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Abstract

We introduce a forecasting method that closely matches the econometric properties
required by the theory on exchange rate prediction. Our approach formally models (i)
when (and if) explanatory variables enter or leave a regression model, (ii) the degree of
parameter instability, (iii) the (potentially) rapidly changing relevance of regressors, and
(iv) the appropriate shrinkage intensity over time. We consider (short-term) forecasting
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1 Introduction

Forecasting problems in economics and finance are in many cases complicated be-
cause potential predictive power of the considered regressors appears to be under-
mined by overfitting and instabilities, resulting in poor out-of-sample forecasting
performance.! The forecasting literature has addressed those issues focusing on
parsimonious models that limit the effect of parameter estimation error through
various shrinkage or regularization techniques. Furthermore, forecast combina-
tions have turned out to be useful to stabilize forecasts, since they are robust to
structural breaks and model misspecification; see, e.g., Rapach, Strauss, and Zhou

(2010).

Particularly, exchange rate forecasting is known as very tough. Although eco-
nomic fundamentals are considered to contain information with regard to future
exchange rate movements, the forecasting performance of exchange rate models
has turned out to be frequently inferior to a naive random walk benchmark, a
finding that dates back to the seminal study by Meese and Rogoff (1983). Given
the lack of success in predicting exchange rates by macro fundamentals, exchange
rates are considered as largely disconnected from economic fundamentals. This
phenomenon constitutes the "exchange rate disconnect" puzzle (Engel, Mark, and
West, 2008).% The prevailing view is that Meese and Rogoff’s finding has not been
convincingly overturned until today. Providing a comprehensive survey study,

Rossi (2013) finds that the forecasting ability crucially depends on the choice of

!See Rossi, Elliott, and Timmermann (2012) for a recent study on forecasting a very broad
set of financial and economic variables under model instability.

2The "exchange rate disconnect" puzzle particularly refers to short-term forecasting with
horizons of up to one year.



predictors, the forecast horizon, the sample period, the type of forecasting mod-
els, and forecast evaluation method. Despite some encouraging result for certain
predictors such as Taylor-Rule based forecasts (Molodtsova and Papell, 2009), no
predictor or model seems to provide systematically superior forecasts compared to
a random walk. Rossi (2013) concludes that predictability only appears occasion-

ally for some countries and short periods of time.

Sarno and Valente (2009) consider forecasting exchange rates using a predictive
procedure that allows the relationship between exchange rates and fundamentals
to evolve in a very flexible fashion. They conclude that the poor out-of-sample
forecasting ability of exchange rate models may be caused by poor in-sample model
selection criteria rather than by the lack of information embedded in the funda-
mentals and that the difficulty in selecting the best predictive model is largely due
to frequent shifts in the fundamentals. This finding fuels the search for a model
selection /averaging procedure that is able to keep up with frequent model changes.
Recent rational expectations models ascribe the instablity between exchange rates
and macro fundamentals to imperfect knowledge. Facing incomplete and het-
erogeneous information, investors in the foreign exchange market attach excessive
weight to an observed fundamental - the "scapegoat" variable - during some period
(Bacchetta and Van Wincoop, 2004; Bacchetta and Van Wincoop, 2006; Bacchetta

and Van Wincoop, 2013).> Markiewicz (2012) proposes a learning theory in which

3They rationalize exchange rate movements by a shift in an unobserved fundamental (e.g.
liquidity trades). Searching for an explanation for the exchange rate change, investors in the
foreign exchange rate market may attribute such a movement to an observed macro fundamen-
tal. The concerned macro fundamental becomes the "scapegoat" and feeds back to investors’
trading strategies, resulting in time-varying weights for the fundamentals. For survey evidence
that agents in the foreign exchange rate market frequently change the weight they ascribe to
fundamentals, see Cheung and Chinn (2001) and Fratzscher, Sarno, and Zinna (2012).



forecasts based on the selected macro variable feeds back into the actual exchange
rate dynamics. The theoretical argument behind those rational expectation mod-
els is that investors focus excessively on a time-varying subset of fundamentals
that changes over time. This gives rise to the need for an economertric forecasting
technique that is able to handle rapid shifts in parameters and allows the relevant
subset of economic fundamentals to change over time. That is, an appropriate
econometric model should be able to accomodate both parameter instability and
model uncertainty. Furthermore, the specified model universe ought to be gen-
eral enough to comprise all possible models of exchange rate behavior considered
plausible by the researcher as well as to allow also for the possibility that none of
the regressors is indeed useful for forecasting and, in this case, the model should
collapse to a simple random walk specification. Our approach allows a researcher
to include a multitude of different model specifications, while (s)he may rely on
the mechanism of the method to automatically eliminate potentially unnecessary
model features (such as regressors or time-varying coefficients) and, hence, ensures

parsimony.*

Recent empirical studies on exchange rate prediction employ shrinkage tech-
niques and flexible model averaging or selection criteria: Wright (2008) and Corte,
Sarno, and Tsiakas (2009) use Bayesian Model Averaging, Li, Tsiakas, and Wang

(2014) use the elastic net as a shrinkage technique and report encouraging results.

4An alternative to choose appropriate model specifications in an automated fashion would
be sequential hypothesis testing. However, there are at least two problematic issues that arise
with such a strategy: (i) Pre-testing problems, (ii) hypothesis tests are designed for constant
parameter models. Sequential hypothesis testing analyzes whether a restriction holds globally.
However, in time-varying parameter models, restrictions should be allowed to hold locally, that
is, at some points in time but not at others. Hypothesis testing cannot properly address this
issue.



Berge (2014) uses the gradient boosting method as a shrinkage device. Kouwen-
berg, Markiewicz, Verhoeks, and Zwinkels (2013) employ a backward elimination
rule as model selection criterion that intends to capture the (potentially rapidly
changing) set of relevant fundamentals which most accurately predicts exchange

rates.

The outlined theoretical and empirical literature on exchange rate forecasting
suggests a variety of desired characteristics with respect to a prediction procedure.
Our approach is meant to closely match those demands. Against this background,
we design a statistical approach that formally models (i) when (and if) explanatory
variables enter or leave a regression model, (ii) the degree of parameter instability,
(iii) the (potentially) rapidly changing relevance of regressors, and (iv) the appro-
priate shrinkage intensity over time. We use our proposed method to dissect the
different effects that influence forecasting performance for exchange rates. Particu-
larly, we focus on the following key questions: Which set of macro fundamentals, if
any, is relevant for forecasting at each point in time? Are time-varying coefficients
helpful? Is it worthwile to consider flexible model averaging/selection criteria?
How intensively are forecasts shrunk towards zero, that is, how strong is the data
support for the random walk model? Are the flexible models able to outperform

the random walk benchmark?

With respect to the methodological contribution, our work falls into the domain
of shrinkage in time-varying parameter models. We extend the complete subset
regression approach advanced by Elliott, Gargano, and Timmermann (2013) as a
shrinkage technique for constant linear regression models to a setting that allows

for time-varying coefficients, and include flexible model weighting schemes both



within and across subsets. There are only few studies in the econometric literature
that allow for changing complexity in time-varying parameter (TVP) models:
These methods include the time-varying dimension model (Chan, Koop, Leon-
Gonzalez, and Strachan, 2012), the Dynamic Model Averaging approach (Koop
and Korobilis, 2012) and the normal-gamma autoregressive (NGAR) process prior
approach (Kalli and Griffin, 2014). Our suggested approach has some appealing
properties: It allows for time-varying and predictor-specific shrinkage intensity,
it is transparent and computationally efficient and avoids arbitrary choices to be

made by the researcher.

The rest of the paper is organized as follows. Section 2 describes the predictive
regressors based on standard empirical exchange rate models, Section 3 introduces
the employed model specifications and the econometric methodology underlying
our forecasting strategies. In Section 4, we run a Monte Carlo simulation to
analyze the behavior of our proposed forecasting method. In Section 5, we report

our empirical results. Section 6 concludes.

>From a theoretical perspective, one could argue that parameter shrinkage should be sufficient
to induce parsimony into TVP models and there was no further need for modelling explicit model
change (i.e., where the model dimension can be reduced or expanded over time by setting time-
varying coefficients to zero). The argument is that coefficients are allowed to be estimated
zero when they are temporarily unnecessary and thus the dimension of the model should (at
least approximately) change over time. In this case, model uncertainty would automatically be
addressed by modelling parameter instability. However, in practice, such over-parameterized
TVP models can lead to poor forecast performance (see the forecasting results in our paper for
the "kitchen-sink" models or those in, e.g., Koop and Korobilis (2012) or Chan, Koop, Leon-
Gonzalez, and Strachan (2012)).

6The approach by Groen, Paap, and Ravazzolo (2013) involves a latent variable that indicates
whether a regressor is included in or excluded from the model. The binary decision is irreversible.
Hence, the approach is limited in the sense that the relevance of a variable is measured globally,
rather than being allowed to fluctuate over time. Similarly, the hierarchical shrinkage prior
approach (Belmonte, Koop, and Korobilis, 2014) effectively results in a variable selection method
since it shrinks some of the regression coefficients extremely close to zero for the whole time series.



2 The Menu of Fundamentals

Our considered set of variables for predicting end-of-month (log) exchange rate re-
turns comprises four regressors that are based on standard models. The predictive
variable in period ¢, x;;, is defined by the regressors ¢ = 1, ..., K = 5. In addition

to an intercept (z1.), the regressors are:

2.1 Uncovered Interest Parity

The regressor UIP is based on the uncovered interest parity condition as follows:

xQ,t = 'it — Z: (1)

i; is the domestic one-month nominal interest rate, ¢} is the foreign one-month
nominal interest rate (proxied by Eurodeposit interest rates). The interest rate
differential (i; —i;) is identical to the forward premium (f; — s;) since the literature
agrees that the covered interest parity condition holds (Akram, Rime, and Sarno,
2008). f; denotes the log of the one-month forward exchange rate at time ¢ (i.e.,
the rate agreed at time ¢ for an exchange of currencies at ¢+ 1). s; denotes the log

of the exchange rate.”

2.2 Purchasing Power Parity

The regressor PPP is based on the purchasing power parity condition:

XT3t = Pt — P;k — St. (2)

TAll data series are obtained from Datastream.



p: denotes the log of the domestic price level, p; the log of the foreign price

level.’

2.3 Asymmetric Taylor Rule

The regressor AsyTaylor is based on the (asymmetric) Taylor (1993) rule as follows:

gt =15(m — 7)) +0.1(g: —g;) + 0.1 (st +pf —pt) - (3)

7 is the domestic inflation rate, 7} is the foreign inflation rate, g, the do-
mestic output gap and g; the foreign output gap. We measure the output gap
as the (percent) deviation of real output from an estimate of its potential level
calculated using the Hodrick and Prescott (1997) filter. Fixing the parameters
to (1.5,0.1,0.1), we follow a standard choice in the literature (Molodtsova and

Papell, 2009).

2.4 Monetary Fundamentals

The regressor Monetary employs monetary fundamentals as follows:

w5 = (my —my) — (ipy — ip;) — ¢ (4)

m, denotes the log of the domestic money supply and m; the log of the foreign

money supply.!’ z'pg*) is the log of the domestic (foreign) industrial production.

8Prices are approximated by consumer price indices.
9We set the smoothing parameter to 14,400 as in Molodtsova and Papell (2009).
10We use the aggregates MO and M1 as proxies for money supply.



3 Model Specifications

We define a range of model specifications, starting with a simple constant linear
regression model in Section 3.1. Then, we will extend the model step by step. In
order to limit the effect of parameter estimation error, we employ the complete
subset regression approach (Elliott, Gargano, and Timmermann, 2013) in Section
3.2. With K potential regressors, there are 2 model combinations if each regressor
is either included in or excluded from the model. The complete subset regression
involves running predictive regressions for all model configurations that keep the
number of predictors fixed. A subset k comprises (1}: ) models of which each of
them includes k predictors. Elliott, Gargano, and Timmermann (2013) suggest
assigning equal weights to all models within a subset £ to provide an aggregate
(point) forecast of the subset. Hence, K aggregate subset forecasts are available at
each point in time. The authors propose to select the forecast of the subset which
would have given the best forecasting performance up to the given point in time as
the overall forecast. To increase flexibility, we expand their setup in the following
directions: By rewriting the regression model into a state space representation
(Section 3.3), we allow for time-varying coefficients. This way, we obtain density
forecasts for each model and exploit them to introduce flexible weighting schemes
within the subsets (Section 3.4). To combine the (density) forecasts across subsets,
we use optimal prediction pools (Geweke and Amisano, 2011), in Section 3.5. We

analyze how the shrinkage effect of our model comes into play in Section 3.6.

3.1 Kitchen-Sink Regression

We start with a simple linear regression model with constant parameters:



K

ASt = Z o+ /Bixi,t + €41, Ety1 = N (07 O'?) ) (5)

(2

where As; denotes the difference in the log exchange rate between period ¢ and
t—1. This model specification is sometimes referred to as “kitchen sink” regression
because it throws “everything but the kitchen sink” into the regression. With
many possible regressors and only a small sample size (small n, large T), economic
forecasting models that include all considered regressors are in many cases plagued
by parameter estimation error, resulting in a poor forecasts in terms of mean
squared prediction errors. For the case of constant linear regression models, many
techniques have been advanced to alleviate the concern of overfitting .!* We employ
complete subset regressions as a shrinkage technique for two reasons. First, the
technique outperforms many other shrinkage techniques both in a Monte Carlo
experiment and in an equity index forecasting exercise; see Elliott, Gargano, and
Timmermann (2013). Second, the method is extendable to the case of time-varying

coefficients and flexible model combination schemes.

" Those include, among others, bagging (Breiman, 1996), the elastic net (Zou and Hastie,
2005), lasso (Tibshirani, 1996) or Bayesian Model Averaging (Raftery, Madigan, and Hoeting,
1997). All shrinkage methods have one common characteristic: They aim at improving the

variance-bias tradeoff to enhance out-of-sample forecasting results. To illustrate this argument,

consider a simple linear regression model y = X3 + ¢ with E(¢) = 0 and V(¢) = 02. The

~ ~ 2
mean-squared error (MSE) of 8 can be decomposed as folows. MSFE (ﬁ) =E [(ﬂ - 6)} =
~\ 2 ~ ~ ~
Bias (ﬁ) +V (6), where Bias (B) =E (ﬁ) — (. While the OLS estimator is unbiased, the
shrinkage estimator is usually biased. However, its variance is in many cases lower than that of

the OLS estimator (in an extreme case, for a random walk forecast without drift, it is 0). As
shown by Tibshirani (1996), the MSE for the model forecasts is directly linked to the MSE of

the estimator: MSE (y — @)2 =E(y— @)2 = MSE (B) + 02. Hence, the forecasting accuracy
can be improved by reducing MSFE (B)

10



3.2 Complete Subset Regressions

For a given set of potential predictor variables, the forecasts from all possible
linear regression models that keep the number of predictors fixed, are combined.
A complete subset is defined by the set of models that include k£ < K regressors
.With K possible predictors, there are K unique univariate models and ny x = (Ik{ )
different k-variate models for £ < K. With K regresors in the full model and k
regressors chosen for each of the ’short’ models, there will be (1}: ) subset regressions

to average over within each complete subset, where each regressor in subset £ is

K-1

k_l) times. To get an insight into how the method

included a total of ny_1 x_1 = (
provides shrinkage, we outline the mechanism in A.1, closely following the setup
of Elliott, Gargano, and Timmermann (2013) and refer to their work for a more

detailed presentation.

3.3 State Space Representation

We introduce state space representation for a dynamic linear regression model
to accomodate time-varying coefficients. The specified TVP models differ with
regard to the included explanatory variables (with 2 possible combinations) and
the values that control the evolution of (possibly) time-varying coefficients. For
ease of presentation, we drop model indices and show the structure of a typical
dynamic linear model for t = 1,...,T, consisting of an observation equation (6)

and a system equation (7),

11



y = EF0,+v, v ~N(0V) (6)

0, = 0,1+ wy, wy ~ N (0, ;W) . (7)

The TVP model allows for a time-varying linear relationship between the uni-
variate (scalar) variable y; (in our case: log exchange rate returns As;) and the
vector of the explanatory variables F}, observed at time t — 1.2 F, = [1, X, ]
is a 7 x 1 vector of predictors for exchange rates, where r < K. 0; is an r x 1
vector of coefficients (states). We adopt a strict out-of-sample approach. That
is, for predicting y;, only information at or before time ¢ — 1 is used. To state
precisely on which information set beliefs about parameters are formed, let denote
I = [y, Ye—1,--, Y1, Fy, Fyr—q, ..., 1, Priors;—g|. This information set contains all re-
alized values of the variable of interest, all realizations of the considered predictive
variables as well as the priors for the system coefficients (6y) and the observational
variance (Vp). As the system equation (7) indicates, the evolution of the system
coefficients is assumed to follow a random walk, with coefficients being exposed to

random shocks w;.'3

Adopting a (conditionally) normally distributed prior for the system coefficients

and an inverse-gamma distributed prior for the observational variance results in a

12We will also consider direct 12-month ahead forecasts in our empirical work. However, to
keep our notation simple, we condition on the information set in period ¢ — 1.

13 All variances and covariances in the dynamic linear model are scaled by the unknown obser-
vational variance V;. Unscaled (co-)variances are indcated by asterisks, e.g., in the case of the
system variance, W; = V,W;*. For this aspect as wells as for the description of TVP models in
general, our notation is based on West and Harrison (1997). In empirical macroeconomics, there
is a widespread consensus to model time-varying parameters as random walks; see, e.g., Cogley
and Sargent (2005) or Primiceri (2005).

12



fully conjugate Bayesian analysis, ensuring that both prior and posterior come from
the same family of distributions. The conjugate specification at some arbitrary

time ¢ can be expressed as

ng NS
Vi ~ 16|52 ®)
et‘lt ~ tm {thtC:]? (9)
9t|]ta‘/t ~ N[mt,‘/%cz(] . (10)

S; is a point estimate for the observational variance V;. n; denotes the degrees
of freedom for the (unconditionally on V;) t-distributed coefficients. To initialize
the sequential prediction and updating process, we have to specify mg, Cy and
So.'* The point estimate for the coefficient vector is m; with scale matrix C; =
S;Cy. The forecast of y; (i.e., the predictive density) is obtained by integrating
out the uncertainty in the states 6, and the volatility V;, rendering a t-distributed
predictive density. In A.2, we will describe in detail, how, at some arbitrary time
t, beliefs are formed for the variable of interest and how new observations lead to

an update for the estimated system coefficients and their associated scale matrix.

We adopt a discount factor approach for modelling the unknown sequence for

W;. Consider the transition from the posterior time ¢ — 1 estimate for the scale

4In our empirical work, we use the empirical variance of the log exchange rate returns from
the "burn-in" period to determine Sy and choose ng = 5 to to express our initial uncertainty
about the observational variance. For a model with k regressors, we set mg = Ogx1, Co = g - I
with ¢ = 10. Thus we center the initial values for the system coeflicients around zero, surrounded
by a high degree of uncertainty. This diffuse prior allows for data patterns to be quickly adapted
at the beginning of the estimation. The results are qualitatively unaffected by alternative choices
for g, ng and Sy.

13



matrix of coefficients (C;_1) to the time ¢ prior for the scale matrix of coeflicients

(Rt)7

Rt = Ct—l + Wt. (11)

To accomodate the additional uncertainty involved in the estimate for the coeffi-
cients proceeding from time ¢t — 1 to time ¢, C;_; is inflated by the system variance

W;. Instead of estimating W;, the discount approach involves replacing W; by

1—90

W:
¢ h)

Ci1,0<6<1, (12)

and, hence,

1
Rt == gthl. (13)

0 is a discount factor providing that observations s periods in the past have
weight §°, implying an age-weighted estimation with an effective window size of
(1 —6)""; see Hannan, McDougall, and Poskitt (1989)."> For § = 1, the case of
constant parameters is included,'® § < 1 explicitly allows for variability in the
system coefficients. Values of § near 1 are consistent with gradual parameter
evolution, whereas low values of § allow for abrupt parameter changes. In our
empirical work, we will consider a grid of values for § € {dy,...,04} to allow for

different degrees of parameter instability. Concretely, we will consider a grid cov-

15The discounting/forgetting approach is well established in the state space literature, see West
and Harrison (1997)

16In this case, the diagonal elements in R; and C; will converge to 0 as t increases, ruling out
any uncertainty about the value of the cofficients. To see this, consider that in Equation (35)
both R; and AtA;Qt are positive (semi-)definite and S; = S for increasing ¢, since ny — oo; see
Equations (31) and (32).

14



ering 6 € {0.96;0.97;0.98;0.99; 1}.17 Notice, however, that ¢ is fixed within each
individual model. The data support for different degrees of parameter instability
is displayed at the level of the multimodel forecast, reflecting the data support

across models with different values of § at each point in time.

3.4 Flexible Model Averaging and Selection

There are d - (Ik( ) individual models in a typical subset k. The large set of models
at disposal raises the issue of an appropriate model averaging or selection scheme.
Elliott, Gargano, and Timmermann (2013) propose to assign equal weights to
the models, argumenting that this simple weighting scheme has turned out to be
difficult to be beaten by more flexible weighting schemes. However, in our con-
sidered model universe that includes also time-varying parameter models, simply
averaging the models can lead to poor forecasting results if a large part of the
model pool is inappropriate. Suppose, for example, constant coefficient models
are appropriate (over the entire period or at a certain point in time). Then, with
d € {0.96;0.97;0.98;0.99; 1}, constant parameter models make up only % of the
model pool in each subset. With equal weighting, there would be no mechanism to
control for this issue. For this reason, we search for model averaging/selection pro-
cedures that choose (temporarily) appropriate models in a data-adaptive fashion.
We will introduce two methods, Bayesian Dynamic Model Averaging (BDMA) and
Bayesian Dynamic Model Selection (BDMS). The BDMA approach nests classi-

cal BMA and equal weighting as special cases. With forecasting densities of the

17The boundaries are set based on the following considerations. As we want to allow for time-
varying coefficients rather than impose them, constant coefficients ought to be included in the
model. The lower boundary is set to 0.96 since we also want to include the possibility of very
unstable coefficients.

15



models provided by the estimation of the state space models, our combination
procedures exploits the models’ log predictive likelihoods for model combination

rather than measures of point forecasting accuracy.

3.4.1 Bayesian Dynamic Model Averaging

Our BDMA approach draws on insights from Dynamic Model Averaging (DMA)
proposed by Raftery, Kéarny, and Ettler (2010)."® DMA employs exponential dis-
counting in the weight dynamics according to the past forecast performance of the
individual models, thus allowing recent data to be emphasized.! DMA involves
specifying a discount factor to control down-weighting of older data. We gener-
alize Raftery’s implementation of DMA by addressing the uncertainty about the

discount factor, calculating it in a data-adaptive fashion.

Let denote p (M;|I;_1) the updated model weight for model ¢ at time t — 1. P
(M;|1;—1) indicates the prediction weight for model i at time ¢t — 1 (or put another
way: the prior weight for time t). « is a discount factor, 0 < o < 1, and shrinks

the posterior model weights towards equal weights,

p(Miutfl)a
J

S ()

j=1

P (M|l 1) = (14)

Updating model weights is accomplished by using Bayes’ rule,

18See Koop and Korobilis (2012) for an application to inflation forecasting.
Y Emphasizing recent data when combining models is also well known in the literature about
point forecasting; see, e.g., Stock and Watson (2004).

16



M;, I M| -
p(ur) = PO o) P ORI (15)

> (el M 1ma) P (M| L)

Jj=1

where the predictive likelihood of model i,

1 Yt — Uit
(| My, L—y) ~ ——=tn, i =1, (16)
Qi Qi

is used to a assess the forecasting performance for model ¢ and is obtained by
evaluating the predictive density at the actual value y;. i, Q¢; and n,_;; denote
the point estimate, the scale and the degrees of freedom of the predictive density
for a particular model i, respectively. High values of the predictive likelihoods
are associated with good forecast performance. Obviously, for a = 0, all models
are equally weighted, while for o = 1, there is no discounting and, hence, BMA

is recovered as a special case.?’

BMA attaches equal weights to all data from
s =1,...,t and, as t gets larger, posterior model probabilities will typically change
only slightly as new data points are added. Allowing for av < 1 increases flexibility

as model weights may change more rapidly.

Using Raftery’s version of DMA with a discount factor «, the predictive weight

attached to model 7 is

t
- Hp (yt—s|Miu ]t—s—l)aS .

S

P (Mill;—1) o< [P (Mi|li—2)p (ye—a|lM; 1 2)]" (17)

20In this case, the predictive likelihoods are identical to the marginal likelihoods; see Raftery,
Kérny, and Ettler (2010).

17



Thus, model ¢ will be attached more weight if it has provided accurate forecasts
in terms of predictive likelihoods in the (recent) past compared to its peers. The
discount factor a controls the exponential discounting of likelihoods according to

their recency.

As, however, a certain value of a might only be locally appropriate, we let «
evolve over time and integrate (sum) out the associated uncertainty. Initializing
the process of model combinations involves specifying priors on model weights,
p (M;|Iy), Vi =1, ..., J.2! To obtain predictive weights, we use an equation similar

o (14), but in contrast to (14), we sum over the discrete set of considered grid

points for .

=P(M;|Ii—1,00)

Mu“:zj (). (18)

o Z (M| I,_)™

p (M;|1;—1) refers to the time ¢ — 1 posterior model weights. We consider values
on the grid a, € {ay,aq,..,,}, where 0 < «, < 1 and a denotes the number
of grid points.?> We will consider the grid a € {0;0.80;0.90;0.95;0.99;1}. The

updating step for model weights is accomplished by

- M, I,_1) P (M;|1,_1, o,
p(MilL) =) Jp<yt’ =) P (Milliy, o) - p (o). (19)
TS p (el My, L) P (M| Ty, o)
=1

2'Tn our empirical work, we initially assign equal weights to each model configuration, that is
p (M;|Io) = ﬁ%),w =1,..,J.

22Tn our empirical work, we assign equal weights to each considered grid point for «, i.e.
pla:lly)=12=1,..a

18



The time-t posterior of a particular grid point for the discount factor « is

obtained as

J
> My, Ly) P (M| Ty, ) p(az |y
p(az|l) = QFIJ NVz=1,.,a, (20)
SN p @My Iia) P (My|T-1, 00) p (| Iis)
v=1 j=1

J
where Z p (ye| M, I_1) P (M;|1;—1, a,) is the predictive likelihood of the multi-
j=1
model involving all J considered models with weights governed by the particular

value .

There are at least two motivating aspects for the use of likelihood discounting.
First, it is reasonable to think that more recent data will provide more relevant
information for predicting, since recent data are in many situations more likely to
occur in a similar (economic) environment. Second, the discounting approach with
its provided shrinkage toward equal weights can prevent attaching the entire weight
to one particaular model, as it is (asymptotically) the case for standard BMA which
cumulates the unweighted likelihoods. In a calm environment, high values for a
are expected to be supported by the data, while in unstable periods low values for
« are likely to be favored, reflecting the need for changes in model weights. When
focussing on a particular variable (or combination of variables), that is, set aside
specification uncertainty, the combination of (possibly) time-varying coefficients
(0 < 1) and (possibly) time-varying model weights (o < 1) amounts to a version

of averaging across estimation windows as analyzed in Pesaran and Timmermann
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(2007), Pesaran and Pick (2011) and Pesaran, Pick, and Pranovich (2013).2

3.4.2 Bayesian Dynamic Model Selection

In contrast to BDMA, BDMS chooses a single model within each subset to provide
the subset forecast rather than average over individual models. At each point in
time, the model with the (currently) highest log predictive score is used as the

subset forecast, the remaining models are (temporarily) removed.

3.5 Optimal Prediction Pools

In the previous section, we have addressed the issue of how to combine or select
models within a subset k. In the following section, we focus on combining the
aggregate density forecasts of the K subsets. To this end, we employ optimal
prediction pools (Geweke and Amisano, 2011). The method combines models
so as to maximize the log predictive score.and has several attractive theoretical
properties such as it does not assume that the true model is included in the specified

model set.

Let p (y¢|I;—1, My) denote the (combined) density forecast of subset k& < K for
period t. In period t — 1, the aggregate predictive density for period ¢ using the

linear prediction pool is

K
pWITo1) = wegaap (el T—1, M) . (21)

k=0

23 Averaging information across window sizes has turned out as successful in many instances;
see Rossi (2013).
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K
The weight vector w;_1 = (W ¢—1, ..., Wik +—1) satsisfies Z wiy = 1and wy; > 0,

Vk < K. The optimal weight vector wy, ; is to be chosen such as to maximize

the log predictive score up to period t — 1:

f(weq|li—q) Zlnzwkt 1P (Ys| Ls—1, M) . (22)
s=1

3.6 The Role of Shrinkage

Our forecasting method can be considered as a hierarchical combination of TVP
models. To explore how the shrinkage works, we decompose the point forecast of

(an arbitrary) period t as

I

il 1—2% o (Thi) - Fo (23)

where
G
Y, =Y TP (MjlLy). (24)

j=1
F ; denotes the full K x1 vector of regressors in period ¢. Following the notation

in Section 3.3, F¢ = [1,X; 1] and k = K. F/ijt_]_ denotes the updated full K x 1
coefficient vector in period t — 1 for model j. For example, if the individual
model j includes the regressors 1,3 and 5, but not the regressor 2 and 4, the
estimated coefficient m;,_; (updated in period ¢t — 1) is an 7 x 1 vector with
= 3. In the full coefficient vector Tj,t—l» all entries for which the associated
regressor is excluded from the model, are filled up with zeros. In the particular

(1 3) (5) (@)

Y
example case, we have T, ;| = (mjt 1 0,my 1, 0,my5 1) m;; 4 denotes the

estimated coefficient associated with the i-th regressor of F . Tgf’f_ | denominates
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the aggregate coefficient vector for subset k. o indicates the Hadamard product.

Equations 23 and 24 illustrate that the final model forecast can be decomposed
into a linear combination of the estimated model coefficients and the regressors.
This renders the method transparent. The shrinkage intensity may evolve over
time. Suppose, for example, none of the regressors is important at a certain point
around period t. In this case, the weight wy;_; attached to the random walk
forecast is expected to be high. In the extreme case, wp;—; = 1 and, hence, the
final model forecast for period t is 0. If, however, around another period, some
regressors become important, the weight attached to the random walk forecast is
expected to decrease. It is worth to note that by pooling the aggregate subset
density forecasts, models with different complexity have equal chances to turn out
as important. The subset £ = 0 contains only (1()() = 1 model, i.e., the random
walk forecast, while the subset £k = 3 comprises 5 - (g) = 50 models for d = 5
and K = 5. However, each subset k& provides only one aggregate forecast density
p (ys|Is_1, My) in period 5.2* The OLS estimate is, of course, also recovered as
a special case. In this case, wx;1 = 1, P (M;|l;—1) = 1 for the model which

includes all K regressors and assumes constant coefficients.

4 Monte Carlo Simulation

We consider a small Monte Carlo simulation to assess our method’s ability to

recover the generating data mechanism. Particularly, we are interested if (a flex-

24n contrast, in a BMA (DMA) weighting scheme over the entire model pool, the random
walk model would be assigned only %0 of the weight of the subset with 3 regressors (for K =5
and d = 5), if all the models have equal marginal (predictive) likelihoods. Hence, BMA (DMA)
automatically disadvantages very sparse models. Addressing this issue by assigning high a priori
weights to very sparse models is overturned after few periods in the updating process.
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ible version of) our approach manages to rapidly adjust to gradually or abruptly
changing coefficients. For the setup of the Monte Carlo study, we assume a TVP

model of the form:

4
2
Y= E OisTis + €41, €41~ N (0705) :

i=1
We set 0 = 0.01, ¢t = 1,...,500, and consider the following structure for the

evolution of the coeflicients:

—0.2 , 120 <t < 300
el,t = < 5
0.6 , otherwise
)
0 ,t <120
02,15 = ;
—5x107*-t , otherwise
(
0.8—0.2-t/120 ,t< 120
O30 = 04+02-t/120 , 120 <t <300 ,
0 , otherwise
\
(
0.8 ,t>300
01 = <
0 , otherwise

Figure 1 presents the results for three different model settings. In the most
restrictive setting, we set 6 = 1, @ = 1, and hence, do not allow for time-
varying coefficients. The graph clearly indicates that constant coefficients fail
in picking up the changes in the coefficients. The setting that allows for time-

varying coefficients and combines the models via BMA within the subsets, § €
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Figure 1: Evolution of coefficients. The figure presents the evolution of the coefficients in the
simulation experiment. The solid red line indicates the true evolution of the coefficient. The
solid black line shows the evolution of the estimated coefficients under the most restrictive setting
(6 =1, a =1). The dotted black line indicates the behavior of the estimated coefficients under
Bayesian Model Averaging of TVP models, ¢ € {0.96;0.97;0.98;0.99;1} and o = 1. The dotted
red line displays the evolution of the estimated coefficients under the most flexible model setting
with § € {0.96;0.97;0.98;0.99; 1} and « € {0;0.80;0.90;0.95;0.99; 1}.
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{0.96;0.97;0.98;0.99; 1}, o = 1, does considerably better in tracking both gradual
as well as abrupt coefficient changes. We observe only marginal performance im-
provement for our most flexible setting with time-varying coefficients and BDMA
weights, § € {0.96;0.97;0.98;0.99; 1}, o € {0;0.80;0.90;0.95;0.99; 1}. For some
cases, this version is slightly less sluggish in adapting to parameter changes. How-
ever, this effect becomes more pronounced if the variance of the data generating
process is increased. We next turn to our empirical work, reporting and discussing

the forecasting results.

5 Empirical Analysis

Our forecasting exercise comprises the following currencies: the British pound
(GBP), Japanese yen (JPY), German mark/euro (DEM), Canadian dollar (CAD),
Swiss franc (SWF) and the Australian dollar (AUD). The (monthly) data cover the
period from 1975 : 03 to 2013 : 06. We report forecasting results after a "burn-in"

period from 1985 : 04 to 2013 : 06 for a range of model specifications.

Table 1 shows the results for point prediction accuracy in terms of the out-
of-sample R? (R%,4) proposed by Campbell and Thompson (2008) for one-month

ahead forecasts.?” Table 2 shows the forecasting results for direct twelve-month

% The out-of sample R? is calculated as

T-1

~ 2
Z (Y1 — Yo |1e)
2 t=7+1
ROOS =1- T—1 2’
> (yt+1 - bmt+1|ft)
t=7+1

where 7 denotes the "burn-in" sample, 3;1|I; refers to the point forecast of the respective
model configuration, and bms1|I; to the point forecast of the benchmark model. As we use the
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ahead forecasts. Our set of model configurations is divided into two main groups,
the constant parameter models (§ = 1) and the TVP models (§ € {0.96;0.97;0.98;0.99;1}).
The kitchen sink specification considers only the subset that includes all K regres-
sors. That is, wx; = 1, Vt. The Subset-Regression-E'W specification employs the
complete subset regressions approach with equal weighting of the models within the
subsets (as suggested by Elliott, Gargano, and Timmermann (2013)). However,
to combine the models across subsets, optimal prediction pools are employed.?®
The Subset-Regression-BDMA and Subset- Regression-BDMS model configurations
(outlined in Section 3.4) allow for flexible weighting schemes within the subsets.
We will comment on the results, supported by some graphical devices, in the con-
text of the key questions we have raised at the beginning. All graphical devices
are based on our baseline results, the one-month ahead forecasting configuration.
Which set of macro fundamentals (if any) is relevant for forecasting at each
point in time? Figure 2 shows the inclusion probabilities for the regressors over
time. The inclusion probabilities are simply calculated as summing over the pre-

dictive model probabilities that include a particular regressor i, that is
K (%)
Z Z P (Mj|1;-1) - Lzens;y for period t. The regressor AsyTaylor receives rela-

k=0 j=1
tively constant support over time for the GBP and JPY. For the DEM, the PPP

regressor gains some importance after the Subprime Crisis, while the other regres-

random walk without drift as the benchmark model, b/";lt_i'_l‘lt is always 0. The random walk
without drift is known as the toughest bennchmark in the exchange rate forecasting literature;
see Rossi (2013). If we use the random walk with drift as benchmark model, i.e., the prevailing
unconditional mean, our results are revolved around: for this case, our flexible model configu-
rations regularly and (to a large extent significantly) outperform the the benchmark in terms of
R% ¢ Results are omitted but are available upon request.

26We use optimal prediction pools to provide comparability to the other model configurations.
However, if we recursively select the hyperparameter & (that is, choose the subset k& which would
have given the best forecasting performance in terms of the MSE), our results are generally
slightly worse. Results are available upon request.
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Table 1: Prediction accuracy of one-step ahead forecasts.

R% ¢ measures the percentage reduction in mean squared prediction error (MSPE) based on
the forecast of the respective model relative to the random walk benchmark forecast. Statistical
significance is assessed by the Clark and West (2007) test. a,b,c indicate significance at the 10%,
5% and 1% level, respectively, that the random walk MSPE is less or equal to the respective
predictive model’s MSPE against the alternative that the random walk MSPE is greater than
the predictive model’s MSPE. R% ¢ statistics are computed for the 1985 : 04 —2013 : 06 forecast
evaluation period.

Model configuration R 05%
GBP JPY DEM CAD SWF  AUD

Constant Parameter Models

Kitchen Sink —2.55 —147 —4.08 -—-0.81 —-1.09 -3.02
Subset Regressions - EW —-0.13 0.62 0.00 —-0.01 035 —-0.04
Subset Regressions - BDMA —0.17 0.38°  0.00 0.00 0.48* —0.03
Subset Regressions - BDMS —0.14 0.73® 0.00 —0.04 0.88° 0.00
TVP Models

Kitchen Sink —6.02 —-0.27 —4.17 -9.36 —-884 —10.01
Subset Regressions - EW —-0.23 051 0.04* —-0.06 0.09 —-0.04
Subset Regressions - BDMA —0.07 0.48 0.06° —0.23 —0.05 —0.13
Subset Regressions - BDMS .20 0.51 0.15 —-0.56 —-0.43 —0.09

sors are essentially removed from the aggregate model. Also, for the AUD none
of the regressors is included. For the CAD, the UIP and Monetary regressors
gain importance after the Subprime Crisis. For the remaining exchange rates, the
Monetary regressor turns out as unneccessary for short-term forecasting.?” We
observe an interesting pattern for the SWF. The UIP and PPP regressors display
rapidly changing inclusion probabilities that seem to move in opposite directions
from the middle of the sample. This pattern illustrates the flexibility embedded in
our approach, allowing the weights attached to fundamentals to change abruptly
if required by the data. Bottom line, none of the regressor seems to be important

for forecasting across all countries.

2TThis finding is in line with Engel, Mark, and West (2008).
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Figure 2: Evolution of inclusion probabilities for the regressors of the TVP-Subset Regressions-
BDMA model configuration. The dotted red (black) line indicates the evolution for the inclusion
probability of the AsyTaylor (UIP) regressor. The solid black (red) line shows the evolution
of the inclusion probability of the PPP (Monetary) regressor. The solid blue line tracks the

inclusion of the intercept.
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Table 2: Prediction accuracy of twelve-step ahead forecasts.

R% ¢ measures the percentage reduction in mean squared prediction error (MSPE) based on
the forecast of the respective model relative to the random walk benchmark forecast. Statistical
significance is assessed by the Clark and West (2007) test. a,b,c indicate significance at the 10%,
5% and 1% level, respectively, that the random walk MSPE is less or equal to the respective
predictive model’s MSPE against the alternative that the random walk MSPE is greater than
the predictive model’s MSPE. R% ¢ statistics are computed for the 1985 : 04 —2013 : 06 forecast
evaluation period.

Model configuration R% 5%

GBP JPY DEM  CAD SWF  AUD

Constant Parameter Models

Kitchen Sink —108.92 —14.87 —83.71 —30.60 —38.69 —68.93
Subset Regressions - EW 0.00 —0.60  0.00 —1.02 0.00 0.00
Subset Regressions - BDMA 0.00 —0.15  0.00 —0.04 0.00 0.00
Subset Regressions - BDMS 0.00 —0.04  0.00 0.00 0.34 0.00
TVP Models

Kitchen Sink —107.95 —13.80 —83.68 —30.67 —37.00 —55.73
Subset Regressions - EW 0.00 —-0.62  0.00 —0.92 0.00 0.00
Subset Regressions - BDMA 0.00 —0.26  0.00 —0.02 0.00 0.00
Subset Regressions - BDMS 0.00 0.83  0.00 0.00 0.00 0.00

Are time-varying coefficients helpful? For the Kitchen Sink model configu-
rations, the increased flexibility of the TVP has a negative effect on forecasting
performance for the one-step ahead forecasts (except for the JPY), while the effect
on the twelve-step ahead forecasts is ambiguous. For the configurations that use
shrinkage and model averaging/selection, results are mixed and no clear pattern

arises whether the TVP models outperform their constant counterparts.

Is it worthwile to consider flexible model averaging/selection criteria? The
BDMA and BDMS model averaging/selection schemes provide, is sum, slightly

better results than the equal-weighting benchmark.

How intensively are the forecasts shrunk towards zero? Figure 3 displays the

results for the Kitchen Sink approach without shrinkage, Figure 4 corresponds
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to the final results after shrinkage based on the flexible T'VP-Subset Regression-
BDMA configuration. A comparison readily shows that the coefficients display
significantly less variation after shrinkage has been introduced. However, abrupt
changes in coefficients can still be observed, in particular around the end of the
sample after the emergence of the Subprime Crisis. Figure 5 shows the weights
assigned to the random walk forecast over time. If the weight equals one, the final
forecast of the model is 0 and, hence, the shrinkage intensity is maximal. Overall,
the shrinkage intensity is high (except for the JPY, it is always above 50%). For
the DEM, the shrinkage intensity is maximal until near the end of the sample.
Figure 5 is intimately related to Figure 2. The inclusion probabilities of all macro
fundamentals are close to zero for most of the time. Near the end of the sample,
the PPP regressor gains importance and is assigned an increasing weight at the
expense of the random walk model. The shrinkage intensity for the CAD also
changes over time, while it is roughly constant for the remaining countries. An in-
teresting piece of evidence is that the previous shown flexibility of our model pays
off in terms of forecasting performance for the JPY and SWF since some flexible
model configurations do comparatively well for both countries. This suggests that
our approach is able to detect (temporarily) relevant information embedded in the
macro fundamentals. Figure 6 shows the MSE of the aggregate subset forecasts as
a function of the number of predictors that are included. For all six currencies, the
MSE increases when more than three predictors are included. This highlights the
issue of overfitting and the superiority of parsimonious models. As our model com-
bination/selection exploits the prediction densities rather the conditional means,
Figure 7 is intended to provide information to whether the criteria MSE and log

predictive likelihoods favor a similar degree of model complexity. The measures
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Figure 3: Evolution of coefficients of the TVP - Kitchen Sink model configuration. The dotted
red (black) line indicates the evolution of the coefficient associated with the AsyTaylor (UIP)
regressor. The solid black (red) line shows the evolution of the PPP (Monetary) regressor.

largely agree, suggesting that our combination scheme is appropriate, although we
focus on point forecast accuracy.?®

Are the flexible models able to outperform the random walk benchmark? The
results are mixed for the one-step ahead forecasts. For the twelve-month horizon,
none of the model configurations significantly outperforms the random walk fore-
cast. Instead, forecasts of the flexible models are intensively shrunk towards zero.
Bottom line, the considered model configurations cannot consistently outperform

the random walk benchmark.

As a robustness check, the set of potential regressors has been extended by

including several other predictors, namely changes in cumulated trade balances,

28We have already mentioned that the R%O g generally decreases if we use the recursive sub-
set selection strategy proposed by Elliott, Gargano, and Timmermann (2013) that is based on
forecasting accuracy measured by the MSE.
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. .
- — - - Vv
- - - e
0 L | / haY - “
7| v A
" [ \ /e
’J %
0.4
S N 2 N
0 R B
ol
ol
ok
GBP
ot
JPY
DEM
ot
CAD
T SWF
ot
~ AUD
0
1985:04 1990:04 1995:04 2000:04 2005:04 2010:04

Figure 5: Shrinkage to the random walk. The figure shows the weights attached to the subset

with zero regressors (i.e., the random walk) for the considered exchange rates over time.
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Figure 6: Out-of-sample forecast performance (MSE). The mean squared errors of the T'VP-
Subset Regressions-BDMA model configurations are shown as a function of the number of pre-

dictors.
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stock price returns and commodity index returns. We have also analyzed whether
including the considered fundamentals directly as regressors rather than pre-estimate
models (as outlined in Section 2) changes the results. Furthermore, we have ex-
perimented with different sample periods. To conserve space, the results are not
displayed since our our main findings are qualitatively unaffected in all cases. The

results are available upon request.

6 Conclusion

We have introduced a method for shrinkage in TVP models that is tailored to the
econometric demands for exchange rate forecasting models. The method has a
range of desirable properties, particularly it allows for time-varying and predictor-
specific shrinkage intensity. Our empirical results amass evidence for the prevail-
ing view that (short-term) forecasting of exchange rates with macro fundamentals
cannot systematically beat a naive random walk benchmark in terms of point pre-
diction accuracy (measured by the root mean squared error). The naive random
walk model is frequently selected as the most appropriate model. However, the em-
pirical findings suggest that changing relevance of nformation embedded in macro

fundamentals is detected in the flexible model versions.

The emphasis of our analysis has dealt with designing a flexible econometric
forecasting technique. Against this background, we are confident to have provided
a suitable setup for conditional predictability, as far as it genuinely exists. While
our results are robust to alternative predictors, they do not rule out predictability
for other settings, such as real-time (rather than revised) macro fundamentals. As

our method is of general purpose (though inspired by the demands for predicting
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exchange rates), it is suited for predicting other variables in macroeconomics and

finance.

Our results affirm the importance for shrinkage and flexible model averag-
ing/selection criteria to avoid poor forecasting performance. The researcher using
the approach benefits from the automated shrinkage procedure. (S)he avoids the
risk of misspecification associated with a simpler model (such as the random walk)
from the outset and, simultaneously, circumvents the caveat of overfitting that
is associated with using unrestricted TVP models. Thus the suggested method

provides a "failsafe mechanism" against inappropriate model choices.
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A Appendix

A.1 The Shrinkage Mechanism in Complete Subset Re-

gressions

Suppose we are interested in predicting the univariate (scalar) variable yr,; in a
simple linear regression model with &k predictors 7 € R¥, and a history of data,
{Yi+1, xt}tT;OI. Let B(z,x;) = Yx for all ¢, and without loss of generality, assume
that E(z;) = 0 for all £. To focus on regressions that include only a subset of the
predictors, define [ to be a K x 1 vector with coefficients in the rows representing
included regressors and zeros in the rows of excluded variables. y = (yi, ..., yr) is
aT x 1 vector and X = (mo,xl...,xT_l)' stacks the x observations into a T' x K
matrix. Denote the generalized inverse of a matrix A by A7. Let S; be a K x K
matrix with zeros everywhere except for ones in the diagonal cells corresponding
to included variables, such that if the (j, j) element of \S; is one, the jth regressor
is included, while if this element is zero, the jth regressor is excluded. Sums over
1 are sums over all permutations of S;. The subset regression estimators can be
represented as a weighted average of the components of the full regression OLS
estimator, Bo Ls- Elliott, Gargano, and Timmermann (2013) show that, for a large
sample size and under general conditions, the estimator for the complete subset

regression, 3 x, can be written as

Br.x = MxBors +0p (1),

where
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Ng K
Apre = H%K = 2 (ngxsi)_ (s;zx) :
To gain insight into how the method works as a shrinkage estimator, we will
first focus on the special case when the covariates are orthonormal. In this case,
Bk,K = )\;@KBOLS, where A\ x =1 — <%) is a scalar. To see this, note that for
this special case, BO s = X 'y, while each of the subset regression estimates can

be written BZ = 5;X'y. The complete subset regression estimator is then given by

1 Nk, K
ek = — DB
Bl Zl
1 X
- Ly sy
K o1
1 Nk, K R
= (——>_5i|Bows
K o
Nk, K
The result follows by noting that the elements of Z S; are zero for the off-
i=1

diagonal terms, and equal the number of times the regressor is included in the

nK-1

nkfl) times. In turn, the diagonal

subset regressions for the diagonal terms, that is (
terms equal ny x minus the number of times a regressor is excluded, which gives
the result, noting that the solution is the same for each diagonal. The smaller k

relative to K, the greater the amount of shrinkage.

For the general case, where regressors are correlated, the subset regression
coefficients are not simple regressor-by-regressor shrinkages of the OLS estimates,

and will depend on the full covariance matrix of all regressors. Specifically, Ay x
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is not diagonal and each element of B is approximately a weighted sum of all of
the elements in 8, . The weights depend not only on {k, K} but on all elements

in ¥ x, denoted ;;. For example, if K = 3 and k£ = 1, we have

1 Y1 ¥
A1’3 = _ PP 1 a3
3 Yoz o2

Each row of A; 3 is the result of including a particular subset regression in the

average. For example, the first row gives the first element of Bl,g as a weighted

1

3, its own

sum of the OLS regressors BO Ls- Apart from the multiplication with
coefficient is given a relative weight of one while the remaining coefficients are those
we expect from accomodating the omitted variable bias. The effect of dividing by
ni 3 = 3 is to shrink all coefficients, including its own coefficient, towards zero. For
k > 1, each regressor gets included more often in the regressions. This increases
the their effect on Ay x through a higher inclusion frequency, but decreases their
effect through the omitted variable bias. Since the direct effect is larger than the
omitted variable bias, an increased k generally reduces the amount of shrinkage.

Of course, in the limit as k = K, there is no shrinkage and the method is identical

to OLS.
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A.2 The Structure of Dynamic Linear Models

Based on the specification of the dynamic linear model in equations (6) and (7), we
describe the sequential updating of the the beliefs about system coefficients, the
scale matrix of the coefficients and the observational variance. Suppose, at some
arbitrary time t — 1, we have already observed 1, ;. Hence, we are able to form a
posterior belief about the values of the unobservable coefficients 6;_1|;,_; and of
the observational variance V;_1|l;_1. These posteriors are normally/inverse-gamma

distributed

N1 My_19¢_
Vt—1|]t—1 ~ ]G{ 75217 t 12t 1} ’ (25)
O ally1,Via ~ N [mtfla‘/tflc’:_l} . (26)

After integrating out the uncertainty in the observational variance, the poste-

riors of the coefficients are t-distributed as

Or_1)|lt—1 ~ tn, , [mt—la St—1C£k,1] . (27)

The prior distribution of the time-varying regression coefficients, 0;|1;_; acco-
modates for the system coefficients being exposed to shocks, increasing the system

variance by W,

8t|-[t—1 ~ tnt71 [mt_l, St_lc(t*_l + St_lwt*] . (28)

Equations (11), (12) and (13) in the main text show the discount approach for
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specifying W,.

The predictive density of y; is obtained by integrating the conditional density
of y; over the range of 0; and V;. Let ¥ (y; u,0?) denote the density of a normal
distribution evaluated at y and IG (V';a,b) the density of an IG (a,b) distributed

variable evaluated at V. We obtain the predictive density as

(o)

p(ylli1) = / [/19 <?]t; Ftleta Vt) v <9t§m;—17v¥ (Ot*—l + Wt*)> det:|
0

~ M1 Si_1Ni—1
G V; dv;
x 1G < ts 5 5 ) t

= 719 (% Ft/mtq, Vi [1 + Ftl (C’ttl —+ Wt*) Ft:|>
0

| Sto1ng1
xIG(Vt, 7 5 )th.

The predictive density

pWellia) = tugy | G Fymua,Sea - |14+ Fy | Gy + W/ | (29)
—_—— ——
=R}
:ZQ:{V
¢;g2t

(.

is Student-t distributed with location Ft'mt_L scale (; and n;_; degrees of
freedom, evaluated at 7;. R; denotes the prior variance of the coefficient vector

0;. S;_1 represents the estimate for the observational variance. With all inputs for
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the predictive density determined, the prediction step is finished and we continue

to outline the update step.

After the y, has materialized, the priors about the system coefficients and the

observational variance are updated based on the prediction error

et = Yt — Yi, (30)

playing a key role in signal conditioning learning. Updating the degrees of
freedom is accomplished by

ng=mnp_; + 1 (31)

and the point estimate for the observational variance is updated as

Stfl 6?
=95 — —1]. 2
Sy =81+ w <Qt (32)

(): denotes the scale associated with the t-distributed forecast y;, see (29) in
A.2. Equation (32) shows, that if the prediction error e; of a model coincides with
its expectation Q; (i.e., €2 = @), Sy = S;_;. Prediction errors above the expected

error lead to an increase in the estimated observational variance and vice versa.

The r x 1 adaptive coefficient vector?”

L. . Si—1(C} Wi | )F
2 Rewriting the adaptive vector as A; = (Gl W) = % shows that the

Seor | 145, (CF_y + W) R,
~—_——

R¥
t
adaptiveness to new observations does not depend on S;_1.

47



R/ F;
A = 33
‘=0, (33)

relates the precision of the estimated coefficients to the variance, and hence,
the information content of the current observation. A; determines the degree to
which the updated values for estimates of the coefficients react to new observations.
Updating for point estimates of the system coefficients and the associated estimate

of the scale matrix is completed by

my = M1 + Azey, (34)
S ,
C= g~ (Rt . AtAtQt> . (35)
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