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1 Introduction

Speculative bubbles in asset markets are of substantial relevance to financial theorists,

analysts and policy makers. Owing to their impact on both the monetary and real econ-

omy, theoretical and empirical work on speculative bubbles abounds in the economics

and finance literature. The majority of these articles discuss rational bubbles aris-

ing from asset-valuation models, like the well-known present-value stock-price model.

However, most of these studies are concerned primarily with the empirical detection

of bubbles in artificial and/or real-world financial-market data, predominantly by ap-

plying (fixed-sample and sequential) cointegration and unit-roots tests to a dividend-

stock-price relationship (see, inter alia, West 1987; Diba and Grossman; 1988a, 1988b;

Hall et al., 1999; Phillips et al.; 2011; Homm and Breitung, 2012; Phillips et al., 2014).

By contrast, only a few attempts have so far been made to estimate parametric speci-

fications of stock-price bubbles from time-series data (see Wu, 1995,1997; Al-Anaswah

and Wilfling, 2011, Lammerding et al., 2013). Accordingly, there seems to be a need to

establish a rigorous econometric framework for estimating structural forms of rational

stock-price bubbles.

A variety of parametric bubble specifications have been proposed in the literature,

the most influential being the rational, periodically collapsing bubble model introduced

by Evans (1991). Although this stochastic, nonlinear bubble process captures many

theoretically justified properties of speculative bubbles, two salient features of Evans’

specification appear to be incompatible with empirically well-documented real-word

stock-price data. (a) By definition, the Evans bubble necessarily collapses entirely

within one period. (b) Whenever it collapses, the Evans bubble falls back to the same

non-zero mean value. Allen and Gale (2000) and Kindleberger and Aliber (2005),

among others, provide justification for why, after a crash, stock-price adjustments

to the fundamental level typically follow a longer-lasting process. Moreover, they
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point out that, in the case of recurring bubbles, the respective stock-price adjustment

processes are likely to take different periods of time. Following this line of argument,

we suggest modelling the burst of a bubble and the subsequent stock-price adjustment

as a stochastically deflating process.

Figure 1 about here

Supporting empirical evidence is presented in Figure 1, which displays the NAS-

DAQ stock-market index between January 1990 and October 2013. The two shaded

areas represent the deflation processes, starting with the bursting dot-com bubble in

March 2000 and the crash in the aftermath of the subprime mortgage crisis in Octo-

ber 2007, respectively. Typical of most deflation processes is that they are caused by

bad news to investors operating in a highly uncertain financial-market environment, in

which panic trading reactions are likely to accelerate the adjustment process. However,

such extreme downturns in asset prices are occasionally interrupted by policy and/or

regulatory interventions, which provide room for short-term price recovery.

Overall, this paper pursues two objectives. First, we establish a new nonlinear

bubble specification, which combines the periodically collapsing Evans bubble with

the incompletely bursting bubble model proposed by Fukuta (1998). Our specification

is consistent with rational expectations and capable of generating recurring bubble

trajectories with stochastically deflating adjustment processes. Second, we implement

an econometric framework based on sequential Monte Carlo methods for estimating

our new parametric bubble specification. For this purpose, we set up a nonlinear

state-space model that includes stock-price fundamentals and our bubble specification

in non-logarithmic terms. In contrast to the previous literature, we explicitly abstain

from log-linearizing the basic (present-value) stock-price model. This approach enables

us to directly estimate the parameters from the structural economic model and provides
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an unambiguous interpretation of (a) the resulting parameter estimates, and (b) the

filtered bubble process.

Econometrically speaking, we estimate our nonlinear latent bubble process via the

so-called particle filter, a methodology originally from the engineering literature (see

Gordon et al., 1993, for a comprehensive presentation). Technical review articles in-

clude Doucet et al. (2001) and Creal (2012). Applications to economics and finance

include Kim et al. (1998), Fernández-Villaverde and Rubio-Ramirez (2007), Kim and

Stoffer (2008), Duan and Fulop (2009) and Pitt et al. (2014). As described below,

a prerequisite to applying the particle filter is that all model parameters are known.

Since, in practice, appropriate parameter values need to be extracted from the data, we

employ the particle-based approach of the Expectation Maximization (EM) algorithm

established by Schön et al. (2011) for estimating our nonlinear state-space model. In

the empirical part of the paper, we apply our econometric methodology first to artificial

data, and then to four real-world stock-price indices, namely the German stock index

DAX, the NASDAQ, the S&P 500 and the Hang Seng index. We demonstrate how to

exploit the parameter estimates, in order to analyze important quantitative features

of the respective stock-price bubble dynamics (such as bubble growth and deflation

rates).

The remainder of the paper is organized as follows. Section 2 briefly reviews the

basic present-value stock-price model, presents the relevant bubble specifications from

the literature and introduces our new stochastically deflating bubble model. Section 3

transforms the entire stock-price model into a nonlinear state-space representation and

establishes our estimation framework. Section 4 applies the estimation methodology to

artificial and real-world data sets consisting of prices and dividends for the four major

stock-price indices. Section 5 concludes.
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2 Present-value model and rational bubbles

2.1 Present-value model

In the linear present-value model with rational expectations, the price of a stock at

date t, Pt, is given by the Euler equation

Pt =
1

1 + r
[Et(Pt+1) + Et(Dt+1)] , (1)

where Dt+1 is the stock-dividend payment between t and t+1. Et(·) denotes the condi-

tional expectation operator based on all information available to market participants at

time t. r is the required rate of return that is just sufficient to compensate investors for

the inherent riskiness of the stock (Campbell et al., 1997; Cuthbertson and Nitzsche,

2004). Substituting future prices forward repeatedly, we obtain the following solution

of the expectational difference equation (1):

Pt =
∞

∑

i=1

(

1
1 + r

)i

· Et(Dt+i) + lim
n→∞

(

1
1 + r

)n

· Et(Pt+n). (2)

In many applications, speculative bubbles are ruled out by assuming validity of the

transversality condition

lim
n→∞

(

1
1 + r

)n

· Et(Pt+n) = 0, (3)

yielding the unique fundamental stock price:

Pt = P f
t =

∞
∑

i=1

(

1
1 + r

)i

· Et(Dt+i). (4)

The basic idea behind a rational bubble is that there are mathematical expressions

Bt that (a) are consistent with the limit-term appearing on the right-hand side of

Eq. (2), and (b) are chosen such that the stock-price process in Eq. (2) satisfies the
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Euler Eq. (1):

Pt = P f
t + Bt =

∞
∑

i=1

(

1
1 + r

)i

· Et(Dt+i) + Bt. (5)

In view of Eq. (5), we interpret the rational bubble Bt as the deviation of the current

stock price Pt from its current fundamental value P f
t . The entire class of solutions to

the Euler Eq. (1) is given by Eq. (5), in which Bt is any random variable satisfying the

(discounted) martingale property

Et(Bt+1) = (1 + r) ·Bt or, equivalently, Bt =
1

1 + r
· Et(Bt+1). (6)

Any Bt, satisfying the martingale property (6), is called a rational bubble, because its

presence in Eq. (5) is consistent with rational expectations.

2.2 Previous rational bubble models

Several alternative rational bubble specifications satisfying the martingale property

from Eq. (6) have been suggested in the literature. The structurally simplest rational

bubble model may be defined as

Bt = (1 + r) ·Bt−1 + ωt, (7)

where ωt denotes an i.i.d. error term with mean zero (Wu 1995, 1997). However, this

specification implies a continuous (stochastic) growth of the bubble leading to infinitely

high stock prices at some future date, a pattern inconsistent with real-world data.

The next specification, proposed by Blanchard (1979) and Blanchard and Watson

(1982), constitutes a rational bubble with two different states. Given the probability

0 < π ≤ 1, it is defined as

Bt =

{

1
πψBt−1 + $t , with probability π
$t , with probability 1− π

, (8)

where ψ ≡ (1+ r)−1 and $t is an i.i.d. error term with mean zero. With probability π,
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this bubble grows at a faster rate than the required rate of return r (whenever π < 1).

With probability 1 − π, the bubble collapses onto the realization of the stochastic

error term $t. Note that the periodically collapsing bubble (8) suffers from two major

drawbacks. (a) In view of Eq. (6), Diba and Grossman (1988b) argue that, in general,

rational bubbles cannot start from zero and negative bubbles are ruled out as t →∞.

Owing to the probabilistic nature of the error term $t, the specification in Eq. (8) does

not necessarily preclude either of these two stipulations. (b) In the case of a burst, the

bubble (8) collapses entirely within one period, thus precluding an empirically plausibe

slow or moderate deflation process.

The most frequently used rational bubble specification, which overcomes Diba and

Grossman’s (1988b) fundamental critique, is the periodically collapsing bubble from

Evans (1991). It is defined as

Bt =

{

1
ψBt−1ut , if Bt−1 ≤ τ

[κ + 1
πψ

(

Bt−1 − κψ
)

νt]ut , if Bt−1 > τ
, (9)

where κ and τ are real constants to be chosen such that 0 < κ < (1 + r)τ and {ut}∞t=1

is an exogenous process of i.i.d. random variables with ut > 0 and Et−1(ut) = 1 for all

t. The variables {ut} are assumed to be lognormally (LN) distributed and scaled to

have unit mean, i.e. we assume ut = exp(yt − ι2/2) with {yt}∞t=1 being i.i.d. N(0, ι2).1

{νt}∞t=1 constitutes an exogenous i.i.d. Bernoulli process independent of {ut}∞t=1 with

Pr(νt = 1) = π and Pr(νt = 0) = 1−π for 0 < π ≤ 1. The event {νt = 1} signifies that

the bubble will continue to grow, whereas the bubble bursts in the case of {νt = 0}.

Obviously, the Evans bubble (9) features two different rates of growth. For Bt−1 ≤

τ , the bubble grows at the mean rate 1
ψ −1 = r. For Bt−1 > τ , the bubble grows at the

faster rate 1
πψ−1 > r (whenever π < 1), but collapses with probability 1−π per period.

When the bubble bursts, it falls back to the mean value κ and the process recommences.
1In other words, {ut} represents an i.i.d. distributed lognormal process with ut ∼ LN(−ι2

2 , ι2).
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As mentioned above, the Evans bubble exhibits two empirically unrealistic features. (a)

Like the Blanchard bubble (8), the Evans bubble collapses entirely within one period,

and (b) the Evans bubble necessarily drops back to the same non-zero mean level κ

after bursting.

An alternative theoretical model which establishes a more flexible deflating behavior

is the so-called incompletely bursting bubble proposed by Fukuta (1998), the formal

specification of which consists of three potential states:

Bt =











1
ψ

α1
π1

Bt−1 , with probability π1
1
ψ

α2
π2

Bt−1 , with probability π2
1
ψ

1−α1−α2
1−π1−π2

Bt−1 , with probability 1− π1 − π2

, (10)

where it is assumed that 0 < α1 < 1, 0 < α2 < 1, 0 < 1 − α1 − α2 < 1, and addition-

ally for the state probabilities, (1 − α1 − α2)/(1 − π1 − π2) < α2/π2 < α1/π1. It is

straightforward to verify that in States 1 and 2, we have Bt > Bt−1, whereas in State

3, the parameter restrictions imply Bt < Bt−1. It is obvious to characterize State 1

as the ”large bubble state”, State 2 as the ”small bubble state” and State 3 as the

”incompletely bursting state”. Despite its ability to capture a more realistic deflation

process, the major empirical drawback of Fukuta’s specification is that, within each

state, the bubble is subject to deterministic growth.

2.3 A new rational bubble model

Combining specific features of the Evans bubble (9) with the incomplete-bursting prop-

erty of the Fukuta model (10), we now introduce a new rational bubble specification,

which is strictly positive, periodically explosive (recurring) and stochastically deflating.

Using the same notation as for the Evans and the Fukuta bubbles, our specification
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consists of two distinct states:

Bt =

{

α
ψπBt−1ut , with probability π

1−α
ψ(1−π)Bt−1ut , with probability 1− π

. (11)

Via the Bernoulli process {νt}, this mixture of distributions can be written more com-

pactly in one single equation as

Bt =
[([

α
ψπ

− 1− α
ψ(1− π)

]

νt +
1− α

ψ(1− π)

)

Bt−1

]

ut, (12)

where we assume that 0 < α < 1. This latter constraint ensures that the bubble never

collapses to zero and can thus rebuild.

Additionally, we stipulate that α
π > 1 and 1−α

1−π < ψ, thus ensuring the following neat

interpretation of the two bubble states. In State 1, which occurs with probability π, the

bubble grows with the mean factor α
ψπ implying the mean growth rate α

ψπ−1 = α
π−1+α

π ·

r > r (i.e. a faster growth rate than the required rate of return). State 2, occurring with

probability 1− π, models the deflation of the bubble with deflation factor 1−α
ψ(1−π) < 1,

or equivalently, with negative (imploding) bubble growth rate 1−α
ψ(1−π) − 1 < 0. Hinging

on the concrete parameter constellation, the quantitative extent of a specific bubble

deflation ranges between a ”small/moderate correction” and a ”big crash” within one

or arbitrarily many periods. In contrast to Fukuta’s specification (10), our model

allows for a stochastic and thus more realistic bubble growth/deflation within each

state. In addition to its empirically more plausible trajectories, compared to the Evans

and Fukuta models, our specification (12) is also more parsimonious.

It remains to be shown that our bubble specification is rational, by verifying the

martingale property (6). Using (a) the stochastic independence of the processes {ut}

and {νt}, (b) the conditional unit-mean assumption for all ut, and (c) the Bernoulli
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distribution for all νt, we obtain

Et(Bt+1) = Et

{[([

α
ψπ

− 1− α
ψ(1− π)

]

νt+1 +
1− α

ψ(1− π)

)

Bt

]

ut+1

}

= Et

{([

α
ψπ

− 1− α
ψ(1− π)

]

νt+1 +
1− α

ψ(1− π)

)

Bt

}

· Et(ut+1)

= Et

{([

α
ψπ

− 1− α
ψ(1− π)

]

νt+1 +
1− α

ψ(1− π)

)

Bt

}

= π ·
(

α
ψπ

− 1− α
ψ(1− π)

+
1− α

ψ(1− π)

)

Bt + (1− π) · 1− α
ψ(1− π)

·Bt

=
1
ψ

Bt.

Figure 2 about here

Figure 2 displays four simulated trajectories of our stochastically deflating bubble

process (12), where we set ψ = 0.9804 in each simulation, but choose distinct combina-

tions of the parameters ι2, α and π. We initiate all bubble processes with the starting

value B0 = 0.5. The trajectories consist of 250 observations representing a time span

of approximately 21 years, based on monthly data. All trajectories exhibit two or three

major bubbles, all differing from each other (a) in their respective stochastically ex-

plosive growth rates during the emerging phases, and (b) in their stochastic deflation

rates during the adjustment process.

3 Specification issues and nonlinear state-space es-
timation

In this section, we first express our present-value stock-price model in nonlinear state-

space form and then establish the estimation framework using sequential Monte Carlo

methods.
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3.1 Nonlinear state-space representation

In order to set up our state-space model, we reconsider Eq. (5), in which the stock

price Pt equals the present value of expected future dividends, i.e. the fundamental

value P f
t , plus the bubble term Bt. In order to obtain an estimable solution to the

stock-price Pt, we need an assumption on the dynamics of future dividend payments.

Many suggestions on how to model dividend dynamics are available in the literature,

for example, in the classical Gordon (1959) growth model, where dividends grow at

a constant rate. Alternatively, several consumption-based asset-pricing models (inter

alia Lucas, 1978; Barro, 2006) assume that dividends follow a simple random walk or

a random walk with drift. A common feature of all these dividend specifications is

that the resulting fundamental stock-price solution to Eq. (5), P f
t , can be written as

a constant φ multiplied by the current level of dividend payments, Dt.2 In line with

these theoretical models, we specify the fundamental stock-price at date t as

P f
t = φ ·Dt + εt,

where εt constitutes a Gaussian white-noise error term (with mean zero and variance

σ2
ε) capturing the impact of all other factors on the fundamental stock price.

In our present-value stock-price equation,

Pt = P f
t + Bt = φ ·Dt + εt + Bt, (13)

we specify Bt as our stochastically deflating rational bubble model from Eq. (12). Thus,

Eqs. (13) and (12) constitute our complete econometric framework, which we view as

a nonlinear two-equation state-space model. In particular, since stock prices (Pt) and

dividends (Dt) are observable variables, whereas the bubble component (Bt) is latent,
2In the Gordon growth model, the constant φ is affected by the (real) rate of return and the

dividend growth rate, whereas in the asset-pricing models, φ includes the first two moments of the
dividend process, the time preference rate and the degree of relative risk aversion.
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Eq. (13) represents our observation equation, and Eq. (12) our state equation.

At this stage, it is worth mentioning an advantage of our nonlinear state-space

formulation over the log-linear approximation to the standard present-value model, as

proposed by Campbell and Shiller (1988). Our direct modeling (avoiding logs) pre-

serves the clear-cut economic relationship between the stock price Pt, its fundamental

value P f
t , and the bubble component Bt, which follows directly from the original Euler

Eq. (1). By contrast, the log-linear approximation of the present-value model blurs

this relationship and the bubble component Bt no longer constitutes the deviation of

the stock price from its fundamental value, but rather a fundamental value-to-price

ratio, which is less obvious to interpret.

3.2 The particle filter

In the following subsections, we introduce the so-called particle-filter and particle-

smoother approaches, which we apply in our empirical analysis in Section 4. These

sequential Monte Carlo methods enable us to estimate and filter the unobserved state

variable (the bubble compenent) from our nonlinear state-space framework. Our ex-

position closely follows those in Schön et al. (2011) and Creal (2012).

Adopting the notation from the standard literature, we consider the general non-

linear state-space model consisting of the observation equation

yt = mt(xt, µt, ζt), (14)

and the state equation

xt = ht(xt−1, λt, ηt), (15)

in which yt and xt represent the observable and the state variable for t = 1, . . . , T .

In our empirical application in Section 4, yt and xt take on the roles of the stock

price Pt and the bubble component Bt. The random variables µt and λt in Eqs. (14)
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and (15) constitute observable input variables, where µt, in particular, assumes the

role of the dividend payments Dt in Section 4. Since µt and λt are not essential to

establishing our econometric methodology, we formally fade out both variables in the

subsequent notation for ease of readability. Moreover, {ζt}T
t=1 and {ηt}T

t=1 are assumed

to be mutually independent i.i.d. processes with known probability density functions

(pdfs), while mt and ht are deterministic nonlinear functions of given form. In line with

the literature, we formally write the pdfs of yt and xt as p(yt|xt; θ) and p(xt|xt−1; θ),

respectively. We emphasize that in general, both pdfs differ in their functional forms,

although we denote each by the unified outer symbol p(·|·) for ease of notation. Both

pdfs depend on the parameter vector θ, which has to be estimated from a series of

observations y1:T ≡ (y1, . . . , yT ). However, in our first step, we assume the parameter

vector θ to be known and defer the estimation of θ to Section 3.4.

Since the states x0:T ≡ (x0, x1, ..., xT ) are unobservable, we also estimate them (a)

by using the observable data y1:T = (y1, y2, ..., yT ), and (b) by exploiting the formal

structure of the underlying state-space model. To this end, we consider the joint condi-

tional pdf p(x0:T |y1:T ; θ) (that is, the joint probability distribution of the unobservable

states given the observed data) and the associated (conditional) expectation vector

of the states E(x0:T ) ≡ E(x0:T |y1:T ; θ). Adopting the compact notation from Creal

(2012), we may write

E(x0:T ) =
∫

x0:T p(x0:T |y1:T ; θ) dx0:T . (16)

If the pdf p(x0:T |y1:T ; θ) were known, we could simulate the N trajectories x(1)
0:T , . . . ,x(N)

0:T

from this target distribution and a natural simulation-based estimate of the expected

states would be given by Ê(x0:T ) = (1/N)
∑N

i=1 x(i)
0:T .

However, since, in our application, the pdf of the target distribution is unknown,

we cannot simulate from it and therefore have to resort to the concept of importance
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sampling. The basic idea behind importance sampling is to choose an appropriate

proposal distribution g0:T (x0:T |y1:T ; ϕ) (with ϕ denoting the parameter vector) from

which it is possible to simulate. To illustrate, we can rewrite Eq. (16) as

E(x0:T ) =
∫

x0:T
p(x0:T |y1:T ; θ)

g0:T (x0:T |y1:T ; ϕ)
g0:T (x0:T |y1:T ; ϕ) dx0:T . (17)

In view of Eq. (17), we can estimate the expectation vector by the following weighted

average of the N trajectories x(1)
0:T , . . . ,x(N)

0:T simulated from our proposal distribution:

Ê(x0:T ) =
N

∑

i=1

x(i)
0:T

w(i)

∑N
j=1 w(j)

, (18)

where the weights

w(i) ∝ p(x(i)
0:T |y1:T ; θ)

g0:T (x(i)
0:T |y1:T ; ϕ)

(19)

are appropriately chosen so as (a) to capture the relationship between the target and the

proposal distribution, and (b) to correct for simulating from the ”wrong” distribution.

In our empirical application, it turns out to be advantageous to modify the above-

described procedure slightly, so that we can draw sequentially from the proposal dis-

tribution. More explicitly, we factor our proposal distribution into two conditional

distributions by writing for any date t

g0:t(x0:t|y1:t; ϕ) = gt(xt|x0:t−1,y1:t; ϕ)g0:t−1(x0:t−1|y1:t−1; ϕ). (20)

Thus, at any date t, we only draw a new set of N values x(1)
t , . . . , x(N)

t from the first pdf

gt(xt|x0:t−1,y1:t; ϕ) of the factored proposal distribution in Eq. (20) and append these

N values to the corresponding N trajectories realized up to date t−1, x(1)
0:t−1, . . . ,x

(N)
0:t−1.

Overall, the full trajectories at date t can thus be represented as x(i)
0:t =

(

x(i)
0:t−1, x

(i)
t

)

for i = 1, . . . , N .3

3Note that the function gt may change over time.
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Writing the joint conditional probability distribution p(x(i)
0:T |y1:T ; θ) in recursive

form, we obtain the weight for path i at date t as

w(i)
t =

p(yt|x(i)
t ; θ)p(x(i)

t |x
(i)
t−1; θ)p(x(i)

0:t−1|y1:t−1; θ)

p(yt|y1:t−1; θ)gt(x
(i)
t |x

(i)
0:t−1,y1:t; ϕ)g0:t−1(x

(i)
0:t−1|y1:t−1; ϕ)

∝ w(i)
t−1

p(yt|x(i)
t ; θ)p(x(i)

t |x
(i)
t−1; θ)

gt(x
(i)
t |x

(i)
0:t−1,y1:t; ϕ)

= w(i)
t−1ŵ

(i)
t , (21)

where

ŵ(i)
t ≡

p(yt|x(i)
t ; θ)p(x(i)

t |x
(i)
t−1; θ)

gt(x
(i)
t |x

(i)
0:t−1,y1:t; ϕ)

. (22)

The major advantage of this sequential procedure is that we only have to calculate the

ratio from Eq. (22) at each date t, while we can use Eq. (21) for updating previous

weights. Thus, instead of re-computing the entire expressions from Eqs. (18) and (19),

we simply update our estimation when the new observation yt+1 becomes available.

Overall, at date t, we obtain (a) N paths of the state variable each of length t, and

(b) N corresponding weights, i.e.
(

x(i)
0:t−1, x

(i)
t , w(i)

t

)

for i = 1, . . . , N . This approach is

referred to as sequential importance sampling and the draws are called particles.

A frequently encountered problem in sequential importance sampling is that with

time elapsing, the normalized weight of one particle converges to 1, while the remaining

weights converge to 0. In this case, the estimate of the unobserved state consists of

a single draw. In practice, this phenomenon (known as weight degeneracy) is circum-

vented by executing an additional resampling step at each date t. In our susequent

application, we follow Gordon et al. (1993) and draw (at each date t) a new set of values
(

x̃(1)
t , . . . x̃(N)

t

)

from the existing sample
(

x(1)
t , . . . , x(N)

t

)

proportional to the normal-

ized weights w(i)
t /

∑N
j=1 w(j)

t , i = 1, . . . , N . After resampling, we set all N weights to

w(i)
t = 1/N . In general, the specific combination of sequential importance sampling

14



and resampling constitutes the basic particle-filtering approach.4

Overall, the above particle-filtering algorithm yields the following approximation to

the filtered density p(xt|y1:t; θ):

p(xt|y1:t; θ) ≈
N

∑

i=1

w̃(i)
t 1(xt = x(i)

t ), (23)

where 1(·) denotes the indicator function (which is equal to 1 when its argument is true

and 0 otherwise) and w̃(i)
t ≡ w(i)

t /
∑N

j=1 w(j)
t . By analogy with Eq. (18), a simulation-

based estimator of the expected unobserved state at date t,

E(xt) ≡ E(xt|y1:t; θ) =
∫

xtp(xt|y1:t; θ) dxt,

is given by

Ê(xt) =
N

∑

i=1

x(i)
t w̃(i)

t , (24)

which, after the resampling step, can be written as

Ê(xt) =
1
N

N
∑

i=1

x̃(i)
t . (25)

Finally, we need an appropriate proposal distribution gt(xt|x0:t−1,y1:t; ϕ) for imple-

menting the particle filter. A straightforward candidate is the known density of the

state equation, p(xt|xt−1; θ), from which we can easily sample. The virtue of using this

density is that the weights in Eq. (22) are then only defined through the known density

of the observation equation, p(yt|xt; θ). This specific combination of proposal distribu-

tion, plus resampling strategy, constitutes the original particle filter as established by

Gordon et al. (1993).
4Douc and Cappé (2005) provide an in-depth comparison of alternative resampling algorithms.

Creal (2012) presents distinct particle-filtering approaches, which only differ in their choices of the
proposal distribution gt(xt|x0:t−1,y1:t; ϕ) and the resampling algorithm used.
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3.3 The particle smoother

Based on the full set of data collected up to date T , we now aim at improving all state

estimates by approximating the so-called smoothed density p(xt|y1:T ; θ) via an appro-

priate particle smoother. Our smoothing method closely follows Schön et al. (2011) and

is equivalent to the reweighting particle smoother proposed by Hürzeler and Künsch

(1998) and Doucet et al. (2000).

Applying the Theorem of Total Probabilities, we first express the requested smoothed

density as

p(xt|y1:T ; θ) =
∫

p(xt|xt+1,y1:t; θ)p(xt+1|y1:T ; θ) dxt+1, (26)

which, via Bayes’ Formula, we rewrite as

p(xt|y1:T ; θ) = p(xt|y1:t; θ)
∫

p(xt+1|xt; θ)p(xt+1|y1:T ; θ)
p(xt+1|y1:t; θ)

dxt+1. (27)

Invoking the Theorem of Total Probabilities once more, we represent the denominator

of the integrand as

p(xt+1|y1:t; θ) =
∫

p(xt+1|xt; θ)p(xt|y1:t; θ) dxt. (28)

Overall, we can write the smoothed density in terms of (a) the filtered density p(xt|y1:t; θ),

(b) the density of the state equation p(xt+1|xt; θ), and (c) the smoothed density

p(xt+1|y1:T ; θ):

p(xt|y1:T ; θ) = p(xt|y1:t; θ)
∫

p(xt+1|xt; θ)p(xt+1|y1:T ; θ)
∫

p(xt+1|xt; θ)p(xt|y1:t; θ) dxt
dxt+1. (29)

By analogy with Eq. (23), we approximate the smoothed density from Eq. (29) by

p(xt|y1:T ; θ) ≈
N

∑

i=1

w̃(i)
t|1:T1(xt = x(i)

t ), (30)
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where

w̃(i)
t|1:T = w̃(i)

t

N
∑

k=1

w̃(k)
t+1|1:T p(x(k)

t+1|x
(i)
t ; θ)

∑N
j=1 w̃(j)

t p(x(k)
t+1|x

(j)
t ; θ)

. (31)

In order to implement this smoothing algorithm, we need the particles and the

corresponding weights
(

x(i)
t , w(i)

t

)

from the sequential importance sampling for every

date t. For t = T , we have w̃(i)
T |1:T = w̃(i)

T and the smoothed density p(xt+1|y1:T ; θ) can

be obtained recursively (see Schön et al., 2011). Based on the N particles x(i)
t from the

sequential importance sampling and the N smoothed weights w̃(i)
t|1:T , we estimate the

(expected) smoothed states for any other date t (given all observations up to date T )

by

̂E(xt|1:T ) =
N

∑

i=1

x(i)
t w̃(i)

t|1:T . (32)

3.4 Maximum likelihood estimation of parameters with the
EM algorithm

We now address the estimation of the parameter vector θ of our nonlinear state-space

model. While maximum likelihood estimators of θ are straightforward to implement in

many state-space models, a non-trivial problem arises in our nonlinear framework. Ow-

ing to the resampling procedure, the likelihood function approximated by our particle-

filtering approach becomes a discontinuous function of θ (Hürzeler and Künsch, 2001;

Creal, 2012) rendering invalid the use of gradient-based optimizers for maximizing the

likelihood function (Pitt, 2002; Kantas et al., 2009). To overcome this discontinuity

problem, we apply a variant of the Expectation Maximization (EM) algorithm estab-

lished by Schön et al. (2011).

Consider the observabe data y1:T and let `(θ|y1:T ) ≡ log[p(y1:T ; θ)] denote the log-

likelihood function with respect to θ given all observations. The basic idea behind the

EM algorithm is that in each iteration k, the algorithm determines an estimate θk of the

unknown parameter vector θ, such that the observed-data log-likelihood value exceeds
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the log-likelihood value from the preceding iteration, that is `(θk|y1:T ) > `(θk−1|y1:T ).

We now additionally assume that the data set may be incomplete. Following Schön

(2011), we denote the missing data by x1:T (whose role is taken on by the state vector

in our empirical application) and consider the complete-data log-likelihood function

`(θ|y1:T ,x1:T ) ≡ log[p(y1:T ,x1:T ; θ)]. (33)

In general, this complete-data log-likelihood function has a convenient shape and max-

imization becomes feasible (McLachlan and Krishnan, 2007).

The fact that the missing data x1:T are unobservable requires that, at the beginning

of each iteration k, the complete-data log-likelihood function from Eq. (33) has to be

approximated by its expectation conditional on the observed values y1:T and the given

initial guess θk = θk−1 for the true parameter vector. Then, the following objective

function is defined:

Q(θ, θk) ≡
∫

`(θ|y1:T ,x1:T )p(x1:T |y1:T ; θk) dx1:T . (34)

The crucial step in iteration k is then to choose the parameter vector θ so that

Q(θ,θk) > Q(θk, θk). This specific θ then replaces the initial guess θk = θk−1 and it-

eration k is terminated. Overall, after starting with k = 0 and a starting vector θ0, the

EM algorithm becomes a two-step procedure in each iteration k. (a) In the expectation

step, we determine the objective function Q(θ,θk) given the initial vector θk. (b) In the

maximization step, we maximize Q(θ,θk) with respect to θ. We continue iterating in

this two-step fashion until the difference between the Q-values of two successive itera-

tions becomes smaller than some prespecified convergence criterion. Schön et al. (2011)

and McLachlan and Krishnan (2007) show that each new iteration increases the value

of the log-likelihood function, that is `(θ|y1:T ) > `(θk|y1:T ). This justifies considering

the vector θ from the final iteration as our desired maximum likelihood estimate ̂θ.
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What remains is to obtain an operable form of the objective function Q(θ,θk) for

our nonlinear state-space framework, as specified by Eqs. (14) and (15).5 To this end,

we first apply Bayes’ Formula and exploit the Markov nature of the state equation

(15), so as to write the complete-data log-likelihood function as

`(θ|y1:T ,x1:T ) = log[p(y1:T |x1:T ; θ)] + log[p(x1:T ; θ)]

= log[p(x1; θ)] +
T−1
∑

t=1

log[p(xt+1|xt; θ)] +
T

∑

t=1

log[p(yt|xt; θ)]. (35)

Via the definition of Q(θ, θk) in Eq. (34), we obtain the objective function as

Q(θ,θk) =
∫

log[p(x1; θ)]p(x1|y1:T ; θk) dx1

+
T−1
∑

t=1

∫ ∫

log[p(xt+1|xt; θ)]p(xt+1, xt|y1:T ; θk) dxt dxt+1

+
T

∑

t=1

∫

log[p(yt|xt; θ)]p(xt|y1:T ; θk) dxt. (36)

Ultimately, for determining Q(θ, θk), we need the densities of the observation and

state equation plus the densities p(xt|y1:T ; θk) and p(xt+1, xt|y1:T ; θk), approximations

of which we receive as by-products of the particle smoother, as described in Section 3.3.

Being now equipped with these, we implement the EM algorithm as follows. In the

expectation step of iteration k, we use the results from Eqs. (30) and (31) in conjunction

with Eq. (23) and, following Schön et al. (2011), approximate the Q-function by

̂Q(θ, θk) =
N

∑

i=1

w̃(i)
1|1:T log[p(x(i)

1 ; θ)]

+
T−1
∑

t=1

N
∑

i=1

N
∑

j=1

w̃(ij)
t|1:T log[p(x(j)

t+1|x
(i)
t ; θ)]

+
T

∑

t=1

N
∑

i=1

w̃(i)
t|1:T log[p(yt|x(i)

t ; θ)], (37)

5For a detailed derivation of the following steps, see Schön et al. (2011).
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where

w̃(ij)
t|1:T =

w̃(i)
t w̃(j)

t+1|1:T p(x(j)
t+1|x

(i)
t ; θk)

∑N
l=1 w̃(l)

t p(x(j)
t+1|x

(l)
t ; θk)

, (38)

and the x(i)
t , i = 1, . . . , N , are the particles from the sequential importance sampling.

In the maximization step, we maximize the function ̂Q with respect to θ to obtain the

initial θk+1. We continue iterating until ̂Q(θk+1,θk)− ̂Q(θk, θk) becomes smaller than

some prespecified threshold value c > 0 and consider θk from the terminal iteration as

our maximum likelihood estimate ̂θ. We note that the convergence properties of this

particle-filtering-based EM algorithm correspond to those of general EM methods. In

particular, Hu et al. (2008) and Schön et al. (2011) show that ̂Q(θ, θk) is an arbitrarily

accurate approximation to Q(θ,θk).

3.5 Standard errors

One drawback of the EM algorithm is that it does not automatically provide estimates

of the covariance matrix of the ML estimators. However, various approaches to esti-

mating the information matrix I(θ) under the EM algorithm have been proposed in

the literature, so that we can obtain asymptotic standard errors from the inverse of its

estimate, [̂I(θ)]−1. In our application below, we use the numerically stable estimator

of the information matrix, as established by Duan and Fulop (2011).

As the starting point of presentation, we recall that the variance-covariance matrix

of the score vector of the observed-data log-likelihood function, s(θ) ≡ ∂`(θ|y1:T )/∂θ,

equals the information matrix:

V[s(θ)] = I(θ). (39)

Instead of using the scores of the observed-data log-likelihood function `(θ|y1:T ), Duan

and Fulop (2011) suggest approximating the covariance matrix V[s(θ)] by the smoothed

scores of the complete-data log-likelihood function `(θ|y1:T ,x1:T ), as given in Eq. (35).6

6We leave the formal derivation aside and straightforwardly adapt the Duan and Fulop (2011)
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Since the smoothed scores do not constitute martingale differences, we additionally

apply the Newey-West (1987) estimator with lag truncation parameter l. Overall, we

derive the Duan-Fulop (2011) asymptotic standard errors of our maximum likelihood

estimates ̂θ from the matrix

[̂I(θ)]−1 =

[

A0 +
l

∑

j=1

(

1− j
l + 1

)

(Aj + A′
j)

]−1

, (40)

where

Aj =
T−j
∑

t=1

at(̂θ)at+j(̂θ)′,

with

at(̂θ) =
N

∑

i=1

N
∑

j=1

w̃(ij)
t|1:T





∂ log
[

p(x(j)
t |x

(i)
t−1; θ)

]

∂θ

∣

∣

∣

∣

∣

∣

θ=
bθ





+
N

∑

i=1

w̃(i)
t|1:T





∂ log
[

p(yt|x(i)
t ; θ)

]

∂θ

∣

∣

∣

∣

∣

∣

θ=
bθ



 .

4 Empirical analysis

In this section, we estimate our stochastically deflating bubble specification from Sec-

tion 2.3 via the particle-filtering approach for various artificial and real-world data sets.

We first recall that our stock-price equation (13) and bubble specification (12) repre-

sent the observation equation (14) and the state equation (15) of the general nonlinear

state-space framework, the explicit distributions of which are required for implementing

the particle-filtering methodology. Since the error term εt in the observation equation

(13) is assumed to be normally distributed, the observation equation is also Gaussian,

with the pdf given by

p(Pt|Bt, Dt; θ) = p(yt|xt, µt; θ) = N(φ ·Dt + Bt, σ2
ε), (41)

approximation procedure to our state-space framework. Technical details are available upon request.
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where N(·, ·) denotes the pdf of the normal distribution. The distribution of our state

equation is completely characterized via the distribution of the stochastically deflating

bubble model from Eqs. (11) and (12). Obviously, our bubble specification constitutes

a mixture of two lognormal distributions with mixing weights π and 1− π. Thus, the

pdf of the state equation can be written as

p(Bt|Bt−1; θ) = p(xt|xt−1, λt; θ)

= π · LN
(

−ι2

2
+ log

[

α
πψ

Bt−1

]

, ι2
)

+ (1− π) · LN
(

−ι2

2
+ log

[

1− α
(1− π)ψ

Bt−1

]

, ι2
)

, (42)

where LN(·, ·) denotes the pdf of the lognormal distribution. We collect all model

parameters in Eqs. (41) and (42) in the vector θ = (φ, σ2
ε , ψ, ι2, π, α)′.

Figure 3 about here

4.1 Artificial data

In order to assess the overall reliability of the estimation procedure, we first apply

the approach to artificial data. For this purpose, we chose the parameter vector

θ = (φ, σ2
ε , ψ, ι2, π, α)′ = (50, 1.5, 0.9804, 0.02, 0.87, 0.91)′ and—assuming that divi-

dends follow a simple random walk—simulated the stock-price and the stochastically

deflating bubble series via Eqs. (13) and (12), respectively. Figure 3 displays both

trajectories, each consisting of 250 observations.

Table 1 about here

Owing to the computational burden inherent in the EM algorithm, we only used

N = 300 particles in the estimation procedure. As the convergence criterion for termi-
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nating the EM algorithm, we chose the threshold value c = 1/N ≈ 0.0033.7 We initial-

ized the EM algorithm with the starting vector θ0 = (30, 0.5, 0.85, 0.01, 0.7, 0.75)′ and

numerically maximized the ̂Q-function from Eqs. (37) and (38) by using the FMIN-

CON module in MATLAB. The EM algorithm converged after 285 iterations. Finally,

we computed Duan-Fulop (2011) standard errors according to Eq. (40), for which we

used N = 500 particles and l = 15 lags. The estimation results are shown in Table 1.

Obviously, all parameters appear to be accurately estimated.

Figure 4 about here

As described in Sections 3.2 and 3.3, an estimation of the states (that is the unob-

servable bubble series) can be achieved by applying the particle filter and the particle

smoother. Figure 4 displays the true bubble trajectory, compared to the bubble series

estimated via (a) the particle-filter (upper panel), and (b) the particle-smoother (lower

panel), where we used N = 500 particles in each approach. Obviously, both techniques

yield estimates of the bubble series that are almost indistinguishable from the true

bubble data.

Figure 5 about here

4.2 Real-world data

We now apply our estimation procedure to the following four major stock-price indices:

the German stock index (DAX), the Standard and Poor’s index (S&P 500), the National

Association of Securities Dealers Automated Quotations index (NASDAQ composite)

and the Hang Seng index (HSI). All time series cover monthly data between January
7The convergence of the EM algorithm generally hinges on the accuracy of the approximation to

Q(θ,θk). As shown in Schön et al. (2011), ̂Q(θ, θk) constitutes an arbitrarily accurate approximation
as N →∞. Owing to the relatively low number of N = 300 particles, we chose c as dependent on N ,
thus accepting a less accurate approximation. However, Schön et al. (2011) demonstrate that even
when using only a small number of particles, the procedure generates reasonably accurate estimates.
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1981 and February 2014 (398 observations). We chose 1981 as the beginning of our

sampling period for all four indices, because at that time, price movements appeared

to be moderate and did not indicate the existence of any (substantial) bubbles. We

obtained the dividend time series by multiplying the respective stock-price index with

the corresponding dividend yield. We converted the nominal data to real data, using

the respective consumer-price indices. Except for the S&P 500 data, which we com-

piled from Robert Shiller’s website,8 all other data are from Datastream. To achieve

numerical stability of the EM algorithm, we divided the DAX, NASDAQ and HSI time

series by 10 and the S&P 500 time series by 20. The data are displayed in Figure 5.

Table 2 about here

4.2.1 Estimation results

Table 2 displays the estimation results for the four stock-price indices. We ran the

parameter estimation procedure with N = 300 particles and used the threshold value

c = 1/300 as our convergence criterion. For the DAX and the HSI, the EM algo-

rithm converged after 256 and 219 iterations, respectively. For the NASDAQ and S&P

500, the parameter values stopped changing substantially after about 250 iterations.

However, the EM algorithm did not converge according to our (conservative) thresh-

old value, so that we terminated the EM algorithm after 500 iterations for these two

indices. As in the artificial-data case, standard errors were computed according to

Eq. (40) with N = 500 particles and l = 15 lags.

All parameter estimates in Block (1) of Table 2 exhibit economically plausible

values. It is notable that we estimated all parameters freely, without imposing any

inequality restrictions. Block (3) of Table 2 reveals that the (free) parameter estimates

of all indices satisfy the important theoretical bubble constraints α
π > 1 and 1−α

1−π < ψ
8See http://www.econ.yale.edu/∼shiller/data.htm.
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discussed in Section 2.3. This ensures that in State 1, the index-specific stock-price

bubbles grow at a faster mean rate than the corresponding required rates of return

(cf. rows ”r (in %)” in Block (2) and ”Growth rate (in %) ” in Block (4)), while the

bubbles actually deflate in State 2 at the negative rates displayed in row ”Deflation

rate (in %)” in Block (5).

The estimated probabilities of being in the deflationary State 2 (row ”1 − π” in

Block (2)) are higher for the DAX (0.0516) and the NASDAQ (0.0405) than for the

S&P 500 (0.0074) and HSI (0.0135). On the other hand, Block (5) of Table 2 indicates

that the deflation rates of the S&P 500 (−43.7394 %) and the HSI (−88.4126 %) appear

to substantially exceed those of the DAX (−22.1834 %) and the NASDAQ (−18.4483

%). We conclude that the DAX and NASDAQ bubbles are likely to run through

deflation periods more frequently than the S&P 500 and HSI bubbles. However, once

the indices have entered the deflationary state, the S&P 500 and HSI bubbles deflate

at significantly faster rates than their DAX and NASDAQ counterparts, thus reverting

far more rapidly to fundamentally justified levels.

Figure 6 about here

Based on the parameter estimates, we now disentangle the latent bubble process

from stock-prices and dividends via the filtering methods described in Sections 3.2 and

3.3. Figure 6 displays the four estimated bubble components, as extracted via the

particle smoother with N = 500 particles, along with the corresponding fundamental

processes (computed as the difference between the stock-price index and the estimated

bubble values).

All bubble trajectories exhibit clear-cut deflating periods during the new-economy

crisis between 2000 and 2003 and the subprime-mortgage crisis in 2007/2008. Except

for the NASDAQ, we also find moderate deflation phases in the aftermath of the Black
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Monday (October 1987). Although all bubble trajectories undergo several bursts, they

rarely deflate completely within only a few periods and typically begin to rebuild from

different base values (as opposed to the theoretical properties of the Evans bubble). In

contrast to the DAX, NASDAQ and S&P 500 bubbles, the HSI bubble exhibits several

pronounced peaks, with relatively short-lived deflation periods (typically lasting only

a few months).

Figure 7 about here

Figure 7 displays the bubble-index ratios, which we interpret as the speculation

share in the four analyzed stock markets. In January 1981, about 40% of the DAX

value could be ascribed to the bubble component, whereas for the NASDAQ and S&P

500 the speculative share started near zero, but grew to about 70 % and 44% in the

run-up to Black Monday in October 1987. For these three indices, the respective

ratios peaked at the beginning of the new-economy crisis, in particular for the DAX in

February 2000 (84 %), for the NASDAQ in September 2000 (94 %) and for the S&P

500 in August 2000 (74 %). For the HSI, the ratio remained comparably moderate,

ranging between 2 % and 58% during the entire sampling period.

4.3 Model selection and specification diagnostics

Prior to evaluating the goodness-of-fit of our stochastically deflating bubble model

(12), some comments of the model comparison between the Evans bubble (9) and

our specification are in order. We also attempted to fit the Evans bubble to our

real-world time series, using the particle-filter framework. However, in so doing, we

ran directly into an identification problem that prevented us from obtaining explicit

parameter estimates for the Evans bubble. To analyze this problem, we fitted the

Evans specification (9) to a plethora of artificial data sets and found that the EM
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algorithm appears to be incapable of globally identifying the threshold parameter τ ,

thus rendering it infeasible to fit the Evans bubble to our real-world stock-price indices.9

By contrast, the estimation of our stochastically deflating bubble specification (12)

does not raise any technical problems. All that remains is to investigate its goodness-

of-fit, for which we invoke the test suggested by Diebold et al. (1998). This test is based

on the Rosenblatt (1952) probability integral transform and assesses the model fit by

evaluating a sequence of one-step-ahead density forecasts. To outline the procedure,

let {yt}T
t=1 be a series of realizations from the sequence of densities {ft(yt|Ωt−1)}T

t=1

conditioned on an information set Ωt−1. If the model {pt(yt|Ωt−1)}T
t=1 is correctly

specified (i.e. if {pt(yt|Ωt−1)}T
t=1 = {ft(yt|Ωt−1)}T

t=1), then the sequence of probability

integral transforms (PITs)

zt =
∫ yt

−∞
pt(u|Ωt−1) du (43)

should be i.i.d. uniformly distributed over the interval [0, 1] (that {zt} should be

i.i.d. U(0, 1)).

Although originally established for out-of sample evaluations, we use this test in-

sample to assess specification adequacy. The advantage of this testing procedure is

that we do not compare our model with any reference model, but test directly how

well our model fits our given data. Any deviation from the i.i.d. U(0, 1) distribution

may indicate incorrect distributional assumptions about the underlying data-generating

process and/or insufficiently captured conditional dynamics (see Tay and Wallis, 2000,

p. 250). To implement the goodness-of-fit test, we need the one-step-ahead forecast

densities. In our nonlinear state-space framework, the forecast densities p(yt|y1:t−1; θ)

coincide with the contributions of the observed-data log-likelihood, as given by the

prediction-error decomposition (Creal, 2012). Generally, an appropriate estimate of

the forecast density at time t may be derived as a byproduct of the particle filter. In
9Detailed results of our simulation analysis are available upon request.
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our case, in which we use a resampling step in each period of the particle filter, we

approximate the forecast density by

p(yt|y1:t−1; θ) ≈ 1
N

N
∑

i=1

ŵ(i)
t , (44)

with ŵ(i)
t defined as in Eq. (22), which coincides with the density of the observation

equation given in Eq. (41).

Figure 8 about here

Several methods of evaluating the i.i.d. uniformity of the sequence of PITs {zt}

have been suggested in the literature (Diebold et al., 1998; Tay and Wallis, 2000). As

a graphical device, we plot the empirical cumulative distribution functions (cdfs) of our

four PIT sequences and analyze their deviations from the diagonal (that is, from the

theoretical cdf of the U(0, 1) distribution). Figure 8 displays the respective cdfs along

with confidence intervals around the diagonal. We compute the interval bounds by

using the critical value of the Kolmogorov-Smirnov goodness-of-fit test at the 5% level.

Except for the HSI, all other PIT sequences appear to remain within their confidence

bands, thus revealing no substantial deviation from the U(0, 1) distribution.

Table 3 about here

In a more formal analysis, we also employ a battery of well-known goodness-of-fit

tests, namely the Kolmogorov-Smirnov, the Cramer-von Mises and Anderson-Darling

tests. Table 3 contains the values of the respective test statistics along with the p-

values, where, for each test, the null hypothesis states that the PIT sequence was

randomly sampled from the U(0, 1) distribution. Evidently, the results appear to be

robust against the distinct testing procedures. For the PIT sequences of the DAX and

28



the NASDAQ the null hypothesis of having been randomly sampled from the U(0, 1)

distribution cannot be rejected at any conventional level, thus indicating a satisfactory

model fit. By contrast, for the S&P 500 and the HSI, all tests reject the null hypothesis

at the 5% and 1% levels, respectively, leaving room for specification improvement for

these latter indices.

5 Conclusion

In this paper, we propose a new parametric specification of a rational bubble that is

able to generate periodically recurring and stochastically deflating trajectories. Our

theoretical bubble process is closely related to economic theory, empirically plausible

and combines all important features of rational bubble specifications previously pro-

posed in the literature. The second objective of the paper consists of establishing a

rigorous econometric framework for estimating our nonlinear and unobservable bubble

specification. To this end, we plug our parametric bubble process into the standard

present-value stock-price model, which we then transform into a nonlinear state-space

model. In order to estimate our entire state-space framework, we adapt a particle-

filtering approach originally from the engineering literature.

We successfully apply the estimation methodology to artificial and real-world stock-

price data and demonstrate the advantage of our new parametric bubble model over

previous specifications with respect to estimation feasibility and data fit. It is worth

mentioning that our framework avoids the typical log-linearization of the standard

present-value model. As a result, all parameter estimates (and in particular, all es-

timates of our bubble parameters) can be interpreted unambiguously in direct corre-

spondance with the underlying economic theory. This enables us to quantify several

important features characterizing the dynamics of historical bubbles, like growth rates

during the emerging phase and deflation rates during the downturn. In view of this, a
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plethora of interesting applications appear to be conceivable in future empirical studies,

such as comparisons of bubble dynamics in different stock-markets, and evaluations of

the impact of monetary policy measures on bubble dynamics.

The diagnostic tests in Section 4.3 for the S&P 500 and the Hang Seng indices

suggest that there is still room for bubble-specification improvement. In line with the

suggestions of Diebold et al. (1998) and Tay and Wallis (2000), one straightforward

attempt to improve on the conditional bubble dynamics consists of including addi-

tional bubble lags (e.g. Bt−2) on the right-hand side of Eq. (12). It is far from obvious,

however, how this could be accomplished technically (a) without violating the mar-

tingale property (6), and (b) ensuring that the resulting bubble specification leads to

a stock-price solution that satisfies the Euler equation (1). In view of this, a useful

direction for future research may entail the development of alternative rational bubble

specifications providing more flexible conditional dynamics.
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Tables and Figures



Table 1
Particle-filter parameter estimates using the EM algorithm

Parameter True value Estimate Standard error
φ 50.0000 49.8220 0.5112
σ2

ε 1.5000 1.6839 0.2072
ψ 0.9804 0.9698 1.6239 × 10−4

ι2 0.0200 0.0231 6.2637 × 10−5

π 0.8700 0.8917 0.0073
α 0.9100 0.9255 0.0044
Note: Standard errors were computed from the Duan and Fulop (2011) estimator given in Eq. (40) with
N = 500 particles and l = 15 lags.
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Table 2
Estimation results for the DAX, NASDAQ, S&P 500, and the HSI

Parameter DAX NASDAQ S&P 500 HSI
(1) EM estimates:
φ 13.3782 29.9531 20.2057 23.0731

(0.0308) (0.0324) (0.0037) (0.0101)
σ2

ε 0.1277 0.4476 1.3530 3.1976
(3.3094×10−4) (0.0014) (0.0033) (0.0109)

ψ 0.9912 0.9840 0.9848 0.9589
(2.0210×10−5) (1.7480×10−5) (9.8682×10−6) (1.8464×10−4)

ι2 0.0047 0.0061 0.0036 0.0414
(2.2588×10−7) (7.6905×10−7) (6.7574×10−8) (5.5004×10−5)

π 0.9484 0.9595 0.9926 0.9865
(2.2129×10−4) (0.0011) (3.7926×10−5) (6.2247×10−5)

α 0.9602 0.9675 0.9959 0.9985
(1.4712×10−4) (8.6242×10−4) (1.3766×10−5) (9.0434×10−7)

(2) Other estimates:
r (in %) 0.8878 1.6260 1.5435 4.2862
1− π 0.0516 0.0405 0.0074 0.0135
(3) Bubble constraints:
α
π 1.0124 1.0083 1.0033 1.0122
1− α
1− π − ψ −0.2199 −0.1815 −0.4307 −0.8478

(4) State 1:
α
ψπ 1.0214 1.0247 1.0188 1.0555

Growth rate (in %) 2.1431 2.4733 1.8811 5.5547
(5) State 2:

1− α
ψ(1− π) 0.7782 0.8155 0.5626 0.1159

Deflation rate (in %) −22.1834 −18.4483 −43.7394 −88.4126
Note: Standard errors are in parantheses and were computed from the Duan and Fulop (2011) estimator
given in Eq. (40) with N = 500 particles and l = 15 lags.
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Table 3
Goodness-of-fit tests for the DAX, NASDAQ, S&P 500, and the HSI

Test DAX NASDAQ S&P 500 HSI
Kolmogorov-Smirnov 0.0394 0.0559 0.0706∗∗ 0.0994∗∗∗

(0.5586) (0.1617) (0.0361) (0.0007)
Cramer-von Mises 0.1154 0.3128 0.5646∗∗ 0.8200∗∗∗

(0.5149) (0.1244) (0.0273) (0.0065)
Anderson-Darling 0.8025 1.9191 3.3592∗∗ 5.4010∗∗∗

(0.4792) (0.1018) (0.0180) (0.0019)
Note: p-values are in parantheses. ∗ ∗ ∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.
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Figure 1. NASDAQ stock‐market index, January 1990 – October 2013 
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Figure 2. Bubble trajectories simulated according to Eq. (12) 
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Figure 3. Simulated stock‐price and included bubble process 
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Figure 4. True versus estimated bubble processes 
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Figure 5. DAX, NASDAQ, S&P 500 and HSI (solid lines) and dividends (dashed lines) 
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Figure 6. Estimated bubble processes (solid lines) and fundamental processes (dashed 
lines) of the DAX, NASDAQ, S&P 500 and HSI 
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Figure 7. Bubble‐stock‐price ratios of the DAX, NASDAQ, S&P 500 and HSI 
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Figure 8. Sample cumulative distribution functions of the PITs for the DAX, NASDAQ, S&P 
500, and HSI 
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