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Abstract

In this paper, we establish a Cholesky-type multivariate stochastic volatility estimation

framework, in which we let the innovation vector follow a Dirichlet process mixture,

thus enabling us to model highly flexible return distributions. The Cholesky decom-

position allows parallel univariate process modeling and creates potential for estimat-

ing highly dimensional specifications. We use Markov Chain Monte Carlo methods

for posterior simulation and predictive density computation. We apply our frame-

work to a five-dimensional stock-return data set and analyze international volatility

co-movements among the largest stock markets.
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1 Introduction

Owing to increasingly integrated financial markets, both domestically and internation-

ally, volatility modeling and the analysis of volatility comovements and spillovers among

multiple asset returns have become central topics for the last few decades. The two by

far the most popular volatility model classes discussed in the literature are the general-

ized autoregressive conditional heteroscedasticity (GARCH-type) models (Engle 1982;

Bollerslev 1986) and the stochastic volatility (SV) models (inter alia Taylor, 1982;

1986), both in univariate and multivariate variants. Several in-depth overview articles

on multivariate GARCH (Bauwens et al., 2006) and SV models (Chib et al., 2009) doc-

ument the enormous professional interest in the field. While both model classes have

distinct advantages on their own, a major characteristic of SV specifications is that

they model the unobserved volatility directly as a separate stochastic process. This

converts many SV specifications into discrete-time versions of continuous-time models

that are well-established in finance theory, which constitutes the general attraction of

SV models (Harvey et al., 1994; Kim et al., 1998, Asai et al., 2006).

Irrespective of model selection issues, various stylized empirical properties of asset

returns have been discovered in real-world data, the most prominent being the fat-

tail (kurtotic) nature of the return distribution. Cont (2001) reports that ”... the

(unconditional) distribution of returns seems to display a power-law or Pareto-like tail,

with a tail index which is finite, higher than two and less than five for most data

sets studied. In particular, this excludes stable laws with infinite variance and the

normal distribution.”. Interestingly, the fat-tail property even persists after correcting

the financial returns for volatility clustering (e.g. via GARCH-type models), although

to a less pronounced degree. Numerous attempts have been made to account for the

fat-tail property by replacing the Gaussianity assumption with alternative parametric

distributions for the return innovation in distinct volatility models. Recently, however,

several authors have proposed the nonparametric modeling of return innovation as

a Dirichlet process mixture (DPM) and emphasize the flexibility increase associated

with this approach, compared to using parametric distributions. In particular, to date,

the nonparametric DPM approach has been applied successfully (i) to univariate SV

modeling by Jensen and Maheu (2010, 2014) and Delatola and Griffin (2011, 2013),
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(ii) to univariate GARCH modeling by Auśın et al. (2014), and (iii) to multivariate

GARCH modeling by Jensen and Maheu (2013) and Virbickaitė et al. (2016).

In this paper, we complete the above-described list by integrating the nonparamet-

ric DPM approach into a specific class of multivariate SV models with time-varying

covariance components, based on the Cholesky decomposition of volatility matrices

(see e.g. Nakajima, 2014). We establish a Bayesian estimation procedure for this semi-

parametric overall framework and study its predictive abilities by means of predictive

density evaluation. In the empirical part, we apply our econometric setup to a five-

country data set, in order to analyze volatility comovements among the most important

stock markets worldwide.

The paper is organized as follows. Section 2 reviews (i) the multivariate SV model

based on Cholesky decomposition, and (ii) the Dirichlet process mixture. In Section 3,

we present the Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference.

Section 4 presents essential probabilistic feature of our econometric framework. Section

5 contains the empirical application to daily returns from the five largest international

stock markets. Section 6 concludes.

2 Model development

2.1 Cholesky Multivariate Stochastic Volatility (MSV)

In order to introduce Cholesky MSV modeling, we follow the approach of Primiceri

(2005) and Nakajima (2014) and consider the m× 1 vector yt = (y1t, . . . , ymt)
′ of time

series observations at date t, which we assume to follow an m-dimensional multivariate

normal distribution with zero-expectation vector, E(yt) = 0, and time-varying covari-

ance matrix Cov(yt) = Ht, i.e. yt ∼ N(0,Ht). The Cholesky decomposition of Ht is

given by the factorization

AtHtA
′
t = ΣtΣt, (1)

where At is the lower triangular matrix of covariance components with 1s along the

principal diagonal and Σt is the diagonal matrix of the time-varying standard devia-
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tions:

At =


1 0 · · · 0

α21,t
. . . . . .

...
...

. . . . . . 0
αm1,t · · · αmm−1,t 1

 , Σt = Σ′
t =


σ1,t 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 σm,t

 . (2)

Via the Eqs. (1) and (2), the standard Cholesky MSV model is then defined as

yt = A−1
t Σtϵt, (3)

Ht = A−1
t ΣtΣt(A

−1
t )′, (4)

where the innovation vector ϵt is assumed to follow the m-dimensional multivariate

standard normal distribution N(0, I). Based on Eqs. (2) and (3), several alternative

Cholesky MSV models have been proposed in the literature, by letting the innova-

tion vector ϵt follow distributions other than the multivariate standard normal, for

example, the multivariate t (originally Harvey et al., 1994, in a non-Cholesky MSV

framework), and the multivariate generalized hyperbolic skew t distribution (Naka-

jima, 2014). These specifications retain the essential Cholesky structure, but make

more realistic distributional assumptions, with the aim of more effectively capturing

some stylized facts of financial return data (like leverage effects and skewness). In the

next section, we define a new class of Cholesky MSV models by letting ϵt follow a

Dirichlet process mixture, in order to account for excess kurtosis in the data.

When it comes to Bayesian estimation of Cholesky MSV models with the time-

varying parameters from Eq. (2), we adopt the common methodology of reducing the

multivariate dynamics to univariate volatility processes that form a state-space repre-

sentation (Lopes, 2012; Nakajima, 2014). Specifically, we collect the parameters from

the matrix At in the [m(m − 1)/2] × 1 vector αt and define the stochastic volatility

from Σt in the m× 1 vector ht as follows:

αt = (α21,t, α31,t, α32,t, . . . , αm1,t, . . . , αmm−1,t)
′, (5)

ht = (log(σ2
1,t), . . . , log(σ

2
m,t))

′. (6)

(The parameters in αt are collected row by row from matrix At.) We then specify the

3



dynamics of the Cholesky parameters as the (stationary) AR(1) processes

αt = µα +Φα(αt−1 − µα) + et, (7)

ht = Φhht−1 + ηt, (8)(
et
ηt

)
∼ N

(
0,

[
Σe 0
0 Ση

])
, (9)

where we assume (i) that the matrices Φα,Φh,Σe,Ση are all diagonal, and (ii) that

the p = m(m − 1)/2 diagonal entries ϕα1, . . . , ϕαp of Φα and the m diagonal entries

ϕh1, . . . , ϕhm of Φh are all less than 1 in absolute value (stationarity conditions).1

2.2 Bayesian semiparametric Cholesky MSV

Finally, it remains to specify the distribution of the innovation vector ϵt from Eq. (3),

which we model as a nonparametric Dirichlet process mixture (DPM). The DPM rep-

resents an infinite mixture model and constitutes an extremely flexible extension of

finite mixture models (Jensen and Maheu, 2010, 2013; Kalli et al., 2013; Virbickaitė

et al., 2016). In introducing the DPM, we need to consider the Dirichlet process

DP(c,G0), defined in terms of the base distribution G0 and the concentration param-

eter c (Ferguson,1973). In a Bayesian context, the base distribution G0 represents

the prior distribution of the component parameters in the infinite mixture, while the

parameter c, roughly speaking, controls for the number of clusters in the mixture. A

small value of c can be thought of as a priori indicating a small number of components

with relatively large weights in the infinite mixture, whereas large values of c a priori

assume many mixture components, all with relatively small weights.

Overall, our semiparametric Cholesky MSV specification, in which we model the

m × m matrix Ht from Eq. (4) parametrically, while we let the distribution of the

innovation vector ϵt follow the nonparametric DPM as given in Eq. (17) below, has the

1Note that we specify the AR(1) process for ht in Eq. (8) without an intercept term. This is due to
an identification problem that would arise in the case of a non-zero intercept; see Jensen and Maheu
(2010).
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following hierarchical representation:

yt|Λt,At,Σt ∼ N(0,A−1
t ΣtΛ

−1
t Σt(A

−1
t )′), (10)

Ht = A−1
t ΣtΣt(A

′
t)

−1, (11)

Λt = diag(λ1,t, . . . , λm,t), (12)

λi,t
i.i.d.∼ Gi, (i = 1, . . . ,m) (13)

Gi|G0, ci ∼ DP(ci, G0), (14)

G0
d
= Gamma(ν0/2, s0/2), (15)

ci ∼ Gamma(a0, b0), (16)

and where the elements of At and Σt collected in the vectors αt and ht follow the

AR(1) processes from Eqs. (7) and (8), respectively.2 In Eqs. (10) and (12), the m×m
matrix Λt is the precision matrix, which we assume to be diagonal, in order to ensure

identification of the model.3 We model the diagonal entries λ1,t, . . . , λm,t as i.i.d. (with

respect to t) and place a nonparametric Dirichlet process prior on the distribution of

λi,t; see Eqs. (13) and (14). As in Auśın et al. (2014), we specify the base distribution

G0 for the diagonal elements of Λt as the gamma distribution in Eq. (15).

Following the line of argument in Jensen and Maheu (2013), we emphasize that

our hierarchical model (10) to (16) can be expressed in the Sethuraman (1994) stick-

breaking representation of the DPM mixture model. This allows us to write the density

function of each component of the innovation vector ϵt = (ϵ1t, . . . , ϵmt)
′ as an infinite

scale-mixture of Gaussian distributions. That is, for i = 1, . . . ,m we have

f(ϵit|ωi1, ωi2, . . . , li1, li2, . . .) =
∞∑
j=1

ωijfN
(
ϵit| 0, l−1

ij

)
, (17)

where fN
(
·| 0, l−1

ij

)
denotes the density function of the univariate normal distribution

with zero mean and variance l−1
ij . The mixture parameters lij prior is given in Eq. (15).

It follows from the stick-breaking representation that the mixture weights are dis-

2In the hierarchical representation,
d
= means ’has the distribution’. The operator diag(λ1, . . . , λm)

creates the diagonal m×m matrix, say M, with Mii = λi and Mij = 0 for i ̸= j (i, j = 1, . . . ,m).
3Prima facie, the diagonal structure of Λt might appear restrictive. However, as will become

evident below, it does not impose any severe restriction on model flexibility.

5



tributed as ωi1 = υi1, ωij = (1 − υi1) · · · (1 − υij−1) · υij for j > 1, where υi1, υi2, . . .

are i.i.d. Beta(1, ci) (beta distribution with parameters 1 and ci). As described above,

the choice of the concentration parameter ci is crucial. In line with Escobar and West

(1995), we assume a gamma hyper-prior distribution ci ∼ Gamma(a0, b0); see Eq. (16).

We remark that each of the m mixtures in Eq. (17) is related to its own specific con-

centration parameter ci.

For notational convenience, we collect the parameters from the parametric part

of our Cholesky MSV model in the vector Φ (i.e. Φ contains all parameters from

µα,Φα,Φh,Ση,Σe), and all parameters from the nonparametric specification in the

infinite dimensional entity Ω = {ωij, lij}i=1,...,m;j=1,2,...,∞. In cases where we need to

address all model parameters, we merge the partial parameter entities Φ and Ω into

the full-parameter vector Θ.

3 Bayesian inference

In this section, we present the samplers for the single parameter-components of the

Cholesky-Dirichlet-Process-Mixture-Multivariate-Stochastic-Volatility (Cholesky-DPM-

MSV) established in Section 2. In Section 3.1, we apply Forward-Filtering-Backward-

Sampling (FFBS) to the elements of the matrixAt (Carter and Kohn, 1994). In Section

3.2, we use the volatility sampler suggested by Jacquier et al. (2002) for the volatility

processes in the matrix Σt. For the nonparametric DPM part of the Cholesky-MSV

model, we apply the efficient slice-sampler according to Walker (2007) and Kalli et

al. (2011) in Section 3.3.

3.1 Sampling the At-elements

In order to apply FFBS sampling to the elements of the At-matrix, we need to embed

the At-parameters in an appropriate state-space model. To this end, we first rewrite

Eq. (3) of our Cholesky-MSV-DPM model as

Atyt = Σtϵt, (18)
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where yt is observable, and At has the lower triangular form given in Eq. (2). As in

Primiceri (2005), we next define the m×m(m− 1)/2 matrix

Zt =


0 · · · · · · 0

−y1t 0 · · · 0

0 −y[1:2]t
. . . 0

...
. . . . . . 0

0 · · · 0 −y[1:m−1]t

 , (19)

in which y[1:i]t denotes the row vector (y1t, y2t, . . . , yit), so that Eq. (18) can be written

as

yt = Ztαt +Σtϵt, (20)

where αt, defined in Eq. (5), follows the AR(1) process specified in Eq. (7). Finally, we

replace ϵt in Eq. (20) with Λ
−1/2
t ut, where ut is assumed to follow the m dimensional

multivariate standard normal distribution N(0, I), and obtain the desired state-space

model via Eqs. (20) and (7) with observation and transition equations given by

yt = Ztαt +ΣtΛ
−1/2
t ut ≡ Ztαt + ξt, (21)

αt = µα +Φα(αt−1 − µα) + et, (22)

with ξt ∼ N(0,Σξt), Σξt = ΣtΛ
−1
t Σt and(

ξt
et

)
i.i.d.∼ N

(
0,

[
Σξt 0
0 Σe

])
. (23)

In order to apply FFBS based on Kalman filter recursion, we denote the entire

history of the vector yt and the matrices Zt,Σξt to date s by y(s) ≡ {y0, . . . ,ys−1,ys},
Z(s) ≡ {Z0, . . . ,Zs−1,Zs} and Σ

(s)
ξ ≡ {Σξ0 , . . . ,Σξs−1

,Σξs}, , respectively, and let

αt|s = E(αt|y(s),Z(s),Σ
(s)
ξ ,Σe) (24)

Vt|s = Cov(αt|y(s),Z(s),Σ
(s)
ξ ,Σe). (25)

Furthermore, we define the p× 1 vector

cα ≡ (µα1(1− ϕα1), . . . , µαp(1− ϕαp))
′, (26)
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where µα1, . . . , µαp are the elements of the vector µα and ϕα1, . . . , ϕαp the diagonal

entries of the matrix Φα as defined above. Then, given the starting values α0|0 and

V0|0, the standard Kalman filter can be summarized as follows:

αt|t−1 = cα +Φααt−1|t−1, (27)

Vt|t−1 = ΦαVt−1|t−1Φ
′
α +Σe, (28)

Kt = Vt|t−1Z
′
t(ZtVt|t−1Z

′
t +Σξt)

−1, (29)

αt|t = αt|t−1 +Kt(yt − Ztαt|t−1), (30)

Vt|t = Vt|t−1 −KtZtVt|t−1. (31)

The final entities αT |T and VT |T contain the mean and variances of the normal

distribution, from which we draw αT . We use this value in the first step of the back-

ward recursion that yields αT−1|T and VT−1|T , which we then use to draw αT−1. The

backward recursion iterates from T − 1 to 0, and at date t, the update step is given by

αt|t+1 = αt|t +Vt|tΦ
′
αV

−1
t+1|t(αt+1 − cα −Φααt|t), (32)

Vt|t+1 = Vt|t −Vt|tΦ
′
αV

−1
t+1|tΦαVt|t. (33)

As the prior distribution of the initial state α0|0 we use a multivariate normal distri-

bution (see Section 5) and, as mentioned above, assume the covariance matrix Σe to

be diagonal with entries σ2
e1, . . . , σ

2
ep. Note that for each i = 1, . . . , p the unconditional

expectation of the αit-process is E(αit) = µαi =
cαi

1−ϕαi
, so that the 3p = 3m(m− 1)/2

parameters to be sampled are

cα1, . . . , cαp, ϕα1, . . . , ϕαp, σ
2
e1, . . . , σ

2
ep.

The sampling strategy for these parameters is readily obtained from standard Bayesian

estimation of the linear regression model. The prior distributions for the cαi- (or µαi-)

and ϕαi-parameters are normal distributions (where the prior for the ϕαi-parameters

have to be restricted to ensure the p stationarity conditions |ϕαi| < 1), while the

prior distribution for σ2
ei is chosen as the inverse Gamma distribution. We sample

the cαi- and ϕαi-parameters by the Metropolis-Hastings (MH) algorithm, while the
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σ2
ei-parameters are sampled directly (given the conjugate prior).

3.2 Sampling the Σt-elements

Defining ỹt = Atyt, we note that ỹt has a diagonal covariance matrix, what enables

us to independently estimate the m univariate stochastic volatility models. The ith

univariate stochastic volatility model is given by

ỹit = σi,tλ
−1/2
i,t uit, (i = 1, . . . ,m) (34)

with uit ∼ N(0, 1). At this stage, we consider the matrix At as given and since yt is

observable, the values of ỹit can be computed. We note that the associated dynamic

model is nonlinear:

ỹit = exp {hit/2}λ−1/2
i,t uit, (i = 1, . . . ,m) (35)

hit = ϕhihit−1 + ηit, (36)

with ηit ∼ N(0, σ2
ηi) and σ

2
ηi being the ith diagonal entry of the matrix Ση.

Them univariate SV models from Eqs. (35) and (36) can be estimated separately by

consecutively sampling from the following conditionals, in the representation of which

we use the m row vectors ϑi = (σ2
ηi, ϕhi):

1. π(ϑi|hit), yielding the AR parameters.

2. π(hit|ỹit,ϑi, lij, ωij), yielding the parametric volatility component.

3. π(lij, ωij|ỹit, hit), yielding the nonparametric volatility component.

Sampling from the first conditional is straightforward and analogous to sampling the

αt-parameters in the previous section. Assuming a normal prior for the ϕhi- and an

inverse Gamma prior for the σ2
ηi-parameters, we sample the σ2

ηi-parameters directly

(given the conjugate prior), while we apply an MH step in order to sample the ϕhi-

parameters from their posterior distribution, where we restrict these latter parameters

to meet the stationarity conditions |ϕhi| < 1. The third conditional from above involves

sampling the infinite mixture parameters, for which we introduce a complete sampling

algorithm in Section 3.3.
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In order to sample from π(hit|ỹit,ϑi, lij, ωij), we follow Jensen and Maheu (2010)

and apply our log volatility sampler to the transformation y∗it ≡ ỹit
√
λi,t yielding the

m simplified univariate models

y∗it = exp {hit/2}uit, (i = 1, . . . ,m) (37)

hit = ϕhihit−1 + ηit, (38)

so that our task reduces to sampling from π(hit|y∗it,ϑi). We accomplish this by using a

procedure from Jacquier et al. (2002), who propose a Bayesian approach, in which they

construct a Markov chain for drawing directly from the joint posterior distribution of

the latent volatility components. Specifically, let h
(i)
−t ≡ (hi0, . . . , hit−1, hit+1, . . . , hiT )

′

and y∗
i ≡ (y∗i1, . . . , y

∗
iT )

′, which are used to decompose the distribution π(hit|y∗it,ϑi) into
a set of conditionals of the form π(hit|h(i)

−t,y
∗
i ,ϑi). The authors suggest a (hybrid) cyclic

random walk Metropolis chain which uses a series of independent Metropolis accep-

tance/rejection chains, which do not directly sample from the univariate conditionals,

but still ensure that the posterior is a stationary distribution.

Thus, in order to sample from the target distribution π(hit|y∗it,ϑi), we follow the

lines of argument in Jacquier et al. (2002) and sample from the auxiliary density

π(hit|hit−1, hit+1, y
∗
it,ϑi), which can be factorized for t = 2, . . . , T − 1 as follows:

π(hit|hit−1, hit+1, y
∗
it,ϑi) ∝ π(y∗it|hit)π(hit|hit−1)π(hit+1|hit)

∝ 1

exp{hit/2}
exp

{
−1

2

(y∗it)
2

exp{hit/2}

}

× exp

{
−(hit − ϕhihit−1)

2 − (hit+1 − ϕhihit)
2

2σ2
ηi

}
. (39)

The density (39) does not have a standard form and we apply a Metropolis Hastings

algorithm for each of the latent volatility components hi2, . . . , hiT−1. We sample the
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first and last latent volatility components from

π(hi1|hi2, y∗it,ϑi) ∝ 1

exp{hi1/2}
exp

{
−1

2

(y∗i1)
2

exp{hi1/2}

}

× exp

{
−(hi2 − ϕhihi1)

2

2σ2
ηi

}
, (40)

π(hiT |hiT−1, y
∗
it,ϑi) ∝ 1

exp{hiT/2}
exp

{
−1

2

(y∗iT )
2

exp{hiT/2}

}

× exp

{
−(hiT − ϕhihiT−1)

2

2σ2
ηi

}
. (41)

As the proposal, used at each step of the random walk Metropolis Hastings algorithm,

we use N(0, σ2
ηi).

3.3 Slice sampling the ϵt-DPM-elements

The slice sampler proposed by Walker (2007) and its more efficient version presented

in Kalli et al. (2011) tackle the general issue of sampling the infinite number of DPM

parameters. The idea behind the slice sampler is to introduce appropriate latent vari-

ables, with the objective of finding a finite set of DPM parameters, the sampling of

which produces a valid Markov chain with a correct stationary distribution.

The first step of the slice-sampling procedure consists of introducing a latent vari-

able ρit (with positive support), such that for i = 1, . . . ,m the joint density of the

innovation ϵit and the latent variable ρit is given by

f(ϵit, ρit|Θ) =
∞∑
j=1

1(ρit < ωij) · fN(ϵit| 0, l−1
ij )

=
∑

j∈A(ρit)

fN(ϵit| 0, l−1
ij ), (42)

where (i) 1(·) is the indicator function, which is equal to 1 when its argument is true

and 0 otherwise, and (ii) A(ρit) ≡ {j : ωij > ρit}, which becomes a finite set for any

given ρit > 0. We note that the conditional distribution of ϵit given ρit is a finite normal

mixture with equal weights. Based on this result, the slice-sampling procedure then
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introduces a second latent variable ζit indicating the mixture component from which

ϵit is observed to yield the joint density

f(ϵit, ζit = j, ρit|Θ) = fN(ϵit| 0, l−1
ij )1(j ∈ A(ρit)). (43)

Specifically, after initializing the starting values c
(0)
i , ζ

(0)
i1 , . . . , ζ

(0)
iT , the slice sampler

proposed by Kalli et al. (2011) and Walker (2007) proceeds as follows in iteration r of

the MCMC algoritm (r = 1, . . . , R):

1. Sampling ci:

We use the sampling strategy proposed in Escobar and West (1995) and start by

sampling the auxiliary variable ψi ∼ Beta(c
(r−1)
i + 1, T ) and then sample ci from

the Gamma mixture

πψi
· fΓ(ci|a0 + ζ∗i , b0 − log(ψi)) + (1− πψi

) · fΓ(ci|a0 + ζ∗i − 1, b0 − log(ψi)),

where fΓ(·|α, β) denotes the density function of the Gamma(α, β) distribution,

ζ∗i = max
{
ζ
(r−1)
i1 , . . . , ζ

(r−1)
iT

}
and πψi

= (a0+ζ
∗
i −1)/(a0+ζ

∗
i −1+T (b0−log(ψi))).

2. Sampling υij:

For j = 1, 2, . . . , ζ∗i we sample the υij values from the conditional distribution

υij| ζ(r−1)
i1 , . . . , ζ

(r−1)
iT ∼ Beta (nij + 1, T − ni· + ci) ,

where nij =
∑T

t=1 1(ζ
(r−1)
it = j) is the number of observations belonging to the

jth component of the ith variable, and ni· =
∑j

k=1 nik is the cumulative sum of

components in the groups. We compute the associated mixture weights according

to the stick-breaking procedure, ωi1 = υi1, and ωij = (1− υij) . . . (1− υij−1)υj for

j = 2, . . . , ζ∗i .

3. Sampling ρit:

We sample the latent variables ρit from the uniform distribution U(0, ω
iζ

(r−1)
it

)

and set ρ∗i = min {ρi1, . . . , ρiT}, which we use to truncate the sequence of mixture

weights in the next step.
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4. Updating the weights ωij:

We determine the smallest integer j∗i such that
∑j∗i

j=1 ωij > (1 − ρ∗i ). For those

ωij with j > ζ∗i , we draw υij from the prior Beta(ci, 1) distribution and compute

the associated weights ωij according to the stick-breaking procedure for j =

ζ∗i + 1, . . . , j∗i . Thus, the latent variable ρit indicates how many weights need to

be sampled.

5. Sampling the mixture parameters lij:

The mixture parameters are sampled from the conditional posterior which, given

the conjugate priors, has the following Gamma distribution:

lij ∼ Gamma(ν̄ij/2, s̄ij/2), (44)

ν̄ij = ν0 + nij, (45)

s̄ij = s0 +
T∑
t=1

ϵ2it · 1(ζ
(r−1)
it = j). (46)

We note that, according to Eq. (35), ϵit = ỹit exp {−hit/2} is treated as observable

at this stage of the algorithm. As in Step 4, if a new component has been formed,

the mixture parameters are sampled from the prior.

6. Updating the indicator variables ζit:

According to the weight truncation induced by the variable ρit, we update the

indicator variables ζit by sampling from

Pr(ζit = j| {ϵit}Tt=1 , {lij}
j∗i
j=1 , {ωij}

j∗i
j=1 , {ρit}

T
t=1) ∝ fN(ϵit|0, l−1

ij ) · 1(j ∈ A(ρit)).

The updated variables ζit indicate the component to which each observation be-

longs. Given ζit, we set λi,t = liζit .

4 Features of the Cholesky DPM-MSV model

4.1 Predictive density

A key issue in Bayesian nonparametric inference is the predictive density (Escobar and

West, 1995). Denoting the sequence of all observations obtained through date T by

13



y1:T = {y1, . . . ,yT}, we write the one-step ahead predictive density as

f(yT+1|y1:T ) =

∫
f(yT+1|Θ,y1:T )π(Θ|y1:T )dΘ, (47)

where (i) the density f(yT+1|Θ,y1:T ) constitutes an infinite scale mixture, given the

representation of the innovation term in Eq. (17), and (ii) the posterior π(Θ|y1:T ) is de-

fined on the infinitely dimensional parameter space Θ. Since the integral in Eq. (47) is

analytically untractable, we approximate the predictive density via the MCMC output,

f(yT+1|y1:T ) ≈
1

R

R∑
r=1

f(yT+1|Θ(r),y1:T ), (48)

where R is the length of the Markov chain and Θ(r) denotes the parameter set in

iteration r. We cope with the infinitely dimensional parameter space by introducing

the latent variables according to Eq. (42) in each iteration r (which we denote by ρ
(r)
it )

and thus for i = 1, . . . ,m obtain the following (finite number of) DPM parameters in

iteration r: {
ω
(r)
i1 , ω

(r)
i2 , . . . , ω

(r)

ij
∗(r)
i

}
and

{
l
(r)
i1 , l

(r)
i2 , . . . , l

(r)

ij
∗(r)
i

}
.

Next, we implement the 3-step algorithm proposed by Jensen and Maheu (2013), in or-

der to sample a single precision (mixture) parameter l
(r)
i in iteration r for i = 1, . . . ,m:

1. We sample the random variable ai from the uniform distribution U(0, 1).

2. We compute the sum
∑j

∗(r)
i
j=1 ω

(r)
ij .

3. If
∑j

∗(r)
i
j=1 ω

(r)
ij > ai, we find the index di such that

di−1∑
j=1

ω
(r)
ij < ai <

di∑
j=1

ω
(r)
ij

and set the precision parameter l
(r)
i = l

(r)
idi
; else we draw l

(r)
i from the prior distri-

bution G0 given in Eq. (15).

After having run the three steps for each i = 1, . . . ,m, we compose the predictive error

term covariance matrix at iteration r as (Λ(r))−1 ≡ diag(1/l
(r)
i ).
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We now repeat the complete algorithm (i.e the 3 steps for each i = 1, . . . ,m) a

number of times (say Bmax times) and record at each iteration r, the Bmax covariance

matrices (Λ
(r)
1 )−1, . . . , (Λ

(r)
Bmax)−1. Denoting the density function of the m dimensional

multivariate normal distribution by fN(·|·, ·) and given sampled parameters, we ap-

proximate the one-step-ahead predictive density according to Eq. (48) as

f(yT+1|y1:T ) ≈
1

R

R∑
r=1

f (r)(yT+1|y1:T ) (49)

with

f (r)(yT+1|y1:T ) =
1

Bmax

Bmax∑
k=1

fN

(
yT+1|0, (A

(r)
T+1)

−1Σ
(r)
T+1(Λ

(r)
k )−1Σ

(r)
T+1[(A

(r)
T+1)

−1]′
)
,

(50)

where, for the computation of A
(r)
T+1 and Σ

(r)
T+1, we draw each α

(r)
iT+1 from N(µ

(r)
αi +

ϕ
(r)
αiα

(r)
iT , σ

2(r)
e ) for i = 1, . . . , p, and each h

(r)
iT+1 from N(ϕ

(r)
hi h

(r)
iT , σ

2(r)
η ) for i = 1, . . . ,m.

In our empirical application below, we choose Bmax = 3.

4.2 Conditional moments

According to the hierarchical representation of our Cholesky DPM-MSV model from

the Eqs. (10) to (17), the conditional mean of yt is assumed to equal the zero vector,

while the conditional covariance matrix is given by

H∗
t = Cov(yt|Θ,y1:t−1) = A−1

t ΣtCov(ϵt|Ω)Σt(A
−1
t )′, (51)

where

Cov(ϵt|Ω) = diag

(
∞∑
j=1

ωijl
−1
ij

)
.

Using our predictive density from the Eqs. (49) and (50), we may approximate condi-

tional second-moment forecasts of the Cholesky DPM-MSV model by

E(H∗
T+1) ≈

1

R

R∑
r=1

H
∗(r)
T+1, (52)
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where

H
∗(r)
T+1 = (A

(r)
T+1)

−1Σ
(r)
T+1

1

Bmax

Bmax∑
k=1

(Λ
(r)
k )−1Σ

(r)
T+1[(A

(r)
T+1)

−1]′. (53)

4.3 Ordering of variables

Owing to the lower triangular structure of the At matrix, the ordering of the vari-

ables in the vector yt of the Cholesky DPM-MSV model is crucial (Primiceri, 2005).

In the context of time-varying VAR models, Nakajima and Watanabe (2011) address

the problem by analyzing the structure of the Japanese economy and monetary pol-

icy. When analyzing multiple financial time series data, it might sometimes appear

problematic or arbitrary to use a specific ordering of variables prima facie. However,

in our empirical application below, an obvious criterion for variable ordering is the

chronological sequence, in which the various stock markets start their trading day.

5 Empirical application

5.1 Data

In this section, we apply the Cholesky DPM-MSV model to stock index data for the five

most important international stock markets, with the objective of analyzing volatility

co-movements. In particular, our data set includes daily stock index values between

17 February 2012 and 19 February 2016 (1046 observations for each time series) for (i)

the US Dow Jones Industrial, (ii) the German DAX 30 Performance, (iii) the Euro-

pean EuroStoxx50 index, (iv) the Japanese Nikkei 225, and (v) the Chinese Shanghai

Shenzen CSI 300. All data were collected from Datastream (daily closing prices).

Figure 1 about here

Figure 1 displays the five indices along with their daily returns (computed as the

daily first differences in logs × 100). The sampling period does not cover the global

financial crisis, but includes two country-specific stock market turbulences, namely the

European sovereign debt crisis in early 2012 and the Chinese stock market turmoil
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between June 2015 and February 2016. Both events are accompanied by phases of

high return volatility, as is evident from the right panels in Figure 1.

Table 1 about here

Table 1 contains summary statistics and the sample correlation coefficients among

the five return series. All return series exhibit negative skewness and excess kurtosis,

indicating non-Gaussian behavior. Although all five sample means are close to zero,

we use demeaned data in our estimation procedure. The sample correlation coefficients

are all positive and lead us to expect particularly pronounced co-movements among

the European and US markets.

As described in Section 4.3, the ordering of the 5 return series within the Cholesky

DPM-MSV model matters. As the natural ordering, we choose the chronological se-

quence, in which the respective stock markets start their trading day, i.e. y1t, . . . , y5t

are the return series for (1) the Nikkei, (2) the Shanghai Shenzen, (3) the EuroStoxx50,

(4) the Dax, and (5) the Dow Jones.

Table 2 about here

5.2 Estimation results

According to Eqs. (5) to (9) and the exhibition in Section 3.3, the estimation of our

five-dimensional Cholesky-DPM-MSV model involves the sampling of (i) 5 stochastic

volatility processes (ht-processes), (ii) 10 αt-processes, (iii) 40 AR-parameters (stem-

ming from the ht- and αt-processes), and (iv) 5 DPM sets {ωij, lij}∞j=1 . We ran a total

of 50000 + 50000 iterations, and deleted the first 50000 results as burn-in phase. As
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prior distributions, we chose

cαi ∼ N(0, 1),

ϕαi ∼ N(0.95, 25)1(|ϕαi| < 1),

σ2
ei ∼ InverseGamma(10/2, 0.5/2),

ϕhi ∼ N(0.95, 25)1(|ϕhi| < 1),

σ2
ηi ∼ InverseGamma(10/2, 0.5/2),

ci ∼ Gamma(4, 4),

and the base distribution G0 as Gamma(10/2, 10/2). Table 2 displays the posterior

means and standard deviations of the 40 AR parameters.

Figure 2 about here

We assess the volatility comovements between the five markets via the pairwise

in-sample time-varying correlation coefficients (denoted by CorrINDEX1, INDEX2;t), which

we obtain from the overall time-varying covariance matrix H∗
t from Eq. (51) computed

in each MCMC iteration and at every date t. Figure 2 displays the time-varying

correlation coefficients for the 10 market pairs. In each panel, the solid line represents

the correlation coefficients computed as an average of 333 posterior thinned draws (out

of 50000), while the darkly and brightly shaded areas represent 50% and 90% Bayesian

intervals, respectively.

Figure 2 provides the following major findings: (i) The time-varying in-sample corre-

lation coefficients appear surprisingly volatile. (ii) Except for CorrDJ, EU;t (US/European

markets), CorrDJ, DAX;t (US/German markets) and CorrDAX, EU;t (German/European mar-

kets), the time-varying correlation coefficients take on negative values strikingly often.

(iii) The coefficients CorrEU, SHA;t,CorrDAX, SHA;t, CorrDJ, NIK;t,CorrDJ, SHA;t appear to fluc-

tuate around mean levels close to zero, indicating rather weak correlation among the

corresponding markets. (iv) During the Chinese stock-market downturn between 2015

and 2016, the coefficients CorrSHA, NIK;t take on substantially smaller values (close to

zero) than during all other phases of the sampling period. (v) The most stable, pos-

itive correlation coefficients are found between the German and the European stock
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markets (CorrDAX, EU;t), the US and the European markets (CorrDJ, EU;t), and the US

and the German markets (CorrDJ, DAX;t).

Figure 3 about here

Figure 4 about here

Table 3 about here

Finally, we investigate the predictive ability of our Cholesky DPM-MSV model in

terms of predictive density estimation. Figure 3 displays the nonparametric predic-

tive densities of the elements of the covariance matrix H∗
t , approximated according to

Eqs. (52) and (53), while Figure 4 shows the pairwise density contour plots. The co-

variances from the one-step-ahead prediction closely follow the patterns obtained from

the in-sample estimation. For example, the contour plots for the European and the

Chinsese markets (Panel EU, SHA), the German and the Chinese Markets (Panel DAX,

SHA), the US and the Japanese markets (Panel DJ, NIK), and the US and the Chi-

nese markets (Panel DJ, SHA) all reflect the lack of linear dependence, as mentioned

in the above discussion on Figure 2. Table 3 summarizes the posterior information of

the one-step-ahead predictive density. Our model predicts the highest variance for the

Japanese market (with the broadest 90% credibility interval), and the lowest variance

for the US market.

6 Conclusion

In this paper, we establish a Cholesky multivariate stochastic volatility model with

a highly flexible nonparametric distribution for the innovation vector—based on the

Dirichlet process mixture (DPM)—and implement a Bayesian semiparametric estima-

tion procedure. A striking advantage of our modeling framework is that it allows us to

estimate DPM-based volatility models of higher dimensions (m > 3), without impos-

ing unnecessarily restrictive assumptions. More concretely, this is due to the Cholesky

structure, under which the common assumption of uncorrelated DPM error terms does
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not entail a flexibility loss, insofar as our overall covariance matrix A−1
t ΣtΛ

−1
t Σt(A

−1
t )′

contains DPM elements in its non-diagonal entries.

In the empirical section, we apply our estimation framework to five daily stock-index

return series, with the aim of analyzing volatility co-movements among international

stock markets. As two major empirical results, we find (i) a reduction in the co-

movement between the Chinese and the Japanese markets during the recent Chinese

stock-market downturn, and (ii) distinctively stable, positive co-movements among the

European (including the German) and the US stock markets.

Two conceivable extensions of our modeling framework to be tackled in future re-

search are worth mentioning. First, frequently observed volatility asymmetries could be

modeled by integrating leverage effects into our Cholesky DPM-MSV framework. Sec-

ond, our estimation framework could be applied to high-frequency data sets containing

realized (co)variances along the lines of Shirota et al. (2016), who suggest estimating

Cholesky realized stochastic volatility models.
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Virbickaitė, A., Aúın, M.C., Galeano, P., 2016. A Bayesian non-paprametric approach

to asymmetric dynamic conditional correlation model with application to port-

folio selection. Computational Statistics & Data Analysis 100, 814-829.

Walker, S.G., 2007. Sampling the Dirichlet mixture model with slices. Communications

in Statistics - Simulation and Computation 36(1), 45-54.

22



Tables and Figures



Table 1: Descriptive statistics

NIK SHA EU DAX DJ

Mean 0.0509 0.0177 0.0125 0.0302 0.0226

Median 0.0086 0.0000 0.0111 0.0614 0.0066

Variance 1.9457 2.7957 1.5524 1.4216 0.6229

Skewness −0.2386 −0.8491 −0.1151 −0.2329 −0.1961

Kurtosis 6.3634 8.1768 4.4545 4.2553 4.7188

Sample correlation:

NIK 1.0000

SHA 0.2160 1.0000

EU 0.2158 0.1349 1.0000

DAX 0.2194 0.1390 0.9526 1.0000

DJ 0.1224 0.1418 0.5929 0.5743 1.0000
Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI
300), EU (EuroStoxx), DAX (DAX 30 Performance), DJ (Dow Jones Industrial).
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Table 2: Posterior means and standard deviations (in parantheses)

i cαi ϕαi σ2
ei ϕhi σ2

ηi

1 -0.1455 0.0649 0.0474 0.9610 0.0510
(0.0582) (0.3532) (0.0144) (0.0158) (0.0176)

2 -0.1614 0.0601 0.0657 0.9799 0.0364
(0.0548) (0.2965) (0.0180) (0.0087) (0.0103)

3 -0.0662 -0.1444 0.0945 0.9323 0.0724
(0.0338) (0.1953) (0.0234) (0.0372) (0.0499)

4 -0.0159 -0.0370 0.0261 0.9980 0.0330
(0.0120) (0.1403) (0.0054) (0.0013) (0.0135)

5 0.0025 -0.0509 0.0310 0.9938 0.0674
(0.0124) (0.1679) (0.0091) (0.0039) (0.0245)

6 -0.4111 0.5478 0.0254
(0.1070) (0.1182) (0.0069)

7 0.0008 0.4161 0.0466
(0.0127) (0.1831) (0.0121)

8 -0.0018 -0.4898 0.0277
(0.0218) (0.1796) (0.0107)

9 -0.1832 0.2271 0.0498
(0.0986) (0.3241) (0.0159)

10 -0.1745 -0.1649 0.0488
(0.0922) (0.2732) (0.0136)
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Table 3: Posterior summary of the elements of the one-step-ahead covariance matrix

H∗
T+1 mean median 90% CI

H∗NIK

T+1 7.2337 6.1811 (2.9575, 12.7184)

H∗SHA

T+1 3.2385 2.6356 (1.0457, 6.1222)

H∗EU

T+1 3.7878 3.1497 (1.4192, 6.8541)

H∗DAX

T+1 3.6246 2.9022 (1.2207, 6.7965)

H∗DJ

T+1 1.6232 1.1733 (0.3730, 3.3584)

H∗SHA, NIK

T+1 0.9987 0.7307 (−0.8603, 3.2080)

H∗EU, NIK

T+1 1.5025 1.1124 (−0.8145, 4.2972)

H∗EU, SHA

T+1 0.4096 0.2605 (−0.9820, 1.9723)

H∗DAX, NIK

T+1 1.5457 1.1560 (−0.8077, 4.3994)

H∗DAX, SHA

T+1 0.4052 0.2579 (−1.0745, 2.0624)

H∗DAX, EU

T+1 3.5458 2.9134 (1.2484, 6.5298)

H∗DJ, NIK

T+1 0.1496 0.0923 (−1.8593, 2.2114)

H∗DJ, SHA

T+1 0.0052 −0.0103 (−1.0902, 1.1261)

H∗DJ, EU

T+1 1.2784 0.9443 (−0.1758, 3.1538)

H∗DJ, DAX

T+1 1.2232 0.8752 (−0.1981, 3.1004)
Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI 300), EU (Eu-
roStoxx), DAX (DAX 30 Performance), DJ (Dow Jones Industrial).

26



8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Nikkei

-8

-6

-4

-2

0

2

4

6

8

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Nikkei (daily returns)

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Shanghai Shenzen

-12

-8

-4

0

4

8

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Shanghai Shenzen (daily returns)

2,000

2,400

2,800

3,200

3,600

4,000

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

EuroStoxx

-6

-4

-2

0

2

4

6

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

EuroStoxx (daily returns)

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

DAX

-6

-4

-2

0

2

4

6

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

DAX (daily returns)

12,000

13,000

14,000

15,000

16,000

17,000

18,000

19,000

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Dow Jones

-4

-3

-2

-1

0

1

2

3

4

I II III IV I II III IV I II III IV I II III IV I

2012 2013 2014 2015 2016

Dow Jones (daily returns)

 
 

Figure 1. Index values and daily returns 



Figure 2. In-sample correlations: posterior means plus 50% and 90% Bayesian inetrvals
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Figure 3. One-step-ahead density forecasts (of the elements of H*T+1)
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Figure 4. Pairwise one-step-ahead density forecasts
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