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From Hero to Zero: Evidence of Performance Reversal and

Speculative Bubbles in German Renewable Energy Stocks*

Abstract

Stocks of German renewable energy companies have commonly been regarded as lucrative
investment opportunities. Their innovative line of business initially seemed to promise
considerable future earnings. As shown by two powerful bubble tests, the positive
sentiment for renewable energy stocks even led to explosive price behavior in the mid-
2000s. However, intense sector competition and the economic downturn following the
global financial crisis erased profit margins to a large extent. As a result, the former fad
stocks have recently turned into losers, loading negatively on price momentum and
delivering significantly negative Carhart (1997) four-factor alphas. The radical shift in
Germany’s energy policy following the Fukushima nuclear disaster in Japan could thus
only temporarily halt the continuing decline in alternative energy stock prices.
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1. Introduction

The rapid expansion of renewable energies in recent years has made the sector one of the
most promising industries and has attracted the attention of a growing number of investors.
According to Bloomberg New Energy Finance (2011), the global new investment volume
in renewable energy reached a new record high of US$211 billion in 2010, an increase of
32% compared to 2009. The growth path was only temporarily interrupted by the global
financial and economic crisis. After experiencing double-digit growth rates in the early and
mid-2000s, new investments remained practically unchanged in 2009. Despite strong
growth in the last years and the adoption of energy policies favoring the use of renewable
energy sources in nearly 120 countries, renewable power generation accounted for merely
5.4% of the total global electricity generation in 2010 (Bloomberg New Energy Finance,
2011). Nonetheless, renewable energy sources constituted almost 30% of the increase in
global power generation in 2010, reflecting their prominent status in satisfying the world’s

increasing energy needs.

The further development and promotion of renewable energy technologies is also crucial
to dampening the economic effect of dwindling fossil fuel resources and to reducing carbon
dioxide emissions that substantially contribute to global warming (Leggett and Ball, 2012).
Similarly, renewable energy sources already play a decisive role in achieving the European
Union’s 2020 climate targets. Among others, the EU-27 member states have committed
themselves to raising the share of renewable energy in overall energy consumption to 20%

by 2020 (Klessmann et al., 2011; Eskeland et al., 2012).

In view of the sector’s growing importance, the primary goal of this paper is to assess
the performance of German renewable energy stocks during the time period from 2004 to
2011. Germany provides an interesting and unique setting to analyze the return behavior of

companies in the alternative energy sector. The German Federal Government undertook a



variety of energy policy changes that have paved the way for a transition to a sustainable
energy supply. Such measures include the adoption of the Renewable Energy Sources Act
in 2000, which aims to encourage the deployment of renewable energy technologies

through the use of feed-in tariffs, as well as the accelerated nuclear power phase-out.

Following the Fukushima nuclear accident in March 2011, Germany decided to
permanently shut down eight of its oldest nuclear power plants, while the remaining nine
reactors will go offline by 2022 at the latest. The unprecedented decision to accelerate the
nuclear power phase-out in Germany was entirely unexpected because in October 2010, the
German Federal Government successfully passed an amendment to the Atomic Energy Act
that even delayed the original phase-out strategy of June 2000. The amendment extended
the lifetimes of the country’s nuclear power plants for another eight to fourteen years
(Betzer et al., 2011; BMU, 2011; Nestle, 2012), but was repealed again in light of the

Fukushima nuclear disaster.

Given the increased public awareness of the potential risks of nuclear energy and climate
change, Germany set ambitious goals to foster the development of a sustainable energy
system. In 2010, the share of renewable energy sources in total energy consumption
amounted to 11.3%, whereas the contribution to electricity generation was slightly higher at
around 17.1% (BMU, 2011). By 2050, the German Federal Government even intends to
cover at least 60% of total energy consumption and at least 80% of electricity consumption
through the use of renewable energy sources (BMU, 2011). As a result, the growth
prospects for German alternative energy companies may appear bright at first glance.
However, fierce competition from Chinese manufacturers has increased the pressure on the
industry, in particular on solar companies. The excess supply of solar panels from China,
overcapacity and declining module prices have taken their toll on the solar industry’s

profitability. The strong decline in solar module prices began in the third quarter of 2008,



amidst the global financial and economic crisis. According to Bloomberg New Energy
Finance, a research provider that regularly collects market data from a variety of sources,
prices for crystalline silicon modules ranged from US$3 to US$4.13 per watt of generating
capacity between 2000 and mid-2008." Since then, prices have fallen below US$1 per watt,
which is even less than the production costs for many Western manufacturers. In 2011, the
price drop of nearly 52% from US$2.01 to US$0.97 per watt was particularly severe and
exacerbated the German solar industry’s struggle to survive. As a result, a number of once

pioneering German solar companies had to file for insolvency in late 2011 and early 2012.

The empirical findings of this paper are in line with the ambiguity concerning the current
economic conditions for renewable energy stocks. We first analyze the multi-factor
performance of two German stock indices — the OkoDAX and the DAXsubsector
Renewable Energies. These alternative energy indices earned substantial positive returns
from 2004 until 2007, even after controlling for exposures to the Carhart (1997) four-factor
model. Most interestingly, the index constituents loaded positively on the price momentum
factor, suggesting that they were perceived as winner stocks. However, the favorable risk-
adjusted performance entirely reversed between 2008 and 2011, when the German
renewable energy sector was severely hit by the global recession and the growing
competition from East Asia. As a result, German renewable energy companies have

recently turned into loser stocks and have delivered significantly negative Carhart alphas.

Given the positive market sentiment for renewable energy stocks in the first subperiod
from 2004 to 2007, we conjecture that the strong outperformance might have been driven
by a speculative bubble. To the best of our knowledge, no study has been conducted so far

to test for explosive price behavior in renewable energy stocks in the mid-2000s. The stock

! We thank Martin Simonek, solar analyst at Bloomberg New Energy Finance, for providing us with the
relevant data.



market bubble literature has mostly focused on international large-cap stock indices and the
dotcom era of the late 1990s. The reader may refer to Glrkaynak (2008) for a
comprehensive survey of econometric techniques widely used to detect bubbles in asset
prices. One reason for this gap in the literature might be the lack of usable data on
fundamental factors, such as regular dividend payments or positive corporate earnings.
Researchers interested in testing for speculative bubbles in German renewable energy
stocks are therefore confined to econometric methods that are not based on fundamental
factors, but rather focus on the time series of stock prices themselves. The main advantage
of the latter approach is that it avoids testing a joint hypothesis of the presence of
speculative bubbles and of the validity of the model used to determine the stocks’

fundamental values.

Modern techniques, which meet this requirement, are the supremum Augmented Dickey-
Fuller (sup ADF) test (Phillips et al., 2011, 2012) and the Markov regime-switching ADF
test (Funke et al., 1994; Hall et al., 1999). These two powerful unit root tests indeed find
explosive behavior in the real price time series of the OkoDAX and the DAXsubsector
Renewable Energies during the second half of the 2000s and thus corroborate our

conjecture.

The paper proceeds as follows. Section 2 provides a short review of the existing
literature on renewable energy stocks. In Section 3, we explain the research methodology
employed for performance measurement and bubble detection, while Section 4 describes
our data. In Section 5, we present our empirical results. Section 6 summarizes our main

findings and finishes with concluding remarks.



2. Literature Review

The extant literature on the performance and price behavior of renewable energy stocks is
still relatively scant. Henriques and Sadorsky (2008) show that prices of technology stocks
and of crude oil each individually Granger cause stock prices of alternative energy
companies listed on major U.S. exchanges. The authors emphasize that the return behavior
of alternative energy companies is closely related to that of high-tech stocks, whereas oil
price shocks only have a limited impact. In a similar vein, Sadorsky (2012a) employs a
number of multivariate GARCH models to study the volatility dynamics of alternative
energy stocks. In particular, he finds that stock prices of alternative energy companies
correlate more closely with technology stock prices than with oil prices. Kumar et al.
(2012) confirm these overall findings by showing that clean energy stock prices are
influenced by oil prices, interest rates and technology stock prices, but surprisingly not by
the prices of carbon allowance futures from the European Union Emissions Trading

System.

Moreover, Sadorsky (2012b) studies the determinants of systematic risk for U.S.-listed
renewable energy stocks over the time period from 2001 to 2007. He finds that an increase
in a company’s sales growth reduces the stock’s systematic risk, whereas a rise in oil prices
tends to have an even greater, yet positive impact on the stock’s beta. Interestingly, both
Henriques and Sadorsky (2008) and Sadorsky (2012b) document that renewable energy

stocks exhibit substantial market risk, as their betas range from 1.4 to even 2.

Bechtel and Fiss (2010) examine the redistributive effects of the government’s political
orientation on economic sectors for the period from 1991 to 2005. The authors find a
positive relationship between the electoral prospects of a left-leaning government in
Germany and the stock returns of the alternative energy sector. However, the recent

turnaround in energy policy adopted by the current conservative-liberal coalition



government suggests that Germany’s entire political spectrum now supports the

development of renewable energy sources.

Two very recent studies investigate the impact of the Fukushima nuclear disaster in
Japan on nuclear and alternative energy stocks. Ferstl et al. (2012) conduct an event study
for the time of the nuclear accident and find that nuclear energy companies in France,
Germany and Japan earn significantly negative cumulative abnormal returns, while
alternative energy companies in the same countries show a positive abnormal performance
during the event window. With the exception of Japan, the market adjusts rather quickly to
the news of the devastating nuclear accident, indicating some degree of market efficiency.
By contrast, U.S. nuclear and alternative energy companies do not seem to be significantly
affected by the event. Similarly, Betzer et al. (2011) investigate the unique and unexpected
reaction of the German Federal Government to the Fukushima nuclear disaster that
included the temporary shutdown of almost half of the nation’s nuclear power plants. The
authors report that German renewable energy stocks gained nearly 18% on a beta-adjusted
basis over the first 20 trading days after the incident, while the German nuclear and

conventional energy sector lost about 3.5% over the same period.

3. Methodology

3.1 Multi-factor performance measurement

The aforementioned literature identified some variables that influence the returns of
renewable energy stocks. However, the performance has not yet been studied extensively
from an investor’s perspective by attributing the returns to commonly used benchmark
factors. We therefore employ Carhart’s (1997) four-factor model to adjust monthly excess
returns for exposures to the market, size, book-to-market and momentum factor. The

performance attribution allows us to investigate whether the return behavior of renewable



energy stocks resembles that of known factor-mimicking portfolios and whether renewable
energy stocks earn significant abnormal returns. The Carhart (1997) four-factor model is

estimated via ordinary least squares (OLS) and reads as follows:
Rt - rf,t =a+ ﬂlMaTkett + ﬁzSMBt + ﬁ3HMLt + ﬁ4PR1YRt + (":t . (1)

R, — 1, is the index excess return over the risk-free rate in month t. The unconditional
Carhart alpha « represents the return in excess of the reward for the exposure to the four
factors. Market denotes the value-weighted market portfolio return of month t in excess of
the risk-free rate. The return difference between small-cap stocks and large-cap stocks is
denoted by SMB, while HML represents the return difference between high book-to-market
equity stocks and low book-to-market equity stocks. The prior one-year price momentum
factor PR1YR captures the return spread between a portfolio of past winner stocks and a

portfolio of past loser stocks. The error term is denoted by &, ~ N(0, 62).

Given the rather risky and uncertain nature of the renewable energy business, it is not
unlikely that factor exposures may change over time instead of being constant throughout
the sample period. We address this issue by allowing for time-variation in the Carhart alpha
and beta coefficients. We therefore express the Carhart (1997) four-factor model in state-

space form and apply the Kalman filter to estimate time-varying coefficients:

R 24 F )
—Tre =0+ + &,
t —TF¢t t k=1ﬁk’t k,t t
ay = ae_q +ve, v ~N(0,02), (3)
,Bk,t = Prt-1tNes Nt~ N(ﬁ' Q). (4)

The time-varying coefficients are assumed to evolve according to a pure random walk and

are denoted by a, and B, . withk = 1, ..., 4. Fy , represents the four factors of equation (1).



The normally distributed error terms &;, v, and n; are serially uncorrelated with zero mean,

variance o2, o2 and diagonal covariance matrix Q, respectively.

Equation (2) is called the measurement equation, while equations (3) and (4) represent
the transition equations, which describe the evolution of the unobserved state variables. The
Kalman filter is a recursive algorithm for computing the optimal estimates of the state
variables for each period t, conditional on the information set available at time t (Kim and
Nelson, 1999; Durbin and Koopman, 2001). This technique is applied to calculate
maximum likelihood estimates of the model parameters o2, o2 as well as Q and to derive
the filtered values of the state variables o, and S .. To start the algorithm, we set the initial
one-step-ahead predicted values of the state variables equal to the OLS estimates obtained
from the static model in equation (1) by using only the observations from the first 36
months. Empirical applications of the Kalman filter in multi-factor performance models can
be found, amongst others, in Swinkels and van der Sluis (2006), Mamaysky et al. (2008)

and Bauer et al. (2009).

3.2 Sup ADF test

Our bubble detection tests are based on methods that only require price time series. We
employ two powerful variants of the commonly known ADF test, which examine a possible

regime switch from a random walk to an explosive autoregressive process.

The first of these unit root tests, the sup ADF test, was originally proposed by Phillips et
al. (2011) and recently extended by Phillips et al. (2012) to account for the case of multiple
collapsing bubble episodes. Extensive simulations conducted by Phillips et al. (2011, 2012)
as well as Homm and Breitung (2012) indicate that the sup ADF test has substantial power
to detect speculative bubbles. Despite its very recent introduction, economic applications of

the sup ADF test are not limited to bubble phenomena on stock exchanges, but also cover



price booms in commodity and housing markets (Phillips and Yu, 2011; Homm and

Breitung, 2012).

Stock market prices are commonly assumed to follow a random walk. As a result, prices
usually contain a unit root, except during times when they deviate substantially from their
fundamental values. A period of soaring prices might be characterized by explosive
behavior or a speculative bubble, which is exactly what we would like to test for by using
the sup ADF test. This technique can be regarded as a sequence of ADF test statistics under
the null hypothesis of a unit root in the price time series of the renewable energy stock
index x, against the alternative of a mildly explosive root. The sup ADF test estimates the
conventional ADF model repeatedly on a forward expanding sample sequence and conducts
a right-tailed hypothesis test based on the supremum value of the corresponding sequence
of ADF statistics. These forward recursive OLS regressions are performed by using subsets
of the total sample incremented by one observation at each pass. More specifically, we

estimate the following ADF equation:

P
Me=w+8% 1+ ) GAv, +e, &~ NOGD), 5)
p=1

where A stands for the first difference operator, w, § and ¢, withp = 1, ..., P denote the
regression coefficients and &, represents the normally distributed error term.? The initial
regression involves 7, = [Tr,] observations, for some initial fraction r,, of the total sample
length T. Subsequent recursive regressions employ the initial dataset supplemented by
successive observations, thus yielding a respective sample of size T = [Tr] for r € (ry, 1) at

each step. Note that if = 1, the conventional ADF test is nested in the sup ADF procedure.

2 In order to ensure that the error terms &, are serially uncorrelated, we apply the general-to-specific approach
(Campbell and Perron, 1991). The optimal lag length P is determined by starting with the integer part of
Poax = TY* and then reducing the model until the last lagged difference term has a statistically significant
influence at the 5% level in each recursive regression.



For the unit root test under the null hypothesis Hy: 6§ = 0 against the right-tailed alternative

Hi: & > 0, we denote the corresponding t-statistic by ADE,.

In order to locate the origination and termination of explosive price behavior, we
compare the time series of the recursive test statistic ADFE,. with the right-tailed critical
values of the asymptotic distribution of the conventional Dickey-Fuller t-statistic. In
particular, if £, = [T7,] corresponds to the origination date and ¥, = [Tff] to the collapse
date of explosive price behavior, we compute estimates of these dates as in Phillips et al.

(2011):
fo = infey, {s: ADF; > cv(s)}, Ty = infgyp {s: ADF; < cv(s)}, (6)

where cv(s) = log(log(Ts)) /100 with s € (r,, 1) is the right-tailed critical value of ADF;
and corresponds to a significance level of slightly less than 5%. The sup ADF test is
applied to the daily and weekly price time series of the renewable energy stock indices,
deflated by the German Consumer Price Index (CPI). The inflation adjustment is carried

out to remove the effect of changes in consumer prices on stock price levels.

3.3 Markov regime-switching ADF test

The aforementioned sup ADF test is related to the similarly powerful Markov regime-
switching ADF test, which was originally proposed by Funke et al. (1994) and Hall et al.
(1999). While the sup ADF procedure allows calculating the origination and conclusion
dates of explosive price behavior, the Markov regime-switching ADF approach leads to
probabilities of being in the possible bubble and non-bubble regime, respectively. Put

differently, if speculative bubbles exist, the Markov regime-switching ADF test should be

® As the CPI data are only available at monthly frequency, we assume that inflation remains constant
throughout the entire month. We deflate the nominal time series by multiplying the stock index by the
consumer price index of the last sample month, December 2011, and dividing it by the consumer price
index of the respective month. The data points for December 2011 are thus identical in both nominal and
real terms.

10



able to distinguish between a moderately evolving regime on the one hand and an explosive
and subsequently collapsing regime on the other hand. An important difference between the
two techniques is that the sup ADF test does not specify the mechanism for switching to
explosiveness, whereas the Markov regime-switching ADF test selects the regime at date t
with a transition probability that depends on the regime the process was in at date t-1.
According to Phillips et al. (2011), it is reasonable to believe that the p-value of the right-
tailed sup ADF test is negatively related to the probability of being in the possible bubble

regime in the Markov regime-switching ADF model.

The first-order Markov regime-switching ADF equation reads as follows:

P
Axe = ws, + 85, X1 + Z 1<pp,StAxt_p +vs,, Us,~ N(o, aszt) (7)
p:

where S; = (0, 1) is the unobserved stochastic regime variable that follows a first-order
Markov process with constant transition probabilities, i = (ws,, Js,, ¥ps,) Withp =1, ...,
P are the regression coefficients, and vs, represents the normally distributed error term.* If
we are able to distinguish between a bubble and a non-bubble regime, we will obtain one
ds,, Which is statistically significantly greater than zero (i.e., this regime is explosive and
then collapsing), and another 5., which is not significantly greater than zero (i.e., this
regime is either stationary or contains a unit root). Since the probability of regime S;
depends on the past only through the value of the most recent regime S;_,, the transition
probabilities are defined as pyo= Prob(S; = 0 | S;_; = 0) and p;;= Prob(S; =1 | S;_; = 1).
Finally, we collect all unknown parameters in the vector 6 = (¥, aszt, Ds,.s,) and estimate 6
via the expectation-maximization (EM) algorithm (Hamilton, 1994; Kim and Nelson,

1999).

* As before, the optimal lag length P is determined by starting with the integer part of P,,,, = T*/* and then
reducing the model until the last lagged difference term has a statistically significant influence at the 5%
level in at least one regime.
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4. Data and Descriptive Statistics

Our sample is based on two widely followed German renewable energy stock indices, the
OkoDAX and the DAXsubsector Renewable Energies. The equal-weighted OkoDAX
comprises the ten largest German companies from the solar, wind, hydropower and
bioenergy sector, whereas the free float-weighted DAXsubsector Renewable Energies is a
broader index consisting of 23 companies as of December 2011. Our period of investigation
covers eight years between January 2004 and December 2011.° Daily and weekly price
index data for the bubble detection tests as well as monthly total return index data for the
performance measurement are taken from Thomson Reuters Datastream. The CPI data are

obtained from the Federal Statistical Office of Germany.

Panel A of Figures 1 and 2 depicts the performance of the two renewable energy stock
indices. The graphs show the inflation-adjusted price data, which we later use for our
bubble detection tests. Both indices rose steadily until January 2006 when renewable
energy stock prices virtually skyrocketed until May 2006. After a short correction phase,
stock prices began to climb up again in late 2006, reaching another peak at the end of 2007.
The subsequent eruption of the global financial and economic crisis in 2008 sent renewable
energy stock prices into a tailspin, from which they have not recovered yet. Moreover, as
can be seen by the little spike around March 2011, the Fukushima nuclear disaster in Japan
and the subsequent radical shift in Germany’s energy policy could only temporarily
counteract the continuing decline in renewable energy stock prices (see also Betzer et al.,
2011; Ferstl et al., 2012). As of December 31, 2011, the aggregate market capitalization of
the OkoDAX amounted to €3.3 billion, while that of the broader DAXsubsector Renewable

Energies stood at €4.3 billion. Market values have shrunk substantially compared to their

® We start on January 1, 2004, as this is the first date for which Thomson Reuters Datastream provides data
on the DAXsubsector Renewable Energies.
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all-time highs of €17.8 billion and €23.1 billion in 2007, respectively, turning German

renewable energy companies into small and micro-cap stocks.
[Figures 1 and 2 about here]

For the monthly market return in the Carhart (1997) four-factor model, we use the value-
weighted CDAX, which is a total return index covering the broad German equity market.
The risk-free rate is proxied by the one-month EURIBOR. We calculate the monthly factor-
mimicking portfolios SMB, HML and PR1YR by using all active and dead German stocks
listed on the Frankfurt Stock Exchange during the sample period, provided that return and
balance sheet data are available on Thomson Reuters Datastream and Worldscope. The

factors are constructed as described in Fama and French (1993) and Carhart (1997).°

Table | presents mean returns and the correlation matrix of the four factor-mimicking
portfolios for the sample period from January 2004 to December 2011. Not surprisingly,
the market excess return Market is only positive and significant for the first subperiod until
December 2007, before it turns negative in the wake of the global financial and economic
crisis of the late 2000s. The size factor SMB is negative for both subperiods, whereas the
value factor HML delivers positive returns throughout the entire sample period. The
momentum factor PR1YR is most pronounced with a positive and significant mean return of
0.92% per month. Overall, our results are similar to those reported in Artmann et al. (2012),

who investigate the German stock market for a much longer time period from 1962 to 2006.

[Table I about here]

® We closely follow the screening procedures suggested by Schmidt et al. (2011) to ensure data quality.
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5.  Empirical Results

5.1 Performance analysis

We investigate the multi-factor performance of the two renewable energy stock indices for
both the full sample period from 2004 to 2011 and two subperiods of equal length. Table 11
reports the regression results of the Carhart (1997) four-factor model in equation (1). For
the full sample period in Panel A, the OkoDAX earns a negative mean excess return over
the one-month interbank rate, whereas the DAXsubsector Renewable Energies delivers a
slightly positive mean excess return. However, since both excess returns are statistically
insignificant, investors would not have been much worse off if they had simply invested in
the money market. Similarly, the Carhart alphas are also statistically indistinguishable from
zero, indicating that the two renewable energy stock indices were not able to generate

abnormal returns in excess of the returns earned by the systematic benchmark factors.

Consistent with prior literature on U.S. alternative energy stocks (Henriques and
Sadorsky, 2008; Sadorsky, 2012b), the German counterparts also have market betas of
about two and are thus twice as risky as the general market. Besides, they load heavily on
the size factor SMB, which reflects their relatively small firm size in terms of market
capitalization. Given the negative size premium earned in Germany during the sample
period (see Table I), this pronounced sensitivity contributes negatively to the systematic
excess return component. The latter is negative, albeit not significant, for both stock
indices. Not surprisingly, the coefficient on the value factor HML is negative, indicating
that the returns of renewable energy stocks have more in common with the returns of
growth stocks. In addition, renewable energy stocks appear to be unexposed to the price
momentum factor PR1YR, at least on average for the entire sample period. It is worth

mentioning that the return behavior of renewable energy stocks contains a substantial

14



idiosyncratic component, since the four-factor model explains no more than 50% of the

return variation, as indicated by the adjusted R.
[Table 11 about here]

When splitting the full sample into two subperiods of equal length from 2004 to 2007
and from 2008 to 2011, respectively, some interesting patterns emerge. For the first
subperiod, the mean excess returns and the four-factor alphas are considerably positive and
mostly significant, reflecting the remarkable outperformance of renewable energy stocks
during that period of time. As also reflected in the price charts in Panel A of Figures 1 and
2, the mean excess and the mean risk-adjusted return are considerably higher for the
broader DAXsubsector Renewable Energies than for the OkoDAX. The positive loadings
on the price momentum factor PR1YR are also substantial and contribute positively to the
systematic excess returns. German renewable energy stocks could thus be regarded as
winner stocks in the mid-2000s. However, they became loser stocks in the second
subperiod from 2008 to 2011, when their exposure to PR1YR turned negative. Overall, the
prior outperformance turned into a pronounced underperformance. The negative and
significant Carhart alphas reveal that the two indices lost on average more than 2% per

month on a risk-adjusted basis.

The performance reversal suggests some time-variation in the coefficients of the Carhart
(1997) four-factor model. We therefore compute time-varying alphas and factor exposures
using the Kalman filter and display them in Figures 3 and 4.” The graphs illustrate both the
reversal of the momentum exposure and the deterioration in risk-adjusted returns of the two
stock indices. While the market beta and the sensitivity to the value factor HML remain

largely constant over time, the exposure to the size factor SMB tends to decrease somewhat

" Recursive and rolling window regressions yield similar results for the time-varying coefficients of the
Carhart (1997) four-factor model.
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until the middle of the second subperiod. This decline might be due to the increased market
capitalization of German renewable energy stocks after the sharp rise in stock prices in the

first subperiod.

[Figures 3 and 4 about here]

5.2  Sup ADF test

The multi-factor performance analysis reveals a remarkable outperformance of German
renewable energy stocks between 2004 and 2007. We next investigate whether the price
run-ups during that period of time were affected by speculative bubbles and perform the
sup ADF test as outlined in Section 3.2. Following Phillips et al. (2011), we set 1, which is
the fraction of the total sample size used to determine the initial window length, equal to
0.10. Using the recursive regression approach, the first row in Panel A of Table Il reports
the results for the real price indices of the OkoDAX and the DAXsubsector Renewable
Energies. The supremum of the recursive ADF test statistics, which is used to evaluate the
null hypothesis of a unit root against the alternative of an explosive root, is highly
statistically significant for both daily and weekly data. Thus, we conclude that speculative
bubbles were indeed present in German renewable energy stocks during the sample period

between 2004 and 2011.
[Table 111 about here]

In order to locate the origination and termination of exuberance, we compare the time
series of the recursive test statistics ADF,, which are displayed in Panel B of Figures 1 and
2, with the right-tailed critical values at the 5% significance level. The first row in Panel B
of Table 111 summarizes the bubble episodes identified by the recursive sup ADF test for
daily and weekly real price data of the OkoDAX and the DAXsubsector Renewable

Energies, respectively. Using daily real data of the OkoDAX, for example, speculative

16



bubbles can be detected in September and October 2005, from January to May 2006, and
again in February 2007. Relating this evidence to the price time series from Panel A of
Figure 1, we see that the inflation-adjusted OkoDAX indeed skyrocketed by up to 130

percent during the first months of 2006.

As a robustness check, we repeat the sup ADF procedure based on rolling regressions.
Hence, we do no longer extend the initial subsample by one observation at each pass, but
hold the length of the regression window constant and roll it through the entire sample.
Following Phillips et al. (2011), we set r = 0.20, so that the rolling window has 408 daily
and 83 weekly observations, respectively. The second row in Panel A of Table 11l presents
the results for the real price indices of the OkoDAX and the DAXsubsector Renewable
Energies, respectively. The maximum value of the rolling ADF test statistics is again highly
statistically significant for both data frequencies employed. The corresponding bubble
episodes identified by the rolling sup ADF test are reported in the second row in Panel B of

Table 111 and are qualitatively similar to those reported for the recursive approach.

Finally, we also run the generalized sup ADF test, as proposed by Phillips et al. (2012).
While the forward recursive approach fixes the starting points of the subsamples on the first
observation of the total sample, the generalized sup ADF procedure extends the subsample
sequence by changing both the starting points and the end points of the subsamples over a
feasible range of flexible windows. This modified test procedure may benefit from its
higher power compared to the conventional sup ADF test, once multiple collapsing bubble
episodes are present. As indicated by the third row in Panels A and B of Table Ill, the

generalized sup ADF test corroborates our overall findings.
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5.3 Markov regime-switching ADF test

Finally, we turn to our second bubble detection approach, namely the Markov regime-
switching ADF test. Phillips et al. (2012) point out that Markov regime-switching models
are not always able to distinguish periods that exhibit genuine explosive price behavior
from periods of spurious explosiveness caused by a high regime-dependent error variance.
As a result, they may erroneously identify different regimes, even though there are no
structural breaks in the data. To test for the stability of the ADF coefficient over time, we
first apply the Quandt-Andrews unknown breakpoint test to the real price data of the two
renewable energy stock indices. Results are reported in Table IV and show that all test
statistics are highly statistically significant for both daily and weekly data, indicating the
presence of at least one structural break in the ADF coefficient. This finding is not

surprising given the evidence for the sup ADF test in the previous subsection.
[Table IV about here]

The presence of structural breaks allows us to run the Markov regime-switching ADF
test as described in Section 3.3. Table V presents the results for the real price data of the
two renewable energy stock indices. Irrespective of the data frequency, some characteristics
appear to be robust for both stock indices. First, regime 0, which turns out to be the unit
root regime, is in all cases more volatile and slightly less persistent than the explosive
regime 1 (i.e., oy > 0y, Poo < p11)- Second and most important, the ADF coefficient in
regime 1 is always significantly greater than zero, indicating explosive price behavior. By
contrast, the ADF coefficient in regime 0 is not significantly smaller than zero and thus

suggests a unit root process.
[Table V about here]

In order to locate the origination and termination of the periods of explosive price

behavior, we finally turn to the filter and smoothed probabilities of being in the bubble
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regime 1. Panel C of Figures 1 and 2 shows these probabilities for the less noisy weekly
real price data of the OkoDAX and the DAXsubsector Renewable Energies, respectively. In
contrast to the relatively short bubble episodes identified by the sup ADF test, the Markov
regime-switching model identifies explosive price behavior for a much longer time period
beginning in 2006 and ending in early 2009. Apart from a few exceptions, the price indices
mostly stayed in the bubble regime during that period of time. Taken as a whole, the
Markov regime-switching ADF test strengthens our earlier empirical findings, but does not
switch back to the unit root regime as quickly as the sup ADF test does. More precisely, the
sup ADF test only detects explosive behavior, but does not incorporate sideways price
movements after a sharp price increase has occurred. By contrast, the Markov regime-
switching ADF test accounts for the prolonged period of time during which stocks trade at

higher price levels.

6. Summary and Conclusions

The rapidly growing renewable energy sector has attracted the attention of numerous stock
market investors over the last decade. To arrive at a fair valuation of renewable energy
stocks, it is of utmost importance to have a good understanding of the associated risk and

return properties, which substantially deviate from those of conventional large-cap stocks.

The goal of this paper was therefore to analyze the common risk factors that drove the
performance of German renewable energy stocks over the period from 2004 to 2011. We
focus on Germany as this country provides an interesting setting for two reasons. Both the
accelerated nuclear phase-out by 2022 and the ongoing efforts to encourage the transition to
a sustainable energy system make German alternative energy stocks appear lucrative at first
glance. However, increasing global competition and the current overcapacity in the solar

sector weigh heavily on the profitability of the renewable energy industry.
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Our empirical results for the two German stock indices OkoDAX and DAXsubsector
Renewable Energies mirror the ambiguity concerning the industry’s future economic
outlook. We find that German renewable energy stocks earned considerable risk-adjusted
returns during the first subperiod between 2004 and 2007. They also loaded positively on
the price momentum factor, indicating that they belonged to the group of winner stocks.
The strong outperformance, however, completely reversed during the 2008 to 2011 period,
when renewable energy stocks delivered significantly negative Carhart alphas and showed a
negative loading on price momentum. Moreover, German renewable energy stocks
exhibited substantial systematic risk, given their market beta of nearly two and a strongly
positive sensitivity to the size factor, which has delivered negative returns in recent years.
Altogether, the recent risk and return characteristics suggest that investors should be
cautious when holding German alternative energy stocks in their portfolios, as these could

prove detrimental to their overall performance.

It is interesting to note that German renewable energy stocks have turned into loser
stocks after being perceived as fad stocks during the mid-2000s. In fact, we find that the
outperformance for the years until 2008 was driven by explosive price behavior. Two
powerful variants of the ADF test detect the presence of speculative bubbles in German
renewable energy stocks before the global financial and European sovereign debt crises
erupted in the late 2000s. This evidence for the existence of a price bubble also attests to
the notion that positive investor sentiment for certain stock market sectors can easily trigger
sharp upward deviations from fundamental value, similar to those observed in the period of
irrational exuberance during the dotcom era of the late 1990s. However, we do not examine
in detail the potential sources of the identified explosive price behavior, which could have
resulted from the presence of a rational bubble, investors’ herding behavior, changing

economic fundamentals or time-variation in the discount rate used in present value models.
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The explosive price behavior could also be attributed to a concept known as the “peso
problem”. Investors might have perceived a small probability of an event — such as a further
increase in government support or seminal advances in technology — that would have
exerted a positive effect on the future profitability of renewable energy stocks. Apparently,
the stocks fell short of these high expectations market participants once placed upon them,

leading to a reassessment of their artificially inflated prices.

We suggest several avenues for future research. First, it would be interesting to see if
U.S. and Chinese alternative energy stocks exhibit a somewhat different price pattern, as
they might be more capable of withstanding the fierce competition. Besides, their
governments might follow a slightly different approach to supporting the deployment of
clean energy technologies and to ensuring the domestic sector’s global competitiveness.
Second, this paper focuses solely on the German renewable energy sector as a whole.
However, the bubble and return behavior might vary across subsectors, such as solar, wind
or biomass. It is also worthwhile to take a closer look at the impact which the various
government-funded support schemes have had on the emergence of alternative energy stock

price bubbles and their subsequent bursts.
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Table 1. Mean returns and correlations for factor-mimicking portfolios

Correlation Matrix

Factor 01/2004 — 01/2004 — 01/2008 —
Portfolio 12/2011 12/2007 12/2011
Market SMB HML PR1YR
0.24% 1.29% -0.82%
Market (0.41) (2.85) (-0.77) !
-0.46% -0.57% -0.36%
SMB (-1.38) (-1.53) (-0.64) -0.63 1
0.37%" 0.18% 0.55%""
HML (1.87) 0.62) (2.14) 0.23 -0.19 1
0.92%™" 0.96%"" 0.87%
PR1YR (3.07) (4.14) (1.58) -0.36 0.19 -0.03 1

This table shows mean returns of the Fama-French (1993) and Carhart (1997) factor-mimicking portfolios for the full sample
period from January 2004 to December 2011 as well as for two subperiods of equal length. The t-statistics are reported in
parentheses. Market is the market excess return over the one-month interbank rate, SMB and HML are proxies for the size
and value effect, and PR1YR is a zero-investment portfolio capturing prior one-year price momentum. Pearson correlation
coefficients are calculated for the full sample period from January 2004 to December 2011. ", ™ and ™" denote statistical

significance at the 10%, 5% and 1% level, respectively.
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Table 1. Four-factor model performance

Index MER SER a’tf Market SMB HML PR1YR Rgdj.

Panel A: Full Period 01/2004 — 12/2011

" -0.36% -0.32% -0.04% 1.98™ 153" -0.33 0.04

OkoDAX (-0.23) (-0.79) (-0.04) (12.22) (5.19) (-0.73) (0.13) 0.49

Renewable 0.21% -0.11% 0.32% 2.10™ 1.40™" -0.33 0.17 0.46

Energies (0.13) (-0.25) (0.32) (11.34) (3.57) (-0.66) (0.49) '
Panel B: Subperiod 01/2004 — 12/2007

" 3.47%" 2.43%" 1.04% 1.607" 1877 -0.48 1.58"

OkoDAX 2.32) (2.35) (0.99) (6.67) (7.73) (-0.86) (1.96) 0.40

Renewable 5.13% " 2.47%" 2.66%" 1.58™" 176" -0.18 1.52 0.34

Energies (3.30) (1.92) (1.88) (5.27) (4.44) (-0.24) (1.18) '
Panel C: Subperiod 01/2008 — 12/2011

" -4.19%" -2.08%"" -2.11%" 1577 0.90™ -0.23 -0.39

OkoDAX (-1.98) (-3.96) (-1.82) (9.71) (2.86) (-0.34) (-1.25) 0.53

Renewable -4.70%" -2.08%™" -2.62%" 1.65™" 0.69™ -0.44 -0.27 0.51

Energies (-2.26) (-3.64) (-1.97) (8.39) (2.25) (-0.59) (-0.85) :

This table reports the regression results of the Carhart (1997) four-factor model of equation (1) for the full sample period from January
2004 to December 2011 and for two subperiods of equal length. MER denotes the monthly mean excess return of the respective renewable
energy stock index over the one-month interbank rate. SER represents the monthly systematic excess return, which is the return component
explained by the four benchmark factors, while a*F is the risk-adjusted return component. The monthly index excess returns are regressed
on the market excess return (Market) as well as factor-mimicking portfolios for size (SMB), value (HML) and one-year price momentum
(PR1YR). Heteroskedasticity and autocorrelation consistent standard errors (Newey and West, 1987) are used to compute the t-statistics

reported in parentheses. *, ™ and “ denote statistical significance at the 10%, 5% and 1% level, respectively.
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Table 111. Sup ADF test

OkoDAX Renewable Energies
Daily Weekly Daily Weekly
Panel A: Sup ADF Test Statistics
Recursive 3.911™ 3.527 3.180™" 3.774™
Rolling 2.713™ 2.664" 2.982"" 3.400™"
Generalized 4531 3.564™" 4311 3.462™
Panel B: Bubble Periods
Recursive giggg: - égggg: 06/2005 — 07/2006 01/2005 — 06/2006 01/2005 - 06/2006
02/2007 — 07/2007 09/2007 — 11/2007 10/2007 - 11/2007
02/2007
) 09/2005 — 10/2005 08/2005 — 11/2005
Rolling 01/7006 — 05/2006 01/2006 — DB/2006 08/2005 — 05/2006 08/2005 — 05/2006
02/2005 — 03/2005
Generalized 09/2005 - 10/2005 01/2006 — 05/2006 09/2005 — 10/2005 09/2005 - 10/2005

01/2006 — 05/2006

01/2006 — 05/2006

01/2006 — 05/2006

This table reports the results of the sup ADF test. In Panel A, the maximum value of the sequence of ADF test statistics, which is
used to evaluate the null hypothesis of a unit root against the alternative of an explosive root, is shown for daily and weekly real
price indices of the OkoDAX and the DAXsubsector Renewable Energies, respectively. In the recursive and generalized sup ADF
regressions, r, = 0.10, and in the rolling sup ADF regressions, r = 0.20 (Phillips et al., 2011, 2012). The optimal lag length is
determined by starting with a maximum lag of [T/4] and then reducing the model until the last lagged difference term has a

statistically significant influence at the 5% level in each regression. “ denotes statistical significance at the 1% level. Critical values

for the sup ADF statistics are taken from Phillips et al. (2011, 2012). Panel B shows the start and end dates of the detected bubble

periods. The sample period contains 2043 daily and 417 weekly observations from January 2004 to December 2011.
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Table 1V. Stability tests

OkoDAX Renewable Energies
SupLR ExpLR AvelR SupLR ExpLR AvelR
Daily 16.318™" 4.204™ 3.941™ 18.139™" 4788 3.497”
Weekly 11.780™ 2.820™ 3.022™ 14.649™" 3.690™" 3.004™

This table shows the results of the Quandt-Andrews unknown breakpoint tests, which measure the stability of the ADF
coefficient in the conventional ADF equation, for daily and weekly real price indices of the OkoDAX and the DAXsubsector
Renewable Energies, respectively. SupLR, ExpLR and AvelLR are the values of the supremum, the exponential and the average
likelihood ratio test statistic, respectively. The optimal lag length is determined by using the Schwarz information criterion. *, ™
and ™ denote statistical significance at the 10%, 5% and 1% level, respectively. The sample period contains 2043 daily and 417
weekly observations from January 2004 to December 2011.
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Table V. Markov regime-switching ADF test

OkoDAX Renewable Energies
St=0 St=1 St=0 St=1
Panel A: Daily Data
© 0.0253 -0.0072™ 0.0320 -0.0022
Se (1.245) (-2.394) (1.381) (-0.667)
s -0.0049 0.0032™" -0.0041 0.0010™"
Se (-1.468) (3.221) (-1.500) (0.950)
0 0.0511 0.1154™" 0.0652" 0.1185™"
L5 (1.422) (4.448) (2.044) (4.234)
0 0.0515 -0.0586™ 0.0384 -0.0463"
25 (1.423) (-2.377) (1.198) (-1.802)
0 -0.0030 -0.0076
35 (-0.092) (-0.308)
0 0.0316 -0.0068
45t (0.981) (-0.285)
0 -0.0774™ 0.0097
5.5t (-2.402) (0.416)
as, 0.1826 0.0453 0.2624 0.0501
Ds,.s: 0.9660 0.9793 0.9755 0.9778
Panel B: Weekly Data
® 0.1993 -0.0134 0.3424 0.0090
Se (1.548) (-0.824) (1.526) (0.343)
s -0.0361 0.0055™" -0.0387 -0.0012"
Se (-1.693) (1.100) (-1.618) (-0.151)
0 -0.0865 0.0113 -0.0826 0.0504
L5t (-1.064) (0.196) (-1.025) (0.858)
0 -0.0594 -0.0160 -0.0260 0.0192
2.5t (-0.726) (-0.295) (-0.322) (0.335)
0 0.1704™ -0.0814" 0.1310 0.0044
35 (2.045) (-1.681) (1.622) (0.078)
0 0.0110 -0.1548™"
45t (0.135) (-2.841)
as, 0.4759 0.1241 0.7304 0.1693
Ds..s: 0.9617 0.9803 0.9782 0.9891

This table shows the results of the Markov regime-switching ADF test for daily and weekly real price indices of the OkoDAX and the
DAXsubsector Renewable Energies, respectively. S, = (0, 1) is the stochastic regime variable that follows a first-order Markov process.
ws,, 0s, and @, 5, with lag lengthp = 1, ..., P are the regression coefficients. The optimal lag length is determined by starting with a
maximum lag of [T1/4] and then reducing the model until the last lagged difference term has a statistically significant influence at the
5% level in at least one regime. All significance tests are two-sided except for ds,, which is left-tailed (right-tailed) for the smaller
(larger) coefficient. The t-statistics are reported in parentheses. ", ™
respectively. o, represents the standard error of the error term and pg, s, denotes the transition probability. The sample period contains

2043 daily and 417 weekly observations from January 2004 to December 2011.
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Figure 1. OkoDAX

Panel A of this figure displays the daily real price index of the OkoDAX, which is deflated by the German CPI, for the time period
from January 2004 to December 2011. Panel B shows the sequence of the recursive ADF test statistics and the corresponding right-
tailed critical values at the 5% significance level. The recursive sup ADF test is performed for the daily real price index of the
OkoDAX. Panel C presents the filter and smoothed probabilities of being in the possible bubble regime. These probabilities are
derived from the Markov regime-switching ADF test based on the weekly real price index of the OkoDAX.
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Figure 2. DAXsubsector Renewable Energies

Panel A of this figure displays the daily real price index of the DAXsubsector Renewable Energies, which is deflated by the German
CPI, for the time period from January 2004 to December 2011. Panel B shows the sequence of the recursive ADF test statistics and
the corresponding right-tailed critical values at the 5% significance level. The recursive sup ADF test is performed for the daily real
price index of the DAXsubsector Renewable Energies. Panel C presents the filter and smoothed probabilities of being in the possible
bubble regime. These probabilities are derived from the Markov regime-switching ADF test based on the weekly real price index of
the DAXsubsector Renewable Energies.
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Figure 3. Time-varying four-factor model coefficients of the OkoDAX
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The solid lines of this figure display monthly time-varying coefficients of the Carhart (1997) four-factor model for the period from January
2004 to December 2011. The coefficients are estimated for the OkoDAX using the Kalman filter. The dotted lines represent confidence bands

for the 10% level of statistical significance.
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Figure 4. Time-varying four-factor model coefficients of the DAXsubsector Renewable Energies

The solid lines of this figure display monthly time-varying coefficients of the Carhart (1997) four-factor model for the period from January
2004 to December 2011. The coefficients are estimated for the DAXsubsector Renewable Energies using the Kalman filter. The dotted lines
represent confidence bands for the 10% level of statistical significance.
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