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Abstract 
 
A general model of intertemporal consumption choice is developed, following Samuelson`s 

1958 OLG-approach. The efficiency properties of the model are discussed with and without 

the introduction of durable goods, of productive capital, and fiat money. It is shown that the 

criterion of golden rule efficiency is not reasonable, if transition periods are taken into 

account. Moreover, the introduction of an infinitely lived institution, which grows at the 

steady state rate, will definitely prevent the interest from falling beyond the growth rate. 

Hence, the main arguments against intertemporal efficiency of the market mechanism in 

OLG-models turn out to be invalid.  
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Introduction 
 
 
In his famous 1958 paper on the “biological” determination of the interest rate, Paul 

Samuelson showed that the market mechanism can readily fail to meet the golden-rule-

condition for maximum lifetime consumption (Samuelson 1958). This result has generally 

been taken as a proof of market failure, although apparently no market deficiencies such as 

externalities, asymmetric information etc. are involved. Samuelson himself called it a 

paradox, which, according to Diamond (1965; p.1129) ultimately arises from the comparison 

of steady states. Similarly, Starrett (1972, pp. 282) argued that “golden rule efficiency ignores 

problems of transition”. This is well known from common Solow-Swan-type growth models, 

where in general the interest rate is equal to the growth rate and hence the golden rule is met, 

unless some rate of time preference is employed. In Samuelson´s pure consumption-loans 

model, however, the golden rule is violated although no time preference is assumed at all.  

 

Starrett (1972, pp 285) argued that, in contrast to the production models, in the pure-

consumption model inefficiency only arises if the interest rate is lower than the growth rate. 

On the other hand, an interest rate being above the growth rate could simply reflect the 

transition costs of switching to the golden rule path and, therefore, could not be viewed as 

intertemporally inefficient. He seems to believe, however, that the former case is readily 

relevant and, hence, the market mechanism could not generally be trusted, even if a broader 

concept of intertemporal efficiency (i.e. including transition costs) is applied.1 

 

In the sequel, the problem is discussed within the framework of a three-generations OLG-

model which is both a generalization and an extension of the model in Samuelson (1958). 
                                                 
1 See Starrett, 1972, pp 285. He concludes: „Thus, competition may be an inefficient method of distribution, and 
the reasons seem to be exactly the opposite of those fort he production model.” (ibid, p. 287) 
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Starting with the pure consumption-loan case, durable goods, productive real capital, and fiat 

money are introduced into the model. By extending Starrett`s argument, it is shown that, with 

the interest rate exceeding the growth rate, the living generations always gain from deviating 

from the golden rule-path, even if the latter has already been realized. Moreover, it is shown 

that, with at least one infinitely lived institution which is growing at the steady state rate, it is 

virtually impossible for the interest rate to fall short of the growth rate in the steady state. 

Therefore, the market mechanism does much better with respect to intertemporal consumption 

choice than it is usually deduced from the golden rule-criterion. The paper finishes with a 

suggestive interpretation of the fundamental relation between the growth rate and the interest 

rate.          

 

 

I. A Simple Textbook OLG-Model 

 

We start with a generalized version of Samuelson`s original OLG-model. Let w = (w1;w2;w3) 

be the vector of incomes and c = (c1;c2;c3) the vector of consumption of three generations of 

consumers Gj  respectively, where G1 is the number of the youngest, G2 is the number of the 

middle aged, and G3 is the number of the older generation. All individuals live for three 

periods and seek to optimise their lifetime consumption according to a well behaved 

intertemporal utility function U(c1;c2;c3). There is no real capital, no durable good, and no 

money available to store one´s income for a following period. The only way of postponing 

ones consumption is the lending of real goods to other individuals, and the only way to bring 

ones consumption forward is to borrow real goods from them. Note that the elder generation 

G3 cannot even do this, for they will not be alive anymore in the next period and hence will 

neither save nor obtain any credit. It is assumed that all individuals are purely self-interested 

and that there are no heritages. Therefore the vector of individual savings (in terms of real 
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goods) is s = (s1;s2;0). With q = (1+i) denoting the interest factor (and i being the interest 

rate), this leads to the following set of microeconomic budget constraints:2 
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The macroeconomic constraint is  
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Adding equations (1) to (3) yields the overall budget constraint for individual lifetime 

consumption: 
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We generalize Samuelson`s original utility function U(c) = c1*c2*c3 as follows: 

∏
=
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3
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j
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The jα can be interpreted as consumption weights of the respective life periods.3 In the 

Samuelson case with j   1 ∀=jα , there is no explicit time preference, and hence the 

optimisation problem results only from diminishing marginal utility of consumption in the 

respective periods. 

                                                 
2 In the more general case of m Generations and hence with a lifespan of m equations (1) to (3) could be written 

as 0)*( 1
1

=−+− −
=
∑ qsswc jjj

m

j
j with m = 3 and s0 = sm = 0. 

3 By rewriting utility function (6) as 332211 ln*ln*ln*ln cccU ααα ++=  it follows that time preference 

is positive if 1−< jj αα  and vice versa. 
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After some manipulation of terms, maximizing (6) with respect to (5) yields: 
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Because the sum on the right hand side of (7) is constant, optimal individual consumption 

rises at the rate 1/* −jjq αα  with rising age j. Note that 1/ −jj αα  could thoroughly vary in the 

respective lifetime periods. In the Samuelson case of j   1 ∀=jα , optimal individual 

consumption rises simply at the interest factor q. 

 

Still following Samuelson and many other authors, we compare the market result to the 

consumption path, which a benevolent dictator would choose. If n is the rate of population 

growth and jj GGng /)1( 1−=+=  is the corresponding growth-factor, one has to maximise 

(6) with respect to:  

 

 0*)(** )8( 3
3

1

3

1

3

1

=−=− −

===
∑∑∑ j

j
jj

j
jj

j
jj gwcwGcG   

 

Replacing g by q in the right-hand version of the macroeconomic constraint (8) would 

immediately transform it into its microeconomic pendant (5). Hence, the market solution 

apparently equals the optimal centralised consumption plan if - and only if – the growth factor 

g and the interest factor q are equal. This condition is apparently equivalent to Phelp´s golden 

rule of accumulation (Phelps 1965). However, in contrast to the latter, it also holds if we 

assume 1≠jα  for any j, i.e. if any rate of time preference is implied. Moreover, as Samuelson 
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has shown, the market mechanism regularly fails to meet the golden rule even if all   1=jα , 

and, hence, no time preference is assumed.4  

 

His example of w = (1;1;0) with g = 1 and j   1 ∀=jα  shows easily why. From equations (1), 

(2), and (4) it follows that 
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This inserted into (5) yields 
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where c3 and c1 according to (7) are functions of q respectively. Solving (10) by numerical 

methods yields c = (1.434; 0.434; 0.132), 303.0≈q and an interest rate of 697.0−≈i .5 The 

problem here is not that the interest rate is negative, but that it falls short of  the growth rate, 

which is zero in this example. Therefore, the privately chosen consumption pattern, where cj 

increases with rate q in each period of lifetime, is clearly inefficient in the light of the golden 

rule criterion (which would suggest a flat intertemporal consumption path because of n =  0). 

Moreover, an interest rate i = 0 ,which would meet the golden rule, is not at all feasible in this 

example. The members of the middle aged generation G2 simply do not encounter enough 

demand of loans by the members of the young generation G1. They therefore cannot postpone 

more of their consumption than c3= 0.1315 (instead of the golden rule quantity c3= 0.666) to 

                                                 
4 As a matter of fact, it would be sufficient that all jα are equal. 
5 See also Samuelson (1958), p. 478. 
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their seniority, despite of the negative interest rate. As Kotlikoff (2006) has shown, the 

situation would be even worse in a model with only two generations and  w = (1;0). In such a 

world, lacking any durable goods and any sympathy, the elderly would have to grovel for 

food, while their kids would just “pelt them with candy wrappers” and “experience no qualm 

in watching their parents starve” (Kotlikoff, 2006, p.1). A central planner could, in contrast, 

command a more equal distribution of lifetime consumption and hence, according to the 

respective population growth, maximize the long-term-utility of everyone.   

 

These examples are not at all far-fetched. On the contrary, the market solution would only by 

chance coincide with the golden rule-solution in a pure consumption-loan OLG-model 

(Starrett 1972). The general condition for this to apply is easily derived. From equation (7) we 

know that  
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By inserting (11) into (10) and requiring that q = g we find 
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Hence the Samuelsonian OLG-model meets the golden rule condition only if condition (12) is 

met.6 Otherwise, substantial inefficiencies seem inevitable unless a central planner intervenes 

in the market. As there is no reason why *
33 ww =  should apply, apart from pure coincidence, 

                                                 
6 If 31 αα =  holds equation (12) reduces to 1

2
3 * wqw = . Interestingly, the interest rate then depends on 

neither the consumption weight 2α  nor the wage w2 of the middle generation. Instead, just the relation 31 /αα  

matters. 
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there seems to occur a fundamental kind of market failure. In particular, in the light of 

Samuelson´s results a pay-as-you-go pension system appears to be highly superior to a funded 

pension scheme, because the former could easily achieve the golden-rule-condition, while the 

latter does regularly not. 7 

 

II. Extending the model 

 

Samuelson`s assumptions are quite narrow. It makes sense to relax them, in order to give 

private agents some more options for adjustment.  

 

A first attempt could be to allow for the existence of a durable good which lasts for one 

period. Equation (4) would then change in DGsGs =+ 2211 ** , where D denotes total 

investment in real goods per period. On the one hand, this would instantly prevent the interest 

rate from becoming negative, because with i < 0 everyone would prefer to invest in the 

durable good instead of lending. On the other hand, however, this could not prevent the 

interest rate from falling short of  the population-growth, if the latter were positive. For with a 

positive interest rate, D would immediately become zero, and we were left with Samuelson´s 

original model again. Moreover, the existence of a durable good would even increase the 

danger of inefficiency, because with n < 0 it is impossible for i to equal n. Paradoxically, it 

follows that the additional option given to private agents seems to worsen the market failure 

instead of curing it. 

 

Alternatively, following Diamond (1965), one could introduce productive real capital into the 

model. Equation (4) is then replaced by 

                                                 
7 Note, however, that with w = (0;1;0) the problem disappears and hence an interesting and important class of 
OLG-models, where the young as well as the elder people have no income at all, is not affected by the 
Samuelson impossibility verdict. 
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where Kt+1 denotes the amount of real capital which is employed for production in the 

following period.8 Let us apply the Cobb-Douglas-production function 
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In contrast to Diamond, we assume that the capital good cannot be used for an infinite time, 

but wears out after one period. Then the right-hand side of (13) denotes the resulting factor 

income distribution with gross capital returns q = (1+i), where it is assumed that all members 

of a generation Gj are workers who earn wages wj, the latter now being endogen. L denotes 

the sum of all generations` labour input shares, the latter being weighted by their relative 

marginal productivity:9 
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 From (4i), (13), and (14), capital intensity k can be calculated as 
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8 One could think of corn which is invested in the form of seed instead of being consumed as bread. 
9 G2 and w2 are effectively used as numeraires in (14). 
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Partial differentiation of (13) yields 
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and 
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respectively.10 Employing (17), capital intensity k is also calculated from the production side 

and then set equal to (15): 

 

z

s
g

s

q

a
k









+

=






 −=
1

21

*)1(
 )18(

φφ
 

 

Regarding that savings s1 and s2 depend on the interest rate, q must in general be calculated by 

numerical methods. As can be easily seen from (17), the resulting interest rate may well be 

negative (i.e. q < 1), if savings are high enough, thereby forcing capital intensity to exceed the 

critical value ( ) φφ /1*)1(* ak −= . For example, a part of the crop could be rotting in the 

stores.11 Much more important is, however, that q will again regularly differ from g, and 

hence the golden rule is still violated by the market mechanism. A most simple example is the 

Samuelsonian case of g = 1, j   1 ∀=jα  , w1 = w2 > 0 and w3 = 0. Assuming a = 1.53 and 

8.0=φ  we end up with w = (1;1;0), c = (0.826; 0.561; 0.381) and q = 0.679. Although the 

                                                 

10 From (14) and the right-hand side of (13) it follows that ∑
=

=
3

1
2**

j
jj wLwG . 

11 A nowadays more relevant example are dwells whose rental fees fall short of the deviations. 
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resulting interest rate i = -0.321 exceeds its corresponding value without real capital (which 

was -0.697) it still falls short of the growth rate and is therefore clearly inefficient.   

 

Another possible way out was already sketched – though not actually modelled - by 

Samuelson himself, namely the introduction of money (Samuelson 1958, p. 481). The basic 

idea is that, with total money M being constant (and also a constant velocity of circulation v), 

the rate of inflation (or deflation) should be inversely related to the economy`s growth rate n. 

Fiat money therefore yields a real interest rate which is equal to the growth rate. If so, q could 

apparently never fall short of g, for then everyone would prefer hording money instead of 

lending. In contrast to the durable-good-case, this holds also true if the economy shrinks and, 

therefore, i = n < 0.  The reason is, that, with money being available, individuals are no longer 

restricted to barter.12 Instead, they can earn, buy, borrow and lend in terms of money. 

Denoting nominal terms as capitals, the set of individual budget constraints (1) to (3) changes 

to 
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In the steady state, the inflation factor pt/pt-1 is constant and perfectly foreseen by everyone, 

and q is, therefore, still the real interest factor. By dividing equations (1i) to (3i) by the price 

                                                 
12 The workers of one epoch are given “a claim on workers of a later epoch, even though no real quid pro quo  
(other than money) is possible.” (Samuelson, 1958, p. 482; italics in the original). This is what Samuelson called 
the social contrivance of money.  
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level pt
13, we arrive exactly at the “real” budget constraints (1) to (3) again. The 

macroeconomic condition (4), however, changes now to the nominally defined constraint 

 

HGSG =+ 2211 **S (4ii) . 

 

 Written in real terms, this is 

 

hGsGsiii =+ 2211 ** )4( , 

 

where H denotes the aggregate amount of hoarding and h = H/p. In order to get a measure of 

the amount of real hoarding that is constant in the steady state, h must be related to any other 

growing macroeconomic aggregate, e.g. to total wages L*w2. By making use of (14), the real 

hoarding share of total wages can then be reckoned as 
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which is clearly constant for any ggq == . 

 

Obviously, for h > 0 it must be true that q = pt/pt-1 = g, due to arbitrage in giving loans or 

holding money. Therefore, real hoarding h can be calculated by replacing q by g in equation 

(7). The resulting intertemporal consumption pattern c is then, of course, the golden rule 

consumption pattern. For example, in the Samuelsonian example with w = (1; 1; 0) and g = 1, 

the introduction of fiat money MM =  leads to 5,0=ω  and jfor   666,0 ∀=jc . 

                                                 
13 The subscripts in equations (1i) to (3i) stand for the periods of individual lifetime t here. They are no longer 
identical for the respective cohorts j, because nominal terms may change in time due to changing prices.  
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Nevertheless, also this solution is far from being perfect. First of all, if q > pt/pt-1 = g, 

hoarding will obviously stop and money is solely used as a medium of transaction. This leads 

back to the original model without money, and c again ceases to meet the golden rule 

condition. Moreover, it is doubtful if society would in reality accept permanent inflation or 

deflation, which only aims at the abstract target of golden rule efficiency. They would 

presumably rather stick to a stable money policy and install instead a pay-as-you-go pension 

scheme in order to escape the obvious limits of private capital markets in terms of efficiency. 

 

III. Solving the paradox 

 

It seems that we are left with one of the many paradoxes in capital theory. None of the 

common causes of market failure applies here, and nevertheless decentralized decision 

making obviously fails to be efficient. Although this result has baffled many writers on the 

subject – including Samuelson himself –, it has lastly been accepted by most of them, 

although more or less unwillingly.14 Others have at least  broken some bricks out of the 

seemingly insurmountable wall (Diamond 1965; Starrett 1972), mainly by pointing to the 

limits of a pure steady state analysis.   

 

A first breakthrough was achieved by Starrett, who argued that inefficiency occurs only if the 

interest rate falls short of the growth rate, but not if it exceeds it. With the help of our model it 

can be demonstrated why this is true.15 We keep assuming all 1=jα  and hence time 

preference being zero, for – unlike in common growth theory - this is not the crucial point 

here. With gq ≠ and the market consumption pattern (7) initially being realized, by moving 

                                                 
14 Early commentators were Cass/Yaari (1966) and Meckling (1960).  
15 Starrett presents a more general proof but uses a model with just two periods of lifetime.  
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to the golden rule consumption pattern, lifetime utility U( c) could be elevated for all 

individuals in the long run. The new – and permanent – vector of consumption would then be 

 

 ∑
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where q is simply replaced by g in comparison to (7). However, with q > g, there must be 

some losers in the transition period. For on the one hand, with q exceeding g, consumption 

tends to be shifted in favour of the young generation G1.
16 On the other hand, however, the 

change of the consumption pattern does not change the total amount of possible consumption 

within the transition period. Therefore, someone has to suffer a loss in that period, namely the 

oldest generation G3 ,whose consumption per capita declines.17 They will not at all benefit 

from the change in the consumption pattern, because they will already be dead when the 

golden rule path begins to deploy its advantages. Therefore, if the interest rate exceeds the 

growth rate, the resulting market consumption pattern can definitely not be called inefficient 

in a strictly Paretian sense (Starrett, 1972, pp 281).  

 

Starretts argument can even be extended as follows: 

 

Proposition I: Given the assumptions above, if the golden rule consumption pattern is already 

established, at time t all of the then living cohorts t
jG  would either benefit or at least remain 

unaffected from a switchback to the market solution, if the competitive q exceeds g.  

 

                                                 
16 For j = 1 the first deviation of (7) with respect to q is clearly negative, which means that G1 would be 
privileged by the golden rule compared to a market solution with q > g. 
17 The first deviation of (7) with respect to q is clearly positive for j = 3, i.e. they would gain from rising q and 
therefore suffer from returning to the golden rule. For j = 2 it can be shown that the opposite is true, but due to 
the argument above they could definitely not compensate the elderly without suffering a loss themselves.  
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Proof:  Assume, for instance, that all 1=jα , g = 1 and w = (1; 1; 2). Then the golden rule 

consumption pattern is c* = (1,333; 1,333; 1,333), while the competitive consumption pattern 

would be c = (0,887; 1,276; 1,837), with q = 1,439 > g. Starting with c* in period t, society 

could then decide to switch to the competitive c in the following period t+1. That would leave 

the welfare of tG3 unchanged, for they will not live any more in t+1. Cohort tG2  would clearly 

be better off with the switch, for their consumption in t+1 rises from 1,333 to 1,837. Cohort 

tG1 would suffer a small consumption loss of 1,333 – 1,276 in t+1, but gain an increase of 

1,837 – 1,333 in t+2. The latter must exceed the former, for the switch to c will definitely be 

at the expense of cohort 1
1

+tG , who have not yet been born in period t. Hence, because of the 

unchanged total sum c1+c2+c3 which is available per period, the sum of c2 and c3 must go 

beyond the sum of *
3

*
2 cc + . It might indeed be possible that 3232 *

3
*
232 ** αααα cccc < , but then it 

follows from *
3

*
232 cccc +>+ , that cohort tG2  could compensate cohort tG1  , such that the 

latter is lastly better off with c rather than with c* , q.e.d..18 

 

However, this argument does not hold for the opposite case where q < g. Shifting 

consumption towards the golden rule path would now benefit the elder and the middle 

generation in the transition period, while the young ones would suffer a loss in that period.19 

But, in contrast to the above case, the members of the seemingly loosing generation are at the 

very beginning of their life and will, therefore, reap all the fruits of the golden rule path in the 

following periods. Because the latter is, by definition, the best lifetime consumption plan they 

could achieve, nobody finally loses. Hence, an interest rate being below the growth rate is 

unequivocally inefficient. 

 

                                                 
18 The maximum utility which cohort tG2 could gain is therefore not 32

32 * αα cc but 32
3

*
332 *)( αα cccc −+  

19 This can easily be demonstrated by just reversing the arguments above. In the Samuelson case c = (c1; c2; c3) 
would change from (1.434; 0.434; 0.132) to (0.667; 0,667; 0.667).  
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But we can go even further by stating another proposition: 

 

Proposition II: With at least one infinitely living institution, which grows at the economies 

growth rate, it is generally impossible for the interest rate to be below the growth rate in a 

steady state. 

 

Proof: As is well known from the theory of public finance, with q < g, the state`s debt ratio d 

= D/Y can be held constant in a steady state, even with an enduring public primary deficit b = 

-S/Y. What is true for the state, is also true for any other infinitely lived institution, growing at 

rate g. From that it follows, that there are no limits for debt taking and, therefore, the demand 

for debt must rise until the interest rate at least equals the growth rate, q.e.d.   

 

 For a simple illustration, we write the total debt of any institution20 in year t as 

 

tttttt SDqDiSDD −=+−+= −−− 111 **)( )20(      

 

Dividing (20) by Y, and requiring that the debt ratio d is constant over time, finally yields21 
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Equation (21) clearly shows that the institution could maintain a permanent primary deficit 

quota b > 0 , without thereby raising the total debt ratio, if q is lower than g. In other words, 

with q < g in the steady state, there are no limits to lending, and the consumption ratio C/Y = 

                                                 
20 One could think of foundations, of enterprises, or of family dynasties where individual debt and assets are 
inherited ever and anon. 
21 Remember that g = (1+n) = Yt/Y t-1. 
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1 + b could be raised infinitely by simply raising the debt ratio d. These paradisiacal 

conditions would, in turn, raise credit demand ad infinitum, until finally the interest rate at 

least equals the growth rate and the party ends.22    

 

If we add a corresponding infinitely lived institution to the “monetary” version of our 

model,23 equation (4iii) changes to 

 

p

B
GsGsiv =+ 2211 ** )4(  

 

where B/p is the real worth of bonds which the institution (call it a bank) has emitted. Now 

the individuals can save both in terms of consumption-credits to others and in terms of bonds, 

thereby lending to the bank. B/p can then be calculated in the same way as real hoarding H/p 

in the “monetary” model from section II (and will of course generate the same results). 

Accordingly, B will also regularly be positive for q = g and zero for q > g. In contrast to the 

hoarding approach, however, this mechanism does not require inflation or deflation, but is 

perfectly compatible with a stable price level.  

 

One might ask who would finally collect the gains from costless lending in case of  q < g. 

However, we need not be explicit on this point, simply because in the steady state gq ≥  must 

hold, which, according to (21,) implies that all profits from pure lending will finally vanish.   

 

                                                 
22 This argument has already briefly been sketched in van Suntum (2004, pp.123) 
23 See section II above. We do not assume any hoarding here. Money is rather assumed to be used (and needed) 
just for transactions in both real goods and bonds. 
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One can easily combine the real-capital-version of the model from section II with the 

infinitely lived institution approach, assuming e.g. that the consumer goods producing 

enterprise does the additional lending B themselves. Then we get  
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With q = g, the equilibrium amount of Kt+1 and hence also the amount of B/p is easily 

calculated by setting the marginal productivity of K equal to g in equation (17), for with B > 0 

the rate of return, the interest rate, and the growth rate must all be the same.24  

 

IV. Concluding remarks    

 

We conclude that, while an interest rate above the growth rate is innocuous in terms of 

Paretian efficiency, the case of i falling permanently short of n is utterly impossible. This is 

not only true for theoretical steady state models, but seems to apply to the real economy as 

well. There has at least never been a longer period in any advanced economy during which the 

growth rate was below the interest rate. Hence, in the light of the preceding analysis, no 

severe - if any - market failure concerning decentralized intertemporal consumption choice 

remains.   

 

Some remarks on the fundamental relation between the interest rate and the growth rate seem 

appropriate. Assume utility function (6) with n = 0, all 1=jα  and w = (1;1;1) respectively. 

Then everyone will be totally satisfied with the flat consumption path c = (1; 1; 1) which 

                                                 

24 Capital intensity is then easily reckoned as 
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would result from both the market process and the golden rule plan. Now let population 

growth n rise from 0 to 1. Why should anyone switch to the golden rule pattern c* = (0.583; 

1.167; 2.333) although his personal income as well as the interest rate has remained 

completely unaltered?25  The answer is given by the following Proposition: 

 

Proposition III:  Given the assumptions above, with any growth rate other than zero, the sum 

of lifetime consumption per head (i.e. c1 + c2 + c3) could be raised without employing any 

additional resources, by shifting a greater share of total income to the generation with the 

lowest number of heads. This applies to both a growing and a declining population. There is, 

in principle, no limit for the possible lifetime consumption per capita if n  is sufficiently 

large. 

 

Proof:  The effect of a changing number of heads can easily be demonstrated by dividing the 

macroeconomic constraint (8) by G2 to obtain26 
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Equation (22) can be viewed as a resource-consumption function, where the left-hand factors 

g, 1, and 1/g are weights which indicate the relative resource requirements of c1, c2, and c3 

respectively. It is immediately clear from (22) that, in order to maximize the sum c1 + c2 + c3, 

one has to shift total income to the generation with the smallest weight factor respectively, 

q.e.d.27 

                                                 
25 The figures can easily be reckoned from (7) and (7i) respectively. 
26 The right hand part of (22) is derived by inserting equation (14). 
27 With g = 1 the division of consumption over time would be arbitrary. If g > 1  => c1 = c2 = 0;   c3 =  z * w2 * 
g; if g < 1  => c3 = c2 = 0;   c1 = z * w2/g 
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With a logarithmic utility function like (6), the reasonable amount of such a consumption shift 

is of course limited, due to the rising marginal utility of decreasing consumption in the 

discriminated periods. Nevertheless the argument sheds some light on the seeming miracle 

that macroeconomic growth matters for utility maximization, even if all individual incomes 

remain the same. However, as was argued above, it need not at all be a central authority to 

make this hidden link actually work in order to prevent inefficiency, because the market 

mechanism does the job as well.     
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