γ − α2 + α3

β(1−γ)
(1−β)(β−1+γ) = 0, which is a contradiction

as β + γ < 1 and γ > 1. Therefore, α3 = 0 needs to hold and Condition (A.22) reads
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1− x̃(1−β)β
(β−1+γ)2 − α2 = 0. Thus, x̃ = (1−α2)(1−β−γ)2

β(β−1) , and for α2 ≤ 1, (A.27) and (A.29) are

satisfied. Therefore, q = 1 is a solution if x̃ ∈ [0, (1−β−γ)2

β(β−1) ).
(3) Finally, assume that α1 = 0 and α2 = 0 hold.

First, assume that α4 > 0. Then, (A.30) yields that x̃ = 0 has to hold, which conflicts
with (A.22). Therefore, α4 = 0 must hold.

If we assume that α3 > 0, we receive from (A.28) that q∗∗ = β−x̃(β−1)
1−γ is a possible

solution. For (A.23) and (A.25) to be fulfilled, x̃ must satisfy x̃ ≤ β
β−1 and x̃ ≥ β−1+γ

β−1 .
However, for this range of x̃, (A.22) is not fulfilled, and therefore q∗∗ is not a feasible
solution.

It remains to check whether α3 = 0. In this case, (A.22) yields two possible candidates:
q∗a = β+

√
x̃(β−1)β
1−γ and q∗b = β−

√
x̃(β−1)β
1−γ . The candidate q∗a does not satisfy (A.25), but

q∗b is in the unit interval for x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ].

Summarizing, we have obtained the following optimal qmax(x) for x ∈ [0, β
β−1 ]:

qmax(x) =


1, x̃ ∈ [0, (1−β−γ)2

β(β−1) )
β−
√
x̃(β−1)β
1−γ , x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ]

,

which yields

ỹmax(x) =


1 + x̃(1−β)

β−1+γ , x̃ ∈ [0, (1−β−γ)2

β(β−1) )
β−
√
x̃(β−1)β
1−γ (1 + x̃(1−β)√

x̃(β−1)β
), x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ]

.

Therefore, for p > 1
1−β we can describe the boundary of U below AC between the points

B and C as a function with a linear part, where q = 1, and a non-linear part, described
by the curve

C + x̃C + β −
√
x̃(β − 1)β

1− γ

(
1 + x̃(1− β)√

x̃(β − 1)β

)
(D − C)

for x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ].

Finally, for p = 1
1−β , we have that y(p, q) = 0 and x ∈ [ γ

1−β ,
1

1−β ]. That is, the
obtainable mixed-strategy payoffs for this value of p is a subset of the inducement corre-
spondence for q = 0, i.e., the edge AC.

In conclusion, we have characterized U in V by splitting up V into the two subtriangles
V1 and V2 such that U∩V1 is a triangle and U∩V2 is analogous to Lemma A.1. Therefore,
V1 \ U and V2 \ U are convex sets at the boundary of V.

B On The Punishment for Player 1
Consider the following 2× 2 game where Players 1 and 2 can choose between two pure
actions {u, d} and {l, r} and mix between them with probabilities (1−p), p and (1−q), q,
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respectively. Recall that we denote a mixed-strategy action by a = (p, q). The stage-game
payoffs of the pure strategies are given by the payoff matrix shown in Table B.1.

l r

u (0, 0) (4, 0)
l (0, 4) (0, 0)

Table B.1: Payoff matrix of the two-player strategic game.

Assume that v = (1.5, 1.5). Then, a1 = (1
2 , 0), a2 = (0, 1

2) satisfy the hypotheses
of Theorem 1: g(a1) = (2, 0) and g(a2) = (0, 2). However, as illustrated in Figure B.1,
these actions cannot be used to construct the normal phase. Nevertheless, we can easily
show that a1∗ = (1, 1

4) and a2∗ = (0, 3
4) satisfy the conditions of Proposition 1, and that

we can use these actions to construct the normal phase with expected average payoff v.
If we were to construct the penance punishment for Player 1 according to Farrell and

Maskin (1989, p. 335), the respective continuation payoffs of the punishment phase are
on the line segment between g(a1) and v, and the continuation payoff at time t is given
by

p1(t) = (1− δt1−t)g(a1) + δt1−tv (B.1)

for δ < 1 and a sufficiently large t1.
Let ε > 0 and v(ε) be the point on the line segment between g(a1∗) and g(a2∗) with

v1(ε) = v1 − ε. Then, by Lemma FM1, there exists a sequence of actions a1∗ and a2∗,
and a δ̂ < 1 such that for all δ > δ̂, the average expected payoff of the sequence is v, and
all continuation payoffs are limited to the line segment between v(ε) and v.

However, all continuation payoffs along Player 1’s punishment path will be on the
line segment between g(a1) and v, which lies strictly below the line segment g(a1∗) and v.
That is, when ε > 0 is too large, Player 2’s payoff on Player 1’s punishment path may be
smaller than in the normal phase. Since Player 1 is also better off in the normal phase,
there may be a period t such that the punishment payoff p1(t) is strictly Pareto-dominated
by a continuation payoff of the normal phase. That is, there is a renegotiation incentive
from Player 1’s punishment path to the normal phase which therefore contradicts the
WRP condition. This is illustrated in Figure B.1 for ε = 0.5.

If we decrease ε, according to Lemma FM1, we consequently need to increase δ. That
is, for ε −→ 0, we have that v(ε) −→ v but also δ −→ 1. This in turn implies that, by the
construction of p1 in (B.1), we also have that p1(t) −→ v. Hence, it is not clear whether
in the limit there is still a Pareto-ranking between the punishment and the normal phase.
In fact, we show in the following analysis that in our example, there may always be an
incentive to renegotiate from the punishment to the normal phase for all ε > 0.

According to Lemma FM1, all continuation payoffs of the normal phase satisfy

v1 ∈ [1.5− ε(δ), 1.5], v2 ∈ [1.5, 1.5 + γ(δ)]

for ε(δ), γ(δ) > 0. Note that due to the selection of a1∗ and a2∗, we have that ε(δ) = γ(δ),
and from the proof of Lemma FM1 (Farrell and Maskin, 1989, p. 356) we can determine
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Player 1’s payoff

Player 2’s payoff

bg(a1)

bg(a1∗)

b

g(a2∗)

b
vb

p1

b
v(ϵ)

Figure B.1: Punishment- and normal-phase payoffs in the game.

the value of ε(δ), which is given by

ε =
(

1
δ − 1

) (
g1(a2∗)− g1(a1∗)

)
= 3

(
1
δ − 1

)
.

Let δ > 0.9. Then, from the proof of Farrell and Maskin (1989, p. 335), we obtain
that t1 = 3 is sufficient for punishment. By (B.1), Player 1’s continuation payoff on her
respective punishment path at time t is given by p1

1(t) = 1.5δ3−t, while Player 2 receives
p2

1(t) = 2(1− δ3−t) + 1.5δ3−t. Then, for any δ > 0.9, we have that

p1
1(0) = 1.5δ3 < 1.5− ε(δ)
p1

2(0) = 2(1− δ3) + 1.5δ3 < 1.5 + ε(δ)

holds. Thus, there is an incentive to renegotiate from Player 1’s punishment before its
start to the continuation payoff v(ε) of the normal phase, as illustrated in Figure B.1.
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