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Abstract The Substantial-Gain-Loss-Ratio (SGLR) was developed to over-
come some drawbacks of the Gain-Loss-Ratio (GLR) as proposed by Bernardo
and Ledoit (2000). This is achieved by slightly changing the condition for a
Good-Deal, i. e. on the most extreme but at the same time very small part of
the state space.

As an empirical performance measure the SGLR can naturally handle out-
liers and is not easily manipulated. Additionally, the robustness of performance
is illuminated via so-called β-diagrams.

In the present paper we propose an algorithm for the computation of the
SGLR in empirical applications and discuss its potential usage for theoretical
models as well. Finally, we present two exemplary applications of an SGLR-
analysis on historic returns.

Keywords Substantial Gain-Loss-Ratio · Gain-Loss-Ratio · Performance
Measure

1 Introduction

The Substantial-Gain-Loss-Ratio (SGLR) was derived to overcome certain the-
oretical and practical problems of the Gain-Loss-Ratio (GLR) as in [1].1 The
SGLR has all the properties of an acceptability index and further desirable
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1 For a discussion of the theoretical drawbacks of the GLR, see [2].
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features.2 Calculations of the SGLR for different values of its parameter βs,
which can be plotted as the so-called β-diagram, allow to investigate the distri-
bution of the performance. In particular, it provides an insight into the amount
of (over)performance which can be attributed solely to extreme events.

Concerning the calculation, [5] only considers the trivial case of a risk-
neutral benchmark investor, i.e. an investor whose preferences can be described
by a constant stochastic discount factor (SDF). Additional empirical consid-
erations are left out entirely. Unfortunately, calculating the SGLR of an asset
for arbitrary benchmark stochastic discount factors is not straightforward and
generally means solving a nonlinear optimization problem with several non-
linear constraints.

However, in this paper we discuss an algorithm that allows to calculate the
SGLR, using historic data. Therefore we focus on assets and SDFs the prob-
ability law of which is given by empirical distribution functions. Nevertheless,
we further derive upper bounds for the SGLR of assets and SDFs with certain
continuous distributions.

The paper proceeds as follows. Section 2 provides the necessary definitions
and theoretical statements. Section 3 introduces the algorithm and explains
its usage either for empirical applications or for the determination of an upper
bound in specific theoretical models. Section 4 discusses two empirical appli-
cations and Section 5 concludes. Longer proofs are deferred to the Appendix.

2 Theoretical Foundations

2.1 The Setup

We are interested in the performance of a particular asset with payout X
given a benchmark investor with SDF M , which are defined on a common
probability space (Ω,F , P ). We assume that X and M are square-integrable
and that, w.l.o.g., the price of X fulfills p(X) = 0. Then we can define the
SGLR (see [5]) as follows: For given β > 0, we define the set of SDFs which
are “close” to M by

SDF+
β (M) :=

{
M ′ ∈ L+

0 (Ω,F , P ) : EM ′ = 1, VarM ′ ≤ VarM + β, P (M ′ 6= M) ≤ β
}
,

where L+
0 (Ω,F , P ) denotes the set of (Ω,F)-measurable functions, which are

positive P -a.s.. Observe that the condition P (M ′ 6= M) ≤ β heavily depends
on the richness of the underlying probability space. This is why we assume that
(Ω,F , P ) admits at least a random variable U which is uniformly distributed
on [0, 1] and independent of (M,X).

The SGLR is then defined by

SGLRM
β (X) := inf

M ′∈SDF+
β (M)

E(M ′X)+

E(M ′X)−
,

2 For a detailed discussion see [5].
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where (·)+ denotes the positive part, i. e. max(0, ·) and (·)− denotes the neg-
ative part i. e. −(min(0, ·)).

We start by calculating the SGLR for the case that the law of (M,X) is
obtained from an empirical distribution, i.e.

P (M ∈ A,X ∈ B) =
1

T

T∑
i=1

δmi(A)δxi(B) (A1)

for some T ∈ N and sequences (mi)
T
i=1, (xi)

T
i=1 withmi > 0 for all i = 1, . . . , T .

Later on, in order to derive upper bounds for the SGLR in case that (M,X)
has an arbitrary distribution, we assume that M and X are bounded a.s., i.e.

there is K <∞ such that |M |+ |X| ≤ K a.s. (A2)

Note that (A1) implies (A2).

2.2 Approximating the SGLR under (A1)

Using the stated definition of the SGLR does not imply a straightforward
calculation procedure, since SDF+

β (M) is a large set and the representation
of its elements in a computational environment is not canonical. The follow-
ing lemma shows that a drastic reduction and an easy representation can be
obtained by considering “discrete” subsets of SDF+

β (M). Namely, we assume
that (A1) holds and define for k ∈ N

dSDFβ,k(M) :=
{
m′ ∈ (0,∞)Tk : m′ satisfies Cd1 , Cd2 and Cd3

}
,

where Cd1 , Cd2 , Cd3 are the discretized analogues of the conditions appearing in
the definition of SDF+

β (M), i.e.

Cd1 :

Tk∑
i=1

m′i

Tk
= 1, Cd2 :

Tk∑
i=1

(m′i − 1)2

Tk
≤

T∑
i=1

(mi − 1)2

T
+ β

Cd3 :
∣∣{i ∈ N : m′i 6= m(i mod T )}

∣∣ ≤ Tkβ.

Using dSDFβ,k(M), we also define the discretized SGLR by

dSGLRM
β,k(X) := inf

m′∈dSDFβ,k

Tk∑
i=1

(m′ix(i mod T ))
+

Tk∑
i=1

(m′ix(i mod T))−
.

Proposition 1 Assume (A1). Then

lim
k→∞

dSGLRM
β,k(X) = SGLRM

β (X).
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A main step in the proof of Proposition 1 (given in the Appendix) is pro-
vided by the following result, which states that the infimum in the definition
of the SGLR is indeed attained.

Lemma 1 Assume (A2). Then (upon possibly extending the underlying prob-
ability space) there is M∗ ∈ SDFβ(M) such that

SGLRM
β (X) =

E(M∗X)+

E(M∗X)−
.

Assume (A1) in addition. Then the following holds:

1. M∗ is constant a.s. on each of the sets {M∗ 6= M,X = xi}, i = 1, . . . , T .
In particular, there is a σ(M,X,U)-measurable version of M∗.

2. For each k ∈ N there is (m∗i )i=1,...,Tk ∈ dSDFβ,k(M) such that

dSGLRM
β (X) =

Tk∑
i=1

(m∗i x(i mod T ))
+

Tk∑
i=1

(m∗i x(i mod T ))−

Now a calculation can be done by performing an optimization for each
combination possible for selecting bTkβc individuals with changed SDF in the
dSGLR formula. Unfortunately the number of those combinations increases
rapidly for large Tkβ. The next definition helps to describe combinations that
can be ruled out a priori.

Definition 2 For A ⊆ N and i ∈ N we define

dA(mi, xi) :=
{

(mj , xj) : (j ∈ A) ∧
(
(0 < xi < xj ∧mi < mj) ∨ (0 > xi > xj ∧mi > mj)

)}
the set of (mi, xi) dominating summands of A. We say that j dominates i if
j ∈ dA(mi, xi).
Further we define for h ∈ N

DA(h) := {I ⊆ A : |I| = h and dA\I(mi, xi) = ∅ for all i ∈ I}

as the index-set of non-dominated h-collections of A.

The following lemma states that for the calculation of the dSGLR only non-
dominated bTkβc-collections must be considered.

Lemma 2 Assume (A2). Let (m∗i )
Tk
i=1 ∈ dSDFβ,k(M) be the optimal element,

given by Lemma 1. Then

{i ≤ Tk : m∗i 6= m(i mod T )} ∈ D{1,···Tk}(bTkβc)

Therefore we have shown that only non-dominated (xi,mi) must be con-
sidered as potential changed summands in the dSGLR formula. This results
in a strongly reduced computation time in empirical applications.

In the following section we introduce an algorithm that is based on this
observations and discuss its application. We close this section by showing that
discrete approximations can be used to find theoretical bounds for the SGLR.
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2.3 Upper and lower bounds for the SGLR of an asset with absolutely
continuous probability distribution

Assuming (A2), we can give a lower bound for SGLRM
β (X) which is by no

means optimal but can efficiently be computed if the distribution of (M,X)
is known. Given β > 0, let x±β := sup{t : P (X± ≥ t) ≥ β} and define

A± := {X± > 0, X± ≥ x±β }. Finally, let x0 be such that X− ≤ x0 a.s. and m0

such that M ≤ m0. Then set

M∗ := M1(A+∪A−)c + (m0)1/2 · −x0
X
1A− + 0 · 1A+ .

Lemma 3 Assume (A2). It holds that

SGLRM
β (X) ≥ E(M∗X)+

E(M∗X)−
.

In the same way, we can obtain a first upper bound. Define x±β/2 as before

and let A± = {X± > 0, X± ≥ x±β/2}. Assume moreover that P (A±) indeed

equals β/2. This is not fulfilled only if X± = 0 on a set of mass larger than
1− β/2. In such a case, decrease β until this assumption is met. Define

M ′ := M1(A+∪A−)c + (M + δ)1A− + (M − 1)+ · 1A+ ,

where δ ∈ [0, 1] is chosen in such a way that EM ′ = 1.

Lemma 4 Assume (A2). It holds that

SGLRM
β (X) ≤ E(M ′X)+

E(M ′X)−

An asymptotic upper bound is now obtained by using discrete approximations.

Lemma 5 Assume (A2). If (MT , XT )→ (M,X) in law and in L2, then

lim inf
T→∞

SGLRMT

β (XT ) ≥ SGLRM
β (X). (1)

Note that the L2-convergence holds e.g. if (MT , XT ), T ≥ 0, and (M,X)
satisfy (A2) with a uniform bound K. This holds in particular if FMT ,XT is
an empirical distribution function coming from realizations of (M,X).

3 Calculation Procedure

In the last section we have set the basis for the computation of the SGLR.
Furthermore we have showed how the calculation can be drastically simplified
by the exclusion of dominated SDFs from the optimization set. In this section
we introduce a specific algorithm to calculate the dSGLR.

Firstly we note that DA(n) can be recursively calculated.
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Lemma 6 Assume (A1) . Then

DA(n) =
⋃
i∈A
{B ∪ {i} : B ∈ DA(n− 1)∧ 6 ∃j ∈ A \ (B ∪ {i}) s.t. j dominates i }

We assume that we have observed a sample of payouts and corresponding
SDFs ((xi,mi))1≤i≤T and that a value for 0 < β < 1 and k ∈ N is given.
Upfront we need to load the data, multiply it k times and normalize m, s.t. it
sums up to Tk. Then the following steps can be performed:

1. Compute D{1,···Tk}(bβTkc) recursively.

2. Calculate inf
m′∈dSDFβ,k(I)

Tk∑
i=1

(m′ix(i mod T))
+

Tk∑
i=1

(m′ix(i mod T))−
for each I ∈ D{1,···Tk}(bβTkc) via

Lagrange optimization, where dSDFβ,k(I) is dSDFβ,k restricted to SDF-
changes on I.

3. Return the minimum of the calculated values of step two.

In step 1 the performance may be improved by a presorting of (m,x). Noting
that combinations I, J with {mixi|i ∈ I} = {mjxj |j ∈ J} result in the same
optimized value in step 2 and precluding such redundant combinations reduces
the number of calculations further.

A possible Matlab implementation using GPU-parallelisation for the first
step and CPU-parallelisation for the multiple performance of the second step
can be downloaded on the first author’s homepage.3 The algorithm can either
be used to find an upper bound of an SGLR in a theoretical context or to
perform an evaluation based on historical data, which is discussed in the sub-
sequent section.

4 Empirical Application

In this section we show how the SGLR can be applied in an empirical context.
Therefore we present two scenarios using two different paradigms for the con-
struction of the SDF, i.e. a market-based and a consumption-based approach.
In both cases we assume that there is a German investor who considers invest-
ing in the S&P500 index.4

4.1 CAPM-DAX-based performance evaluation of the S&P500

In the first example we calculate the historical performance of monthly returns
of the S&P500 index from the viewpoint of an investor who exclusively holds
the DAX30 index. As SDF for the investor we use the one implied by the

3 https://janvoelzke.de/SGLR.shtml.
4 Index data for DAX and S&P500 were provided by Thomson Reuters.
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CAPM when considering the DAX30 as the market portfolio and a monthly
risk-free rate of rf = 0.14%.5 We set xt as the monthly returns of the S&P500
and mt := a+bRDAXt , where RDAXt are the monthly gross returns of the DAX

and a := 1
Rf
− bE(RDAX) resp. b =

E(RDAX)−Rf
RfV ar(RDAX)

. 6

Using monthly data from the last 10 years we obtain dSGLRs as depicted
in form of a β-diagram in Figure 1 on the left. The horizontal line marks the
GLR of a risk-neutral investor as in [1]. We can see that for the specific investor
the S&P500 index is less attractive than for the risk-neutral investor, which
can be explained by the positive correlation of the two indices. The β-diagram
does not vary much, i.e. the substantial attractiveness resembles the original
one. The result indicates that the performance is robust and due neither to
outliers in the return sample nor to single extreme values in the SDF.

Fig. 1 Performance of S&P500 returns from different perspectives.

4.2 (German) Consumption-based performance evaluation of the S&P500

As a second example, we look at the evaluation of the yearly performance of
the S&P500 index (return + dividends) from the perspective of a German
investor. This time we use a consumption-based approach, i.e. the benchmark
SDF is based on consumption data. The investor multiplies each payout with
his marginal utility of consumption growth for the evaluation. Following [3, p.
13 and p. 24] , we specify the SDF as mt = c( ct

ct−1
)−γ , with γ = 50.7 We use

yearly data from 1971 to 2014.8

The result is depicted in Figure 1 on the right side. Again the horizontal
line marks the risk-neutral GLR as in [1]. The SGLR for the specified investor

5 For the model parameters Rf , E(RDAX) and V ar(RDAX) we use empirical values,
based on data starting in 1972. E.g. the risk-free rate is implied by the average normalized
monthly returns of the 3-month T-bill for the last 43 years.

6 Cp. [3, p. 139].
7 A risk aversion parameter of 50 should not be considered as realistic, but is a value that

is necessary to meet stylized asset pricing facts in that model. Cp. [3, p. 24].
8 Consumption data is taken from [4, p. 8].
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is even larger for small values of β indicating a very high attractiveness of
the yearly performance of the S&P index when we take the whole sample
distribution into account. However, the corresponding β-diagram is decreasing
significantly, which indicates that the performance is partly driven by extreme
values in some years.9

For the GLR this would imply strong changes over different choices of
sample years.

5 Conclusion

We have introduced an algorithm for the calculation of the SGLR in empiri-
cal applications. Necessary theory has been derived. We have further showed
how the procedure can be used for the approximation of an upper bound of
the SGLR in theoretical models. Finally we have discussed two exemplary
applications of an SGLR performance analysis based on historical data.

Acknowledgements We thank Sascha Rüffer for his comprehensive editing of the manuscript.
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6 Appendix

Proof (of Lemma 1) There is a sequence (Mn)n∈N ⊂ SDFβ(M) such that

limn→∞E(MnX)+/E(MnX)− = SGLRM
β (X). Since Var(Mn) ≤ Var(M) + β,

the sequence is bounded in L2. Thus, the sequence µn := P ((M,Mn, X) ∈ ·) is
tight. Hence, it is weakly compact, i.e. there is a subsequence (M,Mkn , X)n∈N
which converges in law to a triple of random variables (M̃,M∗, X̃) which

satisfies (M̃, X̃)
law
= (M,X) as well as

EM∗ = lim
n→∞

EMn = 1, E(M∗X̃)± = lim
n→∞

E(MnX)±,

Var(M∗) = lim
n→∞

Var(Mn) ≤ Var(M) + β.

9 Here this is manly driven by the extreme SDF values in some years, due to the unrealistic
choice of γ.
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By the Portmanteau theorem,

P (M̃ −M∗ = 0) ≥ lim sup
n→∞

P (Mn −M∗ = 0) ≥ 1− β.

Upon possibly extending the underlying probability space, a copy of M∗ can
be realized on the same probability space as M , hence becoming an element
of SDFβ(M).

Now assume (A1). For any M ′ ∈ SDF+
β (M), using that P (X = xj) = 1/T

for each j,

E(M ′X)+

E(M ′X)−
=

∑T
j=1 x

+
j E[M ′ |X = xj ]P (X = xj)∑T

j=1 x
−
j E[M ′ |X = xj ]P (X = xj)

=

∑T
j=1 x

+
j E[M ′ |X = xj ]∑T

j=1 x
−
j E[M ′ |X = xj ]

. (2)

This shows that the Gain-Loss-Ratio depends on M ′ only through the values
E[M ′|X = xj ], j = 1, . . . , T . This can be further separated into (assuming
that the conditions have nonzero probability)

E[M ′|X = xj ] = E[M ′|X = xj ,M
′ 6= M ] + E[M |X = xj ,M

′ = M ].

In order to optimize M ′ in the sense of a minimal Gain-Loss-Ratio, one has
to decrease its value at large positive xj and / or increase its value at large
negative xj , with the constraints on expectation and variance. It follows from
the formula of total variance that the variance of M ′ is minimal if it holds
M ′ = E[M ′|X = xj ,M

′ 6= M ] on the sets {X = xj ,M
′ 6= M}, compared to

the case where M ′ is not constant on these sets. By the above considerations,
the Gain-Loss-Ratio remains the same irrespective of whether M ′ is constant
or not. Hence, the optimal M ′ is constant on such sets.

Observe furthermore that the value in (2) depends only on the probabilities
of the sets not on the explicit realisation of {X = xj ,M

′ 6= M} as subsets of
Ω. Thus, the following defines a (M,X,U)-measurable random variable which
is an element of SDF+

β (M) and has the same Gain-Loss-Ratio as M∗. Let
pj := P (X = xj ,M

∗ 6= M), m∗j := E[M∗ |X = xj ,M
∗ 6= M) and define

M∗∗ := M +

T∑
j=1

(mj −M)1[0,pj ](U)1{X=xj}.

Turning to the last assertion, we may as before choose a sequence
(
(mn

i )Tki=1

)
n

such that the associated Gain-Loss-Ratios converge to the minimal one. Since
each mn

i ≥ 0 and 1
Tk

∑Tk
i=1m

n
i = 1, the numbers mn

i are uniformly bounded
(by Tk), and hence there is a convergent subsequence, the limit of which we
denote by (m∗i )

Tk
i=1. It is then readily checked that (m∗i ) ∈ dSDF+

β (M), and
that

dSGLRM
β,k(X) =

∑Tk
i=1m

∗
i x

+
(i mod T )∑Tk

i=1m
∗
i x
−
(i mod T )

.

ut
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Now we are in a position to prove Proposition 1.

Proof (of Proposition 1) Observe that dSDF+
β,k(M) ⊂ SDF+

β (M) (with the
obvious identifications), hence it suffices to show that

lim sup
k→∞

dSGLRM
β,k(X) ≤ SGLRM

β (X) =
E(M∗X)+

E(M∗X)−
,

where M∗ is given by Lemma 1. Since (A1) holds, M∗ is constant a.s. on each
of the sets {M∗ 6= M,X = xi}, i = 1, . . . , T , i.e. there are m∗i , i = 1, . . . , T ,
such that

E(M∗X)+

E(M∗X)−
=

∑T
i=1

[
mix

+
i P (M∗ = M,X = xi) +m∗i x

+
i P (M∗ 6= M,X = xi)

]∑T
i=1

[
mix

−
i P (M∗ = M,X = xi) +m∗i x

−
i P (M∗ 6= M,X = xi)

]
Now the right hand side can easily be approximated by a sequence in dSDFβ,k
of increasing fineness k. ut

Proof (of Lemma 2) Assume the converse, i.e., I := {i ≤ Tk : m∗i 6=
m(i mod T )} /∈ D{1,...,Tk}(bTkβc). Thus there is i ∈ I and j ∈ {1, . . . , Tk} \ I
such that j dominates i. Then define for 1 ≤ r ≤ Tk

mnew
r :=


m∗r if r 6= i, j

mj + (m∗i −mi) if r = j

mi if r = i

Hence mnew ∈ dSDFβ,k(m) and a case-by-case consideration shows that

Tk∑
i=1

(mix(i mod T))
+

Tk∑
i=1

(mix(i mod T))−
<

Tk∑
i=1

(mnew
i x(i mod T))

+

Tk∑
i=1

(mnew
i x(i mod T))−

which contradicts the optimality of m∗. ut

Proof (of Lemma 3) In order to minimize the Gain-Loss-Ratio, we have to
decrease M on the set {X > 0}, and to increase M on the set {X < 0}. The
total mass of the set where we change M is restricted to β, hence we cannot
do better than changing M on both a subset A+ of {X > 0} and a subset A−

of {X < 0}, both of which have mass β. Obviously, changing M has the most
effect on the subsets as described above. Since M has to remain nonnegative,
the optimal choice on A+ is M ′ = 0. To justify the choice on A−, we take into

account the restriction on the variance; Var(M ′)
!
≤ VarM + β. Increasing the

value of M “away” from its expectation by 1 on a set of mass β increases the
variance by β. But one has to take into account that at the same time, on a
different set, the value of M is brought closer to its expectation. This might
reduce the variance by at most (m0−1)1/2β. This difference can be “invested”
on A+, too. Finally, since we increase uniformly on the set A−, we have to
bound X by −x0. ut
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Proof (of Lemma 4) This follows from similar considerations as in the proof
of Lemma 3.

Proof (of Lemma 5) Choose a sequence (M ′Tn)n∈N, such that M ′Tn is an ele-

ment of SDF+
β (MTn) for each n and

lim
n→∞

E(M ′TnXTn)+

E(M ′TnXTn)−
= lim inf

T→∞
SGLRMT

β (XT ) =: C.

This can be done by a diagonal argument: for each fixed T there is a se-
quence in SDF+

β (MT ) such that the associated Gain-Loss-Ratio converges to

SGLRMT

β (XT ) and there is a subsequence of
(
SGLRMT

β (XT )
)
T

that converges
to C.

The sequence (M ′Tn ,MTn , XTn)n∈N is tight: (MTn , XTn) converge in L2 and
Var(M ′Tn) ≤ Var(MTn)+β, hence the sequence (M ′Tn)n∈N is bounded in L2 as

well. Thus, it is weakly compact, i.e. there are random variables (M̃ ′, M̃ , X̃)
and a subsequence (tn)n∈N of (Tn)n∈N, such that

lim
n→∞

(M ′tn ,Mtn , Xtn) = (M̃ ′, M̃ , X̃) in law.

Since (MT , XT ) converges in law to (M,X), it follows that (M̃, X̃) has the
same law as (M,X). Moreover, the Portmanteau theorem for weak convergence
(applied to the closed set {0} and the open set (−∞, 0), resp.) yields that

P (M̃ ′ − M̃ = 0) ≥ lim sup
n→∞

P (M ′tn −Mtn = 0) ≥ 1− β and

P (M̃ ′ < 0) ≤ lim inf
n→∞

P (M ′tn < 0) = 0.

Moreover, the L2 convergence implies

Var(M̃ ′) = lim
n→∞

VarM ′tn ≤ lim sup
n→∞

Var(Mtn) + β = Var(M̃) + β and

EM̃ ′ = lim
n→∞

EM ′tn = 1.

Thus, M̃ ′ ∈ SDF+
β (M̃)10. Consequently, since (M̃, X̃) has the same law as

(M,X),

C ≤ E(M̃ ′X̃)+

E(M̃ ′X̃)−
= lim
n→∞

E(MtnXtn)+

E(MtnXtn)−
= C.

ut

10 To be precise, one has to assure that M̃ ′ is a measurable function of M̃, X̃ and U . This
can be shown by considering simple functions (step functions) which approximate M̃ ′.
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