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Abstract

Several formal methods have been proposed to check local identification in linearized DSGE
models using rank criteria. Recently there has been huge progress in the estimation of non-linear
DSGE models, yet formal identification criteria are missing. The contribution of the paper is
threefold: First, we extend the existent methods to higher-order approrimations and establish
rank criteria for local identification given the pruned state-space representation. It is shown that
this may improve overall identification of a DSGE model via imposing additional restrictions on
the moments and spectrum. Second, we derive analytical derivatives of the reduced-form ma-
trices, unconditional moments and spectral density for the pruned state-space system. Third,
using a second-order approrimation, we are able to identify previously non-identifiable parame-
ters: namely the parameters governing the investment adjustment costs in the Kim (2003) model
and all parameters in the An and Schorfheide (2007) model, including the coefficients of the

Taylor-rule.
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1 Introduction

Many different methods for solving and estimating DSGE models have been developed and used in
order to get a detailed analysis and thorough estimation of dynamic macroeconomic relationships.
Recently, the question of identification of DSGE models has proven to be of major importance,
especially since identification of a model precedes estimation and inference. Several formal methods
have been proposed to check local identification in linearized DSGE models via rank criteria (Iskrev
2010; Komunjer and Ng 2011; Qu and Tkachenko 2012) or Bayesian indicators (Koop, Pesaran,
and Smith 2013), for a review and methodological comparison of these techniques, see Mutschler
(2014). Whereas there is a growing literature on non-linear estimation of DSGE models (Andreasen
2011; Andreasen 2013; Ferndndez-Villaverde and Rubio-Ramirez 2007; Herbst and Schorfheide 2013;
Ivashchenko 2014; Kollman 2014), all identification methods focus on the linear approximation of
the DSGE model to the first order. In this paper we will relax this assumption and establish rank
criteria for non-linear DSGE models solved by higher-order approximation of the policy functions.
Intuitively, this may yield additional restrictions on the moments and spectrum of the model that
can be used to identify previously unidentified (sets of) parameters.

However, there is a caveat, since higher-order approximations sometimes yield explosive or non-
stationary processes. Therefore, we use the pruning scheme proposed by Kim et al. (2008), who show
that the pruned state-space is stationary and ergodic. Further Andreasen, Fernandez-Villaverde, and
Rubio-Ramirez (2014) derive closed-form expressions for unconditional moments up to third-order
approximations. Exploiting these results, the contribution of this paper is threefold. First, we show
how to extend the existent identification criteria based on ranks for higher-order approximations.
Throughout the exposition we focus on a second-order approximation, since extending ideas and
propositions is — apart from notation — conceptually straightforward for higher-order approximations.
Second, we show how to analytically calculate the Jacobians of the mean, autocovariogram, and
the spectrum of the pruned state-space w.r.t. the deep parameters of the model. Third, to make
our exposition illustrative, all methods are applied on two models that are known to have lack of
identification in their (log-)linearized versions: the Kim (2003) and the An and Schorfheide (2007)
model. In particular, we show that the parameters governing the adjustment costs in Kim (2003) as
well as all parameters including the coefficients of the Taylor-rule in An and Schorfheide (2007) can
be identified using a second-order approximation and the pruned state-space.

The ideas and procedures derived are useful both from a theoretical and applied point of view.
Theoretically, this paper adds to the literature on local identification of non-linear DSGE models by
establishing rank criteria and analytic derivatives for higher-order approximations using the pruned
state-space representation. Based on these findings, we believe that the suggested approach is a useful
new tool before actually taking non-linear DSGE models to data. In particular, an applied researcher
can check whether unidentified parameters may be estimable using higher-order approximations
even before she actually uses tedious non-linear estimation methods. Our Matlab-code is model-

independent and can be found on the homepage of the author.



2 DSGE framework

Let E; be the expectation operator conditional on information available at time ¢, then

0=FEf(Tis1,Yit1, e, ye]0)
Ti41 = h(It7Ut+1;U\9)7

yr = g(zi—1,ue, 00)

is called the general DSGE model with deep parameters 6, states x;, controls y;, stochastic inno-
vations u;, and perturbation parameter o, which can be cast into a non-linear first-order system of
expectational difference equations f. For the sake of notation, we assume that all control variables
are observable. Further, u; is iid with E(u;) = 0 and E(wu}) =: ¥ = o?nn’; thus, o is set to
be dependent on the standard deviation of one of the shocks, while scaling all other variances and
cross-correlations through 7 accordingly. See appendix E on how to squeeze the example models into
this framework.!

The solution of such rational expectation models is characterized by so-called policy-functions, g
and h, that solve (at least approximately) the system of equations f. We follow Schmitt-Grohé and
Uribe (2004) and use perturbation techniques to solve the model around the non-stochastic steady-
state given by T = h(Z,0,0/0), ¥ = ¢(Z,0,0|0) and f(Z,7,Z,7|0) = 0. Moreover, we exploit ideas of
Gomme and Klein (2011) to approximate the policy functions using the Magnus and Neudecker (1999)
definition of the Hessian.? Denote the Jacobian of f evaluated at the steady-state as Df(Z,y) :=

of(z,y of(z,y of(z,y of(z,y
( am(;j) ay(;j) a(m;y) a(y;y)) = (f1 fo f3 f4), then

Hf(Z,y) = Dvec([Df(z,9)])

is defined as the Magnus-Neudecker Hessian of f evaluated at the non-stochastic steady-state. This
definition simplifies the computations as well as the analytical derivatives, since no tensor notation
is needed and basic matrix algebra can be used, see appendix A for further reference.> Define
Vg1 = (24 — ', upy4)" with n, = ng, + n,, then the second-order Taylor approximation at the

non-stochastic steady-state is given by

R 1 1
Tep1 = ho - Vgjer + 3 {Inz ® Ué\t+1} “how Vg + 502}1007 (1)
. 1 1
Yt+1 = Gv " Vt|t41 + 5 [Iny 02y Uélt-{-l} * Guov 'U£|t+1 + 5‘729007 (2)

where Z;11 = ¢+1 — T denotes deviations from steady-state. Further g, and g, are the gradients of g

with respect to vy;41 and o respectively, g, and g, the corresponding Magnus-Neudecker Hessians,

I This is basically a mixture of the Dynare framework (innovations enter non-linearly, no distinction of states and
controls) and the framework of Schmitt-Grohé and Uribe (2004) (innovations enter linearly, distinction of states and
controls). It can be shown that both frameworks are equivalent given an extended state vector, see the technical
appendix of Andreasen, Ferndndez-Villaverde, and Rubio-Ramirez (2014, Ch. 8). In the same fashion, we are able
to add measurement equations and measurement errors by simply extending our model equations, state and control
variables accordingly. A selection matrix is then premultiplied to get the policy functions of observable variables.

2For a third-order approximation using Magnus-Neudecker Hessians see Binning (2013).

3For recent literature in favor of this definition see also Magnus (2010) and Pollock (2013).



all evaluated at the non-stochastic steady-state. The same notation applies to 3¢, hy, heo, by and
heo. Schmitt-Grohé and Uribe (2004) show that all linear terms as well as cross-terms in o, i.e.
Jos Gvos Jovs Ry hve s how, are equal to zero, since the approximation is around ¢ = 0. Notice also,
that in a linearization to the first-order (or log-linearization) all terms lead by 1/2 drop out.

There are several methods and algorithms to calculate the matrices h, and g,, since these are the
coefficients of a first-order linearization or log-linearization of the model. We follow Klein (2000) to
obtain h, and g, using the generalized Schur decomposition.* The other matrices can be calculated
by inserting the policy functions into the model equations and noting that the expression is known
at the non-stochastic steady-state. Therefore, all derivatives of f must be 0 when evaluated at the
non-stochastic steady-state. Differentiating f twice using the chain-rule of Magnus and Neudecker
(1999, p. 110), evaluating the Jacobian Df = (f1 f2 f3 fa) and Hessian H of f at the non-stochastic

steady-state, and setting it to zero yields (after some algebra):

|\’U60(gm})‘| _ 7Q71U€C(R)’ |f%;| _ 75—1U’ (3)

vec(hyy) gss
with
Q = [h;; Y f2 & h;; =+ Inv ® f4 & Inv In,, ® (fl ® Im, + f2.gv & In1,):| )
R = (I, n, ® M')HM,
S=1f1+ [290 f2+f4} ;
U = fotrm[(In, @ (77 ))goo] + trm[(In,+n, @ N')HN (7)),
he
h o 0
M= Gully ’ N = % 7 77: Mg XTNay

In, 0 n

. (no+my) X (o)
and ¢rm defines the matrix trace of an mm x n matrix [Y{ Yy ... Y] as the m x 1 vector

[tr(Y7) tr(Y2) ... tr(Y;m)]. See Gomme and Klein (2011) for the derivation. For our purpose it
is sufficient to note that there exist analytical closed-form solutions that we will differentiate with

respect to the deep parameters in section 4.

3 Pruned state-space system

The approximations (1) and (2) are a straightforward application of Taylor series expansions in the
state variables. However, simulation studies show that due to artificial fixed points, higher-order
approximations often generate explosive time-paths even though the linear approximation is stable.
Thus, the model may neither be stationary nor imply an ergodic probability distribution, both

assumptions are essential for identification and estimation purposes. Thus, Kim et al. (2008) propose

4See Anderson (2008) for a comparison of algorithms, which are basically all equivalent and differ only (slightly) in
computational burden. Further, all provide and check the Blanchard and Kahn (1980) conditions that are necessary
in order to have a stable saddle-path solution, i.e. a unique mapping between state and control variables.



the pruning scheme, in which one leaves out terms in the solution that have higher-order effects

than the approximation order.®

For instance, given a second-order approximation, we decompose
the state vector into first-order (2f) and second-order (if) effects (&1 = ‘@{—&-1 + §,1), and set
up the law of motions for these variables preserving only effects up to second-order (see Andreasen,

Ferndndez-Villaverde, and Rubio-Ramirez (2014) for details):

&l = hod] + hyug (4)

. s 1 R R 1
i = hety + §Hm (335 & JS{) + §Huu (wet1 ® upy1)

1 1 1
+ §qu (.f{ ® Ut+1> + iHux (Ut+1 ® i‘{) + 5]1000'2

(5)

i1 = g2 (& + ) + guursr + %Gm (33{ ® I{) + %Guu (U1 ® ugs1)
1 o f 1 L f 1 9 (6)
+ §Gmu (It ® Ut+1) + §Gu.’t (Ut+1 ® $t> + 59007

with H,, being an n, x n2 matrix containing all second-order terms for the i-th state variable in
the i-th row, whereas G, is an n, x ni matrix containing all second-order terms for the i-th control
variable in the i-th row. H.y, Hyy, G and G, are accordingly shaped for the cross-terms of states
and shocks, and H,, and G, contain the second-order terms for the product of shocks.® Thus,
terms containing 33{ ® &7 and 27 ® & are left out, since they reflect third-order and fourth-order
effects which are higher than the approximation order.

It is convenient to extend the state vector to z := [(2])/, (25)', (& ®#])")’, then equations (4), (5)

and (6) can be rewritten as a linear system of equations called the pruned state-space representation:

Zip1 = ¢+ Az + B (7)
Gt+1 =d+ Cze + D&y (8)

5This may seem an ad-hoc procedure, however, pruning can also be theoretically founded as a Taylor expansion
in the perturbation parameter (Johnston, King, and Lie 2014; Lombardo and Uhlig 2014) or on an infinite moving
average representation (Lan and Meyer-Gohde 2013). Importantly the coefficient matrices are the same.

SNote that we separated Vi1t back into states z—1 and stochastic innovations u;; the solution matrices are

separated accordingly, for instance h, = hoz hou and g, = [gm gu}. We separate the second-order solution
matrices in their Magnus-Neudecker definition, keeping track of terms belonging to states and shocks using index

matrices. The proposed notation can then be obtained respectively using Matlab’s permute and reshape functions.



where

Utt1 0
w1 @ ugr — vee(X) c:= %haaaz + %Huuvec(E) ,
S U1 @ af ’ (hu ® hy)vec(X)
x{ & U1 d:= [%90002 + %Guuvec(E)} 7
he O 0 I 0 0 0
A= hy %HM , B=1]0 %Huu %HM %Hm ’

0
0 0 hy®h, 0 hy®hy hy®hy hy®hy

Thus, conceptually we work in a state-space system with a linear law of motion in z; that is very
similar to the canonical ABCD representation of a log-linearized DSGE model; hence, many concepts
simply carry over.” For instance, it can be shown that if the first-order approximation is stable, i.e.
all Eigenvalues of h, have modulus less than one, then the pruned state-space is also stable, i.e. all
higher-order terms are unique and all Eigenvalues of A have modulus less than one. Further if £; has
finite fourth moments, then the pruned state-space system has finite second moments.?

Standard results from VAR(1) systems can be thus used regarding the computation of uncondi-
tional moments and spectrum. First, it is trivial to show that & is iid with E(£) = 0 and finite
covariance matrix X¢ := E(&,£}), since it is a function of &7, w41 and w11 ® ugy 1.2 The mean of the

extended state vector is equal to

e = E(2) = (I2nz+n§ - A)_lc' (9)

f):

Intuitively the mean of the pruned state-space consists of two effects: The first-order effect (E(Z
E (ztf ) —z = 0) simply states certainty-equivalence, i.e. the mean of x; is equal to the steady-state in
a first-order approximation. Using a second-order approximation we adjust the mean for risk given a
constant $h,,0? and the variance of the states vec(3,) = B ol = (Inz —ha) ™ (hu @ hy)vec(S).

For the covariance matrix X, := F[(z; — 1) (2¢ — p2)’], we have
¥, =AY, A"+ BE:B'. (10)
Using an algorithm for Lyapunov equations or vectorization we can solve (10)
vee(S.) = (Ion, +n2)2 — A® A) " lvec(BS¢B')
and are hence able to calculate the autocovariances for ¢ € N\ {0}:

Y.(t) == E[(2: — E(2))(20 — E(20))] = A'Y.. (11)

"This approach also works for higher-order approximations. That is, appending the state vector accordingly, we
are always able to establish a system linear in the extended state vector.

8This is basically Proposition 1 in Andreasen, Fernindez-Villaverde, and Rubio-Ramirez (2014).

925 can be partitioned into several submatrices which can be computed element-by-element.



Since there is a linear relationship between y; and z;—1 in (8), we get closed-form expressions for the

unconditional moments of our controls. That is, for t € N\ {0}

py = E(ye) =5+ Cpz + d, (12)
Sy = El(yr — py) (e — py)] = CE.C" + DX D, (13)
(1) = El(yr — 1y) (yo — )] = OB (1)C" = CA'S.C". (14)

For the spectral density consider the vector-moving-average representation (VMA) of z;, that is

zt = phz + ZAjBft—j-
j=0

Using equation (8) and lag-operator L, we thus get the VMA for our controls

yr—y—Cu, —d= Z CA'BE_ ;1 + D& = He(L™h)&
§=0

with transfer function H¢(z) = D +C (21(2n1+ni)2 — A)_1 B for z € C.. Using the Fourier transfor-

mation for the lag-operator L the spectral density matrix €2, is given by

1

T or

Qy(w) (e7) Ve He(e™™)",  we[-mm], (15)
with * denoting the conjugate transpose of a complex valued matrix.

Lastly, we are also able to derive the minimal state-space representation. This system is char-
acterized by the smallest possible dimension n,, of the state vector that — given the evolution of

stochastic shocks — is able to capture all dynamics and has the familiar state-space solution. Denote

#o,4 as the minimal state vector and 2y := [(a?jg’t)’7 (@35.,), (ﬁgt ® ﬁg)t)']’, then
Zot41 = C+ ng,t + By, (16)
Vg1 — = d+ Cray + DEpr. (17)

is the minimal representation of the pruned state-space. As DSGE models are based upon micro-
foundations &3¢ is for small and medium-sized DSGE models not hard to determine.0

In summary, the pruned state-space representation is a stable system and has well-defined sta-
tistical properties, which we can exploit for our identification analysis. In particular, we see that an
approximation to higher orders yields additional restrictions on the first two moments and spectrum,
which may tighten identification. In section 5 it will be shown how to incorporate these additional
restrictions into formal identifiability criteria and tests, but first we discuss derivatives of these ob-

jects.

10For the derivation of this model representation and some practical issues regarding the minimal state vector see
Appendix D.



4 Derivatives of solution matrices, moments and spectrum

To establish rank criteria we will need derivatives of all solution matrices, moments and spectrum
with respect to the deep parameters 6. Following ideas from Iskrev (2008) and Schmitt-Grohé and
Uribe (2012, Supplemental Material, Sec. A.3) we view f as well as the Jacobian of f as a function of
6 and of the steady-state vector Zg(0) := (T(0)’,5(0)")’, which is also a function of §. Thus, implicitly
we have f(zy(0),0) = 0. Differentiating yields

05(E(0).0) _ of om  Of axy:_[af}_laf

== "o oo 20’ o7 | o0

This expression can easily be obtained analytically using e.g. MATLAB’s symbolic toolbox. The
derivative of the Jacobian D f(Zg(0),0) with respect to 6 is then given by

ovec(Df(zy(0),0)) _ Ovec(Df) 0y  Ovec(DY)

dbf = 20 o 00 20

Note that dDf can be partitioned into

vec(dJ(Ty Yit1
IDF =1 suecoiGemyory | = :ﬁ
oo
Duec(0}(e7)/00)) afs

This approach can be extended to calculate the analytical derivative of the Magnus-Neudecker-
Hessian with respect to 6, since H := H f(zg(0),0):

_ Ovec(H f(Ty(0),0)) _ Ovec(Hf) 0Ty n avec(Hf).

At : 20’ o7y 00 20’

Our MATLAB code writes all analytical derivatives using symbolic expressions into script files for
further evaluation. For numerical derivatives we use the two-sided central difference method described

in appendix C. Note that we use the following notation: dX := av%e(/x) for the Jacobian of a matrix.

Derivatives of first-order solution matrices Let K, , be the commutation'! matrix of order

(n,q) and

= —(h;g; b2 Inv-‘rny)de - (h;} @ Inv-l-ny)dfl - (g':} ® Inv-i-ny)df4 - df37

11See Magnus and Neudecker (1999, p. 46) for the definition and Magnus and Neudecker (1999, p. 182) for an
application regarding derivatives.




then the derivatives of the first-order solution matrices are given by:

dg, -
Llh ] B [(h; ® f2) + (In, ® f1)  (In, ® f2gv) + (In, ® fl)} B

dgi, = Kny,nv dgm
dh; - Kn,u}nvdhv7
dhy, = (In, © (hy) " ")dhy + (hy ® In,)dhg ", ¢ > 2.

See Schmitt-Grohé and Uribe (2012, Supplemental Material, Sec. A.3) for the derivation of these
results. Since we use indices to keep track of terms belonging to states and shocks in h, and g,, it is
straightforward to compute dh,,dh,,dg, and dg, by simply picking the corresponding rows of dh,
and dg, accordingly.

Derivatives of second-order solution matrices Differentiating (3) with respect to 6 requires the
analytical derivatives of @', R, S~ and T. See appendix B for the derivation of these objects. Then
the analytical derivatives of the second-order solution matrices with respect to # can be summarized

as

d [Uec(gvv)] _ 7QfldR — (vec(R)' ® [ng(nv+ny))dQ71’

h’95’ — —
d[ ] — —(T'® I, 4, )dS " — S~ 1dT.
Jss

The Jacobians of H,, and G, are then simple permutations of the rows of dh,, and dg,,. Further

the separation into states and controls is tedious but straightforward using index matrices.

Derivatives of pruned state-space solution matrices Differentiating A, B, C, ¢ and d with
respect to 6 is a straightforward application of Algorithm 1 for partitioned matrices described in
appendix B. It requires the analytical derivatives of first- and second-order solution matrices (see
above) as well as of ¥, which is given analytically by the model. Having these Jacobians it is

straightforward to compute the derivatives of the minimal state-space solution matrices A B, C, ¢

and d by simply removing the entries corresponding to unnecessary states.

Derivatives of moments Differentiating the expressions for the means of z; (9) and y; (12) with
respect to 6 requires the analytical derivatives of the pruned state-space solution matrices, whereas
differentiating the variance of z; (10), the variance of y; (13) and autocovariances of y, (14) is

straightforward using the vec-operator. The only tedious part is the derivation of dX¢, see appendix



B for more details. The analytical derivatives of the first two moments are then given by

dpz = ([(T2n, 102 — A1 @ (Iony4mz — A) ) dA + (Izp, 4n2 — A) e,
dpy = dy + Cdp, + (p, ® I, )dC + dd,
a%, = [Tian, 1n2)y — (A® A)] " [(AZ. ® Ly, 102)dA + (Ion, 102 @ AS,)d(A') + d(BSB')]
ax, = (0%, ® I,)dC + (C @ C)dX, + (I,, ® CX.)d(C"),
d(Zy (1)) = (In, ® CA'E,)d(C) + (C ® CAN)AS, + (O, @ C)d(A") + (CZ,(A")' @ I,,)dC.

where we used Theorem 1 of appendix B and d(X~!) = (—(X’)"! ® X~ 1)dX, see Magnus and
Neudecker (1999, p. 184).

Derivative of spectral density We will now show how to obtain the derivative of Q,(w; 6y) w.r.t.
0 in equation (15) analytically. To this end, we divide the interval [—m; 7] into N subintervals to
obtain N + 1 frequency indices, ws denotes the s—th frequency in the partition. The following steps
can be done in parallel: For each ws(s = 1,...N + 1) we first compute the derivative of Hg(e™%s)

and its conjugate transpose using the expression in appendix B. Then we have for each wy

1 %/ %! *
a0, (w,) = 5 [(HE Be © L, )aHe + (H © He)A(e) + (I, © HeZe)a(Hy)|

5 Identification criteria based on rank conditions

Suppose that data is generated by the model with parameter vector #y. The criteria we will de-
rive stem basically all from Theorem 4 in Rothenberg (1971), which essentially states identifiability
conditions based on injectivity of functions. Formally, given an objective function f(6) a sufficient

condition for 6y being globally identified is given by

§(01) = §(60) = 01 = b

for any 6; € ©. If this is only true for values 6 in an open neighborhood of 6y, the identification
of 0y is local. Since most estimation methods in the econometric DSGE literature — e.g. full-
information likelihood methods or limited-information methods like impulse-response matching or
GMM - exploit information from the first two moments or spectrum of data, we will focus on the
mean, autocovariances and spectrum of observable variables. Since population moments are functions
of data, the fundamental idea is to check, whether the mapping from 6 to these population moments
is unique. Then basic mathematical results for systems of equations can be applied. This set of
criteria is the most basic and the closest to the ideas of the early work on identification in systems of
linear equations, since it is based upon the uniqueness of a solution (Koopmans and Reiersgl 1950;
Fisher 1966; Hannan 1976). Consequently, rank and order conditions are going to be derived, and it
is also possible to pinpoint the (sets of) parameters that are indistinguishable.

In the literature three formal methods based on ranks have been proposed to check identification

in linearized DSGE models via (i) observational equivalent first and second moments (Iskrev 2010),



(ii) observational equivalent spectral densities (Qu and Tkachenko 2012) and (iii) implications from
control theory for observational equivalent minimal systems (Komunjer and Ng 2011). The pruned
state-space is a linear system in the extended state vector z; and has well-defined statistical prop-
erties, a VMA as well as a minimal representation. Thus, we are able to extend all aforementioned
methods based on ranks for our non-linear DSGE model by simply using the pruned state-space rep-
resentation (PSS).12 All proofs follow the original theorems and propositions with only slight changes

and modifications in model representation and assumptions; they can be requested from the author.

Proposition 1 (Iskrev PSS) Fort=0,1,...,T —1 stack all theoretical first and second moments
given by equations (12), (13) and (14) into a vector

m(0,T) := (,u; vech(Zy) wvee(X,(1)) ... wvee(E, (T — 1))’>/.

Assume that m(6,q) is a continuously differentiable functions of € ©. Let 8y € © be a regular
point, then 0 is locally identifiable at a point 6y from the mean and autocovariogram of y; if and only
if

M(g) = = (19)

has a full column rank equal to the number of parameters for ¢ < T.
Proof Follows Iskrev (2010, Theorem 2) and Rothenberg (1971, Theorem 6).

Remark In other words, we exploit Iskrev (2010)’s approach and insert the expressions for the
first and second moments of the pruned state-space into a vector. The test checks whether these
moments are uniquely determined by the deep parameters. This gives immediately rise to a necessary
condition: the number of identifiable parameters does not exceed the dimension of m(6,T). Iskrev
(2010) also proposes a necessary condition, that is checking injectivity of the mapping from the
deep parameters to the solution matrices. For this, stack all elements of the mean and the solution

matrices that depend on 6 into a vector 7:
!/
T(0) := (g/ d d wec(A) wec(C) wvech(BXeB') vech(DEgD’)')

and consider the factorization M(q) = aaﬁT((Z’)?) 8gé,9). An immediate corollary implies that a point g

is locally identifiable only if the rank of

97 (o)

7= "o

(19)
at 0y is equal to ng. This condition is, however, only necessary, because 7 may be unidentifiable.

Proposition 2 (Qu & Tkachenko PSS) Assume that the spectral density in equation (15) is con-

tinuous in w and continuous and differentiable in 6 € ©. Let 8y € © be a reqular point, then 6 is

12Note that we work with a second-order approximation for illustration purposes. Higher-order approximations are
straightforward extensions of the proposed concepts and ideas.
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locally identifiable at a point 0y from the mean and spectrum of y; if and only if

G(6o) = /’T <avec(ﬂge(/w;eo)’))’ (avec(%ye(/w;eo))) ot auy@(goy 3%];90)

—T

s monsingular, i.e. its rank is equal to the number of parameters.
Proof Follows Qu and Tkachenko (2012, Theorem 2).

Remark Similar to Iskrev (2010)’s approach, Qu and Tkachenko (2012) focus on the dynamic struc-
ture of the DSGE model; however, they work in the frequency domain.'® We exploit their ideas and
check whether the mean and spectrum of observables is uniquely determined by the deep parameters
at all frequencies using the pruned state-space representation. Note, that even when using analytical
derivatives we still have to divide the interval [—m; 7] into sufficient subintervals N to numerically

approximate the integral.'* That is, we can compute G(6y) using

N+1

~ 2

G(0o) ~ 3 > a0y (ws, 00)'dQy (ws, B0) + dpsy (B0) dpsy (60).
s=1

The dimension of G(6) is always ny x ng. Focusing on G(fy) is similar to Rothenberg (1971), who
looks at the Hessian of the parametric density function in the Gaussian case. In fact, it can be shown
that for the Normal distribution both approaches are equivalent. Moreover, in the applications, we
exclude the mean restrictions (du, (6p)) to check whether the parameters are identifiable only through

the spectrum. We denote the corresponding matrix with G(6p).

Proposition 3 (Komunjer & Ng PSS) Consider the minimal DSGE model given in equations
(16) and (17). Assume that A : 6 — A(0) is continuously differentiable on © with A(f) :=
(Uec(.ﬁ)’,vec(g)’,vec(CN)’,vec(ﬁ)’,vech(Zg)’)/. Further denote =, as the left-inverse of the ng +
ne(ne +1)/2 duplication matriz G, for vech(X¢).'® Let 0y € © be a regular point, then 6 is locally

identifiable at a point Oy from the mean, autocovariances and spectrum of y; if and only if

iy On, O, xn2
aA A ® Inzz — Inzz ®A Ongz xn?
A(B) = (dﬂd(ge) e O"yxn@) Y Bl fne @5
Ap(fo) Ar(o) Ay(bo) dC~ ~In., ®C Oy, xng
D Oy nexcn, I, ®D
% Ong(ng+1)/2)xn2, — 250 [Ee ® In]

13If_ the spectral density matrix is continuous there is a one-to-one relationship to the autocovariogram X,4(j) =
J. e Q4 (w,0)dw,j = 0,%1,. .., this is known as the Wiener-Khinchin theorem.

14Regarding numerical derivatives we use the two-sided central difference method described in appendix C to
compute for each ws the non-vectorized derivative %0“90) and stack these into a big matrix. The typical el-
J
Oy (w;0) 9Ny (w;0)
9,

ement of G is then given by G,i(0) = J. tr{ 50, }dw which can be approximated by G, (60) =~

27 N+1 90y (ws300) 92y (ws;00) . . _
N1 >t tr{ 28, 50, with j,k=1,...,ng.

153ee Magnus and Neudecker (1999, p. 49) for the definition of the duplication matrix.
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has full column rank equal to ng + ni + n%

Proof Follows Komunjer and Ng (2011, Proposition 3) and Hannan (1971, Theorem 1).

Remark Based upon results from control theory for minimal systems Komunjer and Ng (2011)
derive restrictions implied by equivalent spectral densities (or equivalent autocovariances) without
actually computing them as in Propositions 1 and 2.'6 Intuitively, equivalent spectral densities
arise if either (i) for a given size of shocks, each transfer function is potentially obtained from a
multitude of quadruples of solution matrices, or (ii) there are many pairs of transfer functions and
size of shocks that jointly generate the same spectral density. In 5(90) there are four blocks to
consider: (1) The rank of the first n, rows must equal ng, if the mean is uniquely determined by
the deep parameters. (2) The rank of Ax(6p) must equal ng, if the solution matrices are sensitive
to changes in parameters. (3) The rank of Az (fy) must equal n2, so that the identity matrix is
the only local similarity transformation. In other words, full rank of A7 means there exist only
one quadruple generating the z-Transform for the spectral density. (4) The rank of Ay () must
equal n% so that the spectral factorization is locally uniquely determined. Put differently, full rank of
Ay indicates that there exist a unique pair of z-Transform and dynamic structure of the stochastic
innovations that generate the spectral density. Further, we also get a necessary order condition:
ng +n2, + n% < ny 4 (1, +ny)(nz, +ng) +ng(ng +1)/2.

6 Implementation

All presented methods exploit the dynamic structure of the pruned solution of a non-linear DSGE
model to define mappings and establish conditions for local injectivity of the mappings. For all
procedures we are able to derive necessary as well as sufficient conditions for identification based on
ranks of Jacobians. For calculating the ranks we use the Singular-Value-Decomposition and count
the non-zero entries on the main diagonal. Obviously, this requires a specification of the tolerance
level, for which we use on the one hand a range from le-3 to le-19, and on the other hand a robust
tolerance level that depends on the size of the matrix (max(size(X)) x eps(norm(X))). Strictly
speaking, the criteria are a yes or no condition. However, if a parameter is identified for very large
tolerance levels, then it is most likely strongly identified. If it is identified only for very low levels,
then it is most likely weakly identified. In the case of rank deficiency we are able to pinpoint sets of
problematic parameters by analyzing the nullspace. This will be a vector of zeros, if a parameter does
not affect the objective at hand. Further the columns that are linearly dependent indicate that these
sets of parameters are indistinguishable. While this approach is computationally very fast, we find
that in some cases there were redundancies in the subsets, since larger subsets sometimes include
smaller ones. Thus, a more robust method is to consider the powerset and check the criteria for
all possible subsets of parameters. In our experience this Brute-Force approach yields more reliable
results and is computationally just slightly slower, because, if we find a subset of parameters that

are not identified, we can exclude that subset from higher-order subsets.

16Komunjer and Ng (2011) actually establish two conditions for identification depending on the relation between the
number of shocks and observables. Here we focus on singular and squared systems (n. < ny) and assume fundamental
innovations. Moreover, in the commonly used squared case (n. = ny) both conditions coincide.
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There are also some further numerical issues at hand. In particular choosing the lag order T' as
well as the number of subintervals N for the frequencies may change results, since strictly speaking
the criteria are only valid for T, N — oo. In practice, however, this is not a question of heavily
sensitive results'”, but rather one of speed: the higher T' or N, the more time the calculations need.
Komunjer and Ng (2011)’s approach is hence the fastest, since we only have to evaluate the solution
matrices and their derivatives (which we also have to do for the other criteria). In this line of thought,
note that all methods depend heavily on the solution matrices and suffer from possible numerical
error of the approximation algorithm. However, since we use the same framework and algorithms
across methods, we are able to neglect this effect in our applications in section 7.

The different interpretations of Iskrev’s and Komunjer and Ng’s criteria can also be used as
diagnostics for model building. For instance both J as well as Aj check the mapping from the
structural parameters to the pruned state-space parameters (note that J also includes the mean).
The evaluation might detect parameters that do not influence the reduced-form and may be thus
obsolete. A researcher is hence able to reparametrize the model prior to estimation. Moreover, given
a known shock a rank deficient App indicates that two structures (e.g. two different policies) might
cause the same impulse response of the model, so we have to be careful interpreting the importance
of shocks. In contrast given a rank deficient Ay we cannot be sure, whether it is the size of the
shock or a similar propagating mechanisms, that yields the same dynamic structure of the model.
Qu and Tkachenko (2012)’s test does not give such diagnostics, however, their approach can be used
directly for a quasi-maximum likelihood estimation in the frequency domain. Moreover, it is possible
to get insight into the size of the local neighborhood of the unidentified parameters via so-called
non-identification curves.

Lastly, all procedures check only local identification. Thus, one has to make sure that this
procedure is valid for a sufficient range of parameters. Therefore, in our applications, we check all
criteria given first a specific point (e.g. calibrated parameters or prior mean) and second given many
draws from a prespecified prior domain of 6 that yield a determinate solution. In this way, we have

a quasi-global flavor of our rank criteria for the pruned state-space.

7 Applications

7.1 The Kim (2003) model

This model extends the neoclassical growth model to include investment adjustment costs twofold:
First intertemporal adjustment costs, which involve a non-linear substitution between capital and
investment, are introduced into the capital accumulation equation govern by a parameter ¢. Second
multisectoral costs, which are captured by a non-linear transformation between consumption and
investment, enter the budget constraint given a parameter §. See appendix E for the model equa-
tions. In the original paper Kim (2003) log-linearizes the model and shows analytically that there is

observational equivalence between these two specifications: “[W]hen a model already has a free pa-

17In most practical cases T in between 10 and 100 will be sufficient, since the higher the lag the less informative the
identification restrictions. Further we experienced with different values for N and find that the results hardly change.
Thus an N in the order of 10000 is sufficient as well.
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rameter for intertemporal adjustment costs, adding another parameter for multisectoral adjustment
costs does not enrich the model dynamics” (Kim 2003, p. 534). So given a first-order approximation
(0, ¢) are observational equivalent, since they enter as a ratio %rg into the solution. However, con-
sidering an approximation to the second-order yields additional restrictions on the first two moments

and spectrum, as can be seen in Table 1.
[Table 1 about here.]

All criteria yield unanimously the result that (0, ¢) are distinguishable using a second-order approxi-
mation. This result is robust across tolerance levels as well as the choice of derivatives. A comparison
of the indicators for the solution matrices, J and Ap, shows that the identification structure changes
mainly through additional restrictions on the mean.

The same result holds when we repeat the analysis for 100 random draws from the prior domain.
For illustration purposes, we add similar to Ratto and Iskrev (2011) a parameter dumpy into the
analysis, which does not enter the model. As is evident in Figure 1(a), all criteria indicate that dumpy
and (0, ¢) are not identifiable in a first-order approximation. Given a second-order approximation
and using the pruned state-space criteria the situation is different: now, in all cases it is only dumpy
that is not identifiable. We thus conclude that an approximation to the second order yields additional
restrictions on the mean to identify 6 and ¢ separately. All tests indicate that # and ¢ are no longer
observationally equivalent and the model can be identified using the non-linear DSGE model. This

result is — as far as we know — new to the literature.

[Figure 1 about here.]

7.2 The An and Schorfheide (2007) model

This model is a prototypical DSGE model often cited in the literature concerning lack of identification.
The authors already show that (in the version we use in appendix E) the set of parameters (v, ¢)
and the steady-state ratio 1/g = ¢/y do not enter the log-linearized solution. However, using a
second-order approximation and the particle filter they conclude that “the log-likelihood is slightly
sloped in 1/g = ¢/y dimension. Moreover, (...) the quadratic likelihood (...) suggests that v and
¢ are potentially separately identifiable” (An and Schorfheide 2007, p. 164). Further, Komunjer and
Ng (2011), Mutschler (2014), Ratto and Iskrev (2011) and Qu and Tkachenko (2012) show that the
coefficients entering the Taylor-rule (¢1, 12, pr, og) are not separately identifiable in the log-linearized
model. However, An and Schorfheide argue that “the non-linear approach is able to extract more
information on the structural parameters from the data. For instance, it appears that the monetary
policy parameter such as ¢); can be more precisely estimated with the quadratic approximation” (An
and Schorfheide 2007, p. 164). We will confirm these alluring results formally by checking our rank

criteria for the second-order pruned state-space. First we look at the prior mean.
[Table 2 about here.]

Table 2 shows that across criteria we are formally able to proof that indeed using a second-order ap-
proximation yields additional restrictions to identify all parameters of the model. Again a comparison

between J and A, sheds light into the structure of identification in the second-order approximation;
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namely, breaking with certainty-equivalence there is information through the mean that spills over
to identify previously non-identifiable parameters. The same result holds when we repeat the anal-
ysis for 100 random draws from the prior domain again including a parameter dumpy that does not
enter the model at all. As can be seen in Figure 2 for a first-order approximation the Taylor-rule
coefficients, (v, ¢) and c¢/y enter the problematic sets, whereas in the second-order approximation, in

all cases, we are able to identify all parameters (apart from dumpy).
[Figure 2 about here.]

In summary, we confirm An and Schorfheide (2007)’s approach to estimate the model using a second-
order approximation and non-linear estimation methods. Breaking with certainty-equivalence yields
additional information that can be used to identify all parameters of the model. The formal proof of

this feature of the non-linear model is — as far as we know — new to the literature.

8 Conclusion

We establish formal rank criteria for local identification of the deep parameters of a non-linear DSGE
model using the pruned state-space system. Our procedures can be implemented prior to actually
non-linear estimation methods. The rank criteria indicate whether it is possible to estimate sets of
parameters which are not identifiable in the log-linearized model. In this way we show identifiability of
the Kim (2003) and An and Schorfheide (2007) model, when solved by a second-order approximation.
The proposed rank conditions, however, do not point towards a specific estimation method. How
good are we actually able to estimate the Kim (2003) model, given a reasonable size, is left for
further research. Accordingly, An and Schorfheide (2007) show that using a particle filter only
weakly identifies the parameters of their model.

Even though our exposition is based on the second-order, an extension to higher-orders is straight-
forward, since the pruned state-space always results in a system which is linear in an extended state
vector. A further extension is to establish rank criteria for other non-linear DSGE model specifica-
tions as long as we are able to calculate moments or the spectrum of the data-generating-process.
For instance, Bianchi (2013) derives analytical moments for Markov-switching models, which we can

use in a similar fashion to establish rank criteria for Markov-switching DSGE models.
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A Magnus-Neudecker definition of Hessian

Define the steady state as 7y := (7,7, 7,7) := (z',¥')’, then the Jacobian Df(z) and Hessian
Hf(Z) of f evaluated at the steady-state are defined as:

1 —
[ (@y)
f(@y) = :
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1
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f is of dimension n x 1, the Jacobian D f(Z) of dimension n X (2n, 4 2n,) and the Hessian H f(Z) of

dimension n(2n, + 2n,) X (2n, + 2n,).

B Deriving analytical derivatives

In order to calculate the derivatives of the solution matrices, we will use repeatedly the commutation
matrix K, , which transforms the m xn matrix A such that K,, ,vec(A) = vec(A4’), and the following

useful results from matrix differential calculus:

Theorem 1 (Derivative of products) Let A be a (m xn) matriz, B a (n X o) matriz, C a (0 X p)

matriz and D a (p X q) matriz, then the derivative of vec(ABC D) with respect to 0 is given by

d(ABCD) = (D'C'B' ® I,,)dA + (D'C' @ A)dB + (D' ® AB)dC + (I, ® ABC)dD
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Proof: Magnus and Neudecker (1999, p. 175). Note that dX := avg%(,x)

Theorem 2 (Derivative of Kronecker products) Let X be a (n x q) matriz, Y a (p xr) matriz
and K, the commutation matriz of order (r,n), then the derivative of vec(X ® Y') with respect to

0 is given by

AXQRY)=I; @ Kpp ®1Ip) [(Ing @vec(Y))dX + (vee(X) @ I, ) dY]

Proof: Magnus and Neudecker (1999, p. 185). Note that dX := %.

Moreover, we will make use of the following algorithm:

Algorithm 1 (Derivative of partitioned matrix) Let X be a (m xn) matriz, that is partitioned
such that X = {Xl XQ}, with X1 being (m X ny) and X5 being (m X ng), n = ny + na.

1. Derive dX1 and dXs; dX; is of dimension (mny X ng) and dXs of dimension (mns X ng).
2. Fori=1,...,ng
(a) Denote the i-th column of dX; and dXo as dX} and dX} respectively. dXi is of dimension
(mny x 1) and dX§ of dimension (mng x 1).

(b) Reshape dXi into a (m x ny) matriz [dX{](mxn,) and dX% into a (m X ng) matriz
[dXé](an2)~
(c) Store vec([[dX{](mxny) (X3 (mxna)]) into the i-th column of a matriz dX.

3. dX is the derivative of X with respect to 6 and is of dimension (mn X ng).

Note that dX = 8“%@(}().

Now we are able to derive the expressions for Q=!, A, B~! and C:
Derivative of Q™1 Notice that Q is partitioned into Q = [Q1 Q2],

Qi=h,@foh, +1,, ®fLI,,,
Q2 =In, @ (fi + f292) ® In, .

Deriving d(f2g.) using Theorem 1 and mechanically applying Theorem 2 repeatedly, we obtain the
derivatives d@Q; and d@Qs2. Now we can use Algorithm 1 to compute d@). However, we are interested in
dQ~1, thus in step 2(b) we also compute the derivative of the inverse using —Q~* [[dQﬁ] [dQé]] Q!
(Magnus and Neudecker 1999, p. 184) and store it in step 2(c) in the i-th column of d(Q1).

Derivative of R Regarding the derivative of R we first have to derive dM. This can be done
in the same fashion, since M is partitioned into M = (hy, gohs, In,,9:). dhy and dg, are known,
whereas d(g,h.) can be derived using Theorem 1. Applying Algorithm 1 we get d M, whereas for the
transpose we have the following relationship dM’ = K (ny1n,)n,dM. Now we are able to compute

the derivative of R using Theorems 1 and 2.
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Derivative of S~ Since S is similarly partitioned as @, i.e. S = [S1 3], the derivative d(S™!)

can be calculated analogously to d(Q~1).

Derivative of T T is the sum of two matrices, for which we will derive the derivatives separately.
Consider the first part, f - trm[(l,, ® (11'))gze]. Since the derivatives of (11') and g, are known,
it is straightforward to compute d((l,, ® (77))gzz) applying Theorems 1 and 2. The only slightly
difficult part is the matrix trace function. However, Algorithm 1 can be used to overcome this
difficulty. In fact, we only have one partition, for which we know the derivative. Now taking the trm
of the reshaped matrix in step 2(b) and storing this in step 2(c), we get d(trm[(l,, ® (17'))gza])-
Theorem 1 then yields the derivative of fa - trm[(l,, ® (1'))gzz]. The same steps can be used to
derive the derivative of the second part, trm[(In,n, ® N')HN(nn')]. However, we first have to
derive an expression for dN and dN’. Since N is partitioned, we can use Algorithm 1 to compute
dN and AN’ = Ky, 4n,)n,dN-

Derivative of BX:B’

Derivative of He(e~ %) H; is given by C(I(2n, +n2)> — Ae=™=)~1. Closed form expressions for
dC and dA are given in chapter 4 using Algorithm 1 for partitioned matrices. Thus, we only need

the derivative of the inverted expression which is given by
d ((I _ Ae—iws)—l) _ (—(I _ Ae—iws)’_l ® (I _ Ae—iws)—l) (—dA X e—iws)

where we used d(X 1) = (—(X') '@ X ~1)dX, see Magnus and Neudecker (1999, p. 184). Thus, com-
puting dH is a straightforward application of Theorem 1. The derivative of the conjugate transpose

is given by dH{ (e™"*) = K, n.conj(dHe(e ")), where conj returns the complex conjugate.

C Deriving numerical derivatives

In order to derive the Jacobian of a function or matrix F() at a point 6y with respect to 6, we use
a two-sided finite difference method (also known as central differences). That is:

Foreach j=1,...,n9
1. Select a step size h;.

2. Solve the DSGE model twice using 6 = 6y + ejhj and @ = 6y — e;h; with e; a unit vector with
the jth element equal to 1.

3. Compute

dFJ = duec(F'(6o)) ~ vec <F(90 +ejhj) — F(6y — ejhj)>

06, 2h,

4. Store dF7 as the j-th column of dF.
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D Deriving the minimal state

Given the linear solution (1) and (2) of the first order approximation, we will first derive the canonical
ABCD-representation of the DSGE model, i.e.

with z; = () collecting all model variables and . The solution then becomes

Obviously, the driving force of the model is the vector of exogenous states, which we call the mini-
mal state vector. Together with the evolution of the stochastic innovations it determines the evolution
of the endogenous states, the control and the observable variables. The minimal representation is

thus given by

Formal conditions for minimality require that for every 6 € O:

(i) Controllability: For any initial state, it is always possible to design an input sequence that puts
the system in the desired final state, i.e. the matrix [E AB ... ,anflg} has full row

rank,

(ii) Observability: Given the evolution of the input it is always possible to reconstruct the initial

- . Y
state by observing the evolution of the output, i.e. the matrix [C’ Act ... Anea—l C’}

has full column rank.

Some practical issues: For small and medium-sized DSGE models the distinction between en-
dogenous and exogenous states is given through theory, some variables are clearly endogenous (like
output) and some are clearly exogenous (like technology). First, we check the rank conditions for
minimality and observability given the full state vector. If the conditions fail, we remove state vari-
ables from the top until the conditions pass. Note that we remove the entries from all first-order
and second-order solution matrices as well as from the derivatives corresponding to redundant state
variables.

For big DSGE models the distinction of endogenous and exogenous states is often not as clear. A
failsafe approach deriving the minimal state vector is to consider all possible subsets of combinations
of the state vector and check the rank conditions for minimality and controllability in each case. For
a different (computational) approach handling the minimal state in big DSGE models see Kim et al.
(2008).
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E Example Models

The Kim (2003) model

First we define an auxiliary parameter and variable:

Béa (1 —s)?

"T1-B+eB NI

Then the model is given by the following five equations f:
. N _ DN i \O
M+6) (1) (3) = BB {a(l +0)al RO (1= 0) (14 0) (B ) (Bi) } :

S
L\ 140 140 fe=
[(1 —s) (1;5) +5 (k) ] — a1k,

1
1—¢

ke = [5 (%)17¢ +(1-9) (kt71)17¢]
log(ay) = palog(ai—1) + ta,s,

0= Fiug 141

There are two exogenous states k; and a;, and no endogenous states. The controls are ¢; and i,
and are both observable. There is one shock on technology u,; which is appended to the state
vector. Further we set the perturbation parameter equal to the standard deviation of the shock on

technology. Thus, given our definition and ordering of variables we have
/ -\ / !
€t = Uay, Ty = (Ke—1,0e-1,Uayz), Y= (ct,it), o=04, n= (0 1)

The steady-state of this model is given by

1

ﬁ k‘o‘1+9— 1—1+6 it0
a=1, k‘<5> , 1=0k, c=(1-23s) (ak?) S(S) , ug =0.

sa 1—s5
We will consider identification of the parameter vector 6 at the local point 6y:

0 = (a, 57 (5, 9, (b, Pa Ua)la
o= (0.6, 0.99, 0.0125, 1, 2, 0.7, 1).

The priors are given in Table ?7.

The An and Schorfheide (2007) model

First we define auxiliary parameters:

1 (4) 1—
B:ﬁa W*:l—i_La :7_(721/)5 g = .
1+ 500 400 vKT* (c/y)*
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Then the model f consists of thirteen equations:

1—v 1 1 E —TEiciir+rei+Erdysi1+F
0= V¢ﬂ_*2 (eTct — 1) — (e‘ﬂ't _ 1) |:<1 _ 21/) e’ + 21/:| + B (6 41 1) e~ TEictitTet Erdye i tﬂ't+1,
2
0=1— e*TEtCt+1+TCt+Rt7pzzt7Et7rt+1 0= eft=Yt _ o=t n Qjﬂ-* g* (6m 3 1)2
) 2 )
0=R;—prBRi1 — (1= pr)1me — (1 — pr)Y2 (Yt — gt) — UR,
0=dy: — ye + ye—1, 0=gt—pggt—1 —ugt, 0=z —pzze_1 —Uzgy,

0=YGR; — 4@ —100(dy; + z), 0=INFL; — ) — 4007,
0=INT, — ) — ¢ _45(@ _400R,,

0= EtUR,tJrh 0= Etug,t+17 0= Etuz,t+1~

There are three exogenous states Ry, g; and z;, and one endogenous state variable y;. The controls
are c¢¢,dy; and 7, and the observables are YGR;, INFL; and INT;. There are three shocks: a
monetary ug, a fiscal u4+ and a technological shock u, ;. Further, there are no measurement errors

in the model. Thus, given our definition and ordering of variables we have

00 0 1 0 O

&t = (UR.t>U ,t;uz,t)la Tt = (yt—lvRt—lvgt—laZt—l,ft)/,
o / D=10 00010
Yt = (Ct7dyt77'('t,YGRt,INFLt,INTt) y 0 0 0 O 0 1

Further we set the perturbation parameter equal to the standard deviation of the shock on technology,

then we have

OR/0 0 0 0
4x3
0 = 0y, T = 0 Ug/az 0f, nv:[]a Ne = [ * ] ; nd:03><3-
0 0 1 h

The steady-state of this model is given by

y:R:g:Z:E:C:dy:ﬂ—:O,
YGR=+9 INFL=7W  [INT =7W 4 4 4,(@,

We will consider identification of the parameter vector # at the local point fg:

0 = (r K, (3 P2, PR, pg, Pz, 1T, al

0o

Y, og, o, oz, v,  (e/y)")

(2, 0.33, 1.5, 0.125, 0.75, 0.95, 0.9, 1, 3.2, 0.55, 0.002, 0.006, 0.003, 0.1, 0.85).

A)

Note: We could also add measurement errors in the measurement equations and extend the state

vector for this additional stochastic shocks. The identification and results of this paper do not change.
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Table 1: Identification analysis of the Kim (2003) model, 2"4-order approximation

Iskrev Komungjer/Ng Qu/Tkachenko
Tol J M An A G G
1e-03 7 (77,7 T (7,7,7) | 6(6,6,6) 107 (107,107,107) | 3 (3,3,3) 3 (3,3,3)
1le-05 7 (77,7 7(7,7,7) | 6(6,6,6) 107 (107,107,107) | 6 (6,6,6) 6 (6,6,6)
le-07 7 (77,7 T (77,7 | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
1e-09 7 (77,7 7 (7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
le-11 7 (7,77 7(7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
le-13 v (77,7 T (7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
le-15 7 (77,7 7 (7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
le-17 T (77,7 T (77,0 | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
le-19 7 (77,7 T (7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
Robust 7 (77,7 7(7,7,7) | 6(6,6,6) 107 (107,107,107) | 7 (7,7,7) 7 (7,7,7)
Require 7 7 7 107 7 7

Ranks of identification tests for prior mean with analytical derivatives for different tolerance levels tol, subintervalls
N = 10000, lags in autocovariogram 7' = 100. In parenthesis are the corresponding ranks computed with numerical
derivatives given differentiation steps le-3, le-7 and le-11, respectively.

Table 2: Identification analysis of the An and Schorfheide (2007) model, 2"4-order approximation

Iskrev Komungjer/Ng Qu/Tkachenko

Tol J M An A G G
1e-03 15 (15,15,15) 10 (9,9, 9) | 14 (14,14,15) 1140 (1140,1140,1140) | 5 (5, 5, 5) 7(7,7,7)
1e-05 15 (15,15,15) 15 (15,15,15) | 14 (14,14,15) 1140 (1140,1140,1140) | 8 (8, 8, 8) 10 (10,10,10)
1e-07 15 (15,15,15) 15 (15,15,15) | 14 (14,14,15) 1140 (1140,1140,1140) | 11 (11,11,11) 13 (13,13,13)
1e-09 15 (15,15,15) 15 (15,15,15) | 14 (14,14,15) 1140 (1140,1140,1140) | 13 (13,13,13) 14 (14,14,14)
le-11 15 (15,15,15) 15 (15,15,15) | 14 (14,14,15) 1140 (1140,1140,1140) | 13 (13,13,13) 15 (15,15,15)
le-13 15 (15,15,15) 15 (15,15,15) 14 (14,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)
le-15 15 (15,15,15) 15 (15,15,15) 15 (15,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)
le-17 15 (15,15,15) 15 (15,15,15) | 15 (15,15,15) 1140 (1140,1140,1140) | 13 (13,13,13) 5 (15,15,15)
1e-19 15 (15,15,15) 15 (15,15,15) | 15 (15,15,15) 1140 (1140,1140,1140) | 13 (13,13,13) 15 (15,15,15)
robust 15 (15,15,15) 15 (15,15,15) | 14 (14,14,14) 1140 (1140,1140,1140) | 13 (13,13,13) 15 (15,15,15)
Require 15 15 15 1140 15 15

Ranks of identification tests with analytical derivatives for different tolerance levels tol, lags in autocovariogram 7" = 100,
subintervalls N = 10000. Bold indicates full rank. In parenthesis are the corresponding ranks computed with numerical
derivatives given differentiation steps le-3, le-7 and le-11, respectively.
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Figure 1: Sets responsible for non-identification in the Kim (2003) model
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Identification tests for 100 draws from the prior domain using analytical derivatives with robust
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(a) First-order approximation
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(b) Second-order approximation
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tolerance level, lags in autocovariogram T = 100, subintervalls N = 10000.

Figure 2: Sets responsible for non-identification in the An & Schorfheide (2003) model
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(b) Second-order approximation

Identification tests for 100 draws from the prior domain using analytical derivatives with robust
tolerance level, lags in autocovariogram T' = 100, subintervalls N = 10000.
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