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Abstract

We consider a situation in which the forecaster has available M individual forecasts of

a univariate target variable. We propose a 3-step procedure designed to exploit the in-

terrelationships among theM forecast-error series (estimated from a large time-varying

parameter VAR model of the errors, using past observations) with the aim of obtaining

more accurate predictions of future forecast errors. The refined future forecast-error

predictions are then used to obtain M new individual forecasts that are adapted to

the information from the estimated VAR. The adapted M individual forecasts are ulti-

mately combined and any potential accuracy gains of the adapted combination forecasts

analyzed. We evaluate our approach in an out-of-sample forecasting analysis, using a

well-established 7-country data set on output growth. Our 3-step procedure yields sub-

stantial accuracy gains (in terms of loss reductions ranging between 5.1% up to 18%)

for the simple average and three time-varying-parameter combination forecasts.
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1 Introduction

Starting with the seminal paper of Bates and Granger (1969), the combining of M

individual forecasts to produce a pooled univariate forecast has become an established

field of research. Hsiao and Wan (2014), inter alia, summarize the main arguments in

favor of combining individual forecasts and note that forecast combinations ’. . . may be

viewed as a way to make the forecast more robust against misspecification biases and

measurement errors in the data set.’. Theoretical justification and empirical evidence

indicating a superior performance of forecast combinations to individual predictor and

other forecasts are well documented in the literature (see Diebold and Pauly, 1987;

Stock and Watson, 2004; Aiolfi and Timmermann, 2006; Timmermann 2006; Pesaran

and Pick, 2011; Baumeister and Kilian, 2015; and the literature cited therein).

From a statistical perspective, a plausible conjecture is that accuracy gains in the

M individual forecasts should also improve the performance of forecast combinations

obtained from them. Any feasible accuracy-increasing methodology should be applied

to the M individual forecasts prior to merging them into combination forecasts. In this

paper, we propose such an approach, which is designed to exploit the probabilistic struc-

ture among the M individual forecast-error series (observed from past observations)

with the objective of improving the forecast-accuracy of the M individual forecasts for

future realizations. Our procedure consists of the following three steps (to be executed

at each point in time). (i) We interrelate the forecast-error series of the M individual

forecasts within a vector autoregressive (VAR) model and estimate these interrelation-

ships from past observations. (ii) We use the information contained in the estimates

to obtain more accurate predictions of the M future forecast errors. (iii) We adapt

the original M individual forecasts to the refined error predictions from Step (ii), thus

striving for a reduction in the future mean-squared error losses of the M individual

forecasts. After executing this 3-step procedure, the adapted M individual forecasts

can be combined, the forecast performance of the adapted combination(s) evaluated

and compared with the losses of the corresponding combinations obtained from the

original M individual forecasts.

The contributions of this paper are twofold. (i) We present the econometric idea

behind our VAR forecast-error-modeling 3-step procedure. At this stage, we consider
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VAR modeling on the basis of the classical (covariance-stationary and stable) VAR(p)

process. (ii) For selected forecast combinations, we apply our 3-step procedure to the

established and standard 7-country data set on output growth, as introduced by Stock

and Watson (2004). This G7 data set provides a benchmark setting, in which we

benefit substantially from the authors’ extensive data handling and preliminary work

(detection of outliers, data transformations, construction of individual predictors, and

so forth). This allows us to focus exclusively on analyzing the potential out-of-sample

forecasting improvements associated with our approach.

Owing to the many individual forecast models provided by the G7 data set, our

3-step procedure involves the estimation of high-dimensional VARs. This suggests

using the Bayesian methods from Koop and Korobilis (2013), designed to handle large

time-varying parameter VARs.1 At this point, we extend the classical VAR framework

and include heteroscedastic, time-varying parameter VAR specifications in our forecast-

error-modeling approach. In the ensuing out-of-sample forecasting analysis, we consider

two simple combination schemes: (i) the simple average (mean) combination forecast,

and (ii) 3 distinct time-varying-parameter forecast combinations. This selection has two

rationales. First, the latter combination schemes perform best in the Stock and Watson

(2004) benchmark analysis. Second, there is some consensus that simple combination

schemes (such as the mean with given, equal weights) are often hard to beat in practice

(Palm and Zellner 1992, p. 699; Timmermann 2006, pp. 181-182; Rossi, 2013, p. 1213).

Our out-of-sample forecasting analysis yields two major findings. (i) In an idealized

setting, our VAR-forecast-error-modeling procedure is able to produce an accuracy gain

(aggregated over the entire data set) of 17.9% for the adapted mean combination over

the original mean combination forecast (in terms of a 17.9% mean-squared-forecast-

error reduction). However, since the improvement stems crucially from an ex-post

perspective on the data, this sizable gain does not reflect realistic potential that is

generally available to the forecaster. We rather interpret these ≈ 18% as an upper

bound for the accuracy gain achievable for the G7 data set via our approach, when

applied to the mean combination forecast. (ii) If we adopt a realistic ex-ante stance on

1Two alternative strategies for interrelating the forecast-error series are conceivable, but are not
further discussed in this paper. (i) Via large VARs with shrinkage (e.g. George et al., 2008; Korobilis,
2013), and (ii) via dynamic factor models (e.g. De Mol et al., 2008; Stock and Watson, 2011).
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the VAR specification in our 3-step procedure, we still obtain robust and substantial

accuracy gains. For example, under a rigidly standardized VAR specification (with

fixed lag-length) we still find a notable accuracy gain of 5.1% for the mean combination,

and even considerably larger gains ranging between 7.7 and 17.6% for distinct time-

varying-parameter combinations.

Our paper is organized as follows: Section 2 establishes our accuracy-increasing

3-step procedure. In Section 3, we briefly review the G7 data set, the relevant corner-

stones of the Stock and Watson (2004) analysis, and the techniques from Koop and

Korobilis (2013) for handling large time-varying parameter VARs. Section 4 contains

the out-of-sample forecasting analysis. Section 5 concludes.

2 VAR Forecast Error Modeling (VAFEM)

For t = 0,±1,±2, . . . we consider the univariate target variable yt and for h > 0,

we denote a forecast of yt+h, based on information available at date t, by ŷt+h|t. We

assume given M alternative forecast models and, associated with each model, the

corresponding individual forecasts ŷt+h|t,1, . . . , ŷt+h|t,M , which we collect in the M × 1

vector ŷt+h|t = (ŷt+h|t,1, . . . , ŷt+h|t,M)′. The information set at date t, Ft, consists of

(i) these M forecasts, (ii) the entire history of these M forecasts, and (iii) the entire

history of our time-series variable, i.e. Ft = {. . . , ŷt−1+h|t−1, ŷt+h|t, . . . , yt−1, yt}. We

collect the forecast errors et+h|t,i = yt+h − ŷt+h|t,i for i = 1, . . . ,M , in the M × 1 vector

et+h|t = (et+h|t,1, . . . , et+h|t,M)′.

Our 3-step procedure starts with the assumption that the forecast-error vector et+h|t

is governed by a covariance-stationary, stable VAR(p) process. In Step 1, we model

the dynamics of the forecast errors as

et+h|t = ν +A1et+h−1|t−1 + . . .+Apet+h−p|t−p + ϵt+h, (1)

where ν = (ν1, . . . , νM)′ is a vector of intercept terms, A1, . . . ,Ap denote M × M

parameter matrices, and ϵt+h = (ϵt+h,1, . . . , ϵt+h,M)′ represents an i.i.d. white noise

process with a non-singular covariance matrix. We denote the ith 1 × M row vector

of the matrix Ak (for k = 1, . . . , p) by Ak,i and the conditional expectation operator
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by E(·|·). Our goal is to find (to consistently estimate) the optimal weights in Eq. (1),

which—under the mean-squared-error (MSE) loss function—provide solutions to the

M separate minimization problems

(
ν∗
i ,A

∗
1,i, . . . ,A

∗
p,i

)
= arg min

νi,A1,i,...,Ap,i

E
{
[ϵt+h,i(νi,A1,i, . . . ,Ap,i)]

2 |Ft

}
(2)

for i = 1, . . .M .2 From Eq. (1), it follows directly that

E
{[

ϵt+h,i(ν
∗
i ,A

∗
1,i, . . . ,A

∗
p,i)

]2 |Ft

}
≤ E

{
e2t+h|t,i|Ft

}
for i = 1, . . .M. (3)

Subsequently, we refer to our approach as Vector Autoregressive Forecast Error Mod-

eling of order p [in symbols: VAFEM(p)].

Step 2 of our procedure consists of predicting theM VAFEM forecast errors in et+h|t.

Ideally, we base these forecast-error predictions, which we collect in the M × 1 vector

êt+h|t, on the optimal weights ν∗
i ,A

∗
1,i, . . . ,A

∗
p,i (and, accordingly, on their estimates)

from the M minimization problems in Eq. (2).

In the final Step 3, we adapt the inital M individual forecasts in ŷt+h|t by adding

to them the predicted VAFEM errors êt+h|t from Step 2, i.e. we compute the adapted

M individual forecasts as ˜̂yt+h|t = ŷt+h|t + êt+h|t. According to Eq. (3), the MSEs

of our adapted M individual forecasts in ˜̂yt+h|t should not, on average, exceed the

MSEs of their M initial counterparts in ŷt+h|t. We note that the above-stated classical

assumptions for et+h|t are simplifying at this stage. In Sections 3 and 4, we abandon

these assumptions and consider time-varying parameter VARs.

To establish analytical expressions, we adopt the notation from Koop and Korobilis

(2009, 2013) and define (i) the M ×M(1 + p ·M) matrix

Zt+h ≡


z′1t+h 0 . . . 0

0 z′2t+h

. . .
...

...
. . . . . . 0

0 . . . 0 z′Mt+h


with entries zit+h ≡ (1, e′t+h−1|t−1, . . . , e

′
t+h−p|t−p)

′ for i = 1, . . . ,M , and (ii) the M(1 +

2Under our assumptions, the optimal weights can be estimated consistently by the multivariate
least squares estimator (Lütkepohl, 2006, pp. 69-72).
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p ·M) × 1 vector β ≡ (β1, . . . ,βM)′, where βi ≡ (νi,A1,i, . . . ,Ap,i) for i = 1, . . . ,M .

With this notation, we rewrite Eq. (1) in Step 1 of our VAFEM procedure as

et+h|t = Zt+hβ + ϵt+h, (4)

where we estimate β by β̂ with techniques described in Section 3.

To formalize Step 2, we first consider the (theoretical) 1-step-ahead forecast, given

by the conditional expectation

E
{
et+1|t|Ft

}
= Zt+1β. (5)

In principle, the (theoretical) h-step-ahead forecasts can be obtained via two alternative

routes: either (i) by recursively applying Eq. (5) h times, or (ii) directly, by regressing

et+h|t on (measurable) variables at date t (and earlier) contained in Zt+1. In our

empirical application below, we follow the second route, i.e. we consider the regression

et+h|t = Zt+1β + ϵt+h. (6)

Using the estimates in β̂ mentioned in Step 1, we predict the VAFEM forecast errors

by

êt+h|t = Zt+1β̂. (7)

In Step 3, we use the VAFEM error predictions from Eq. (7) and compute our

adapted M individual VAFEM forecasts as

˜̂yt+h|t = ŷt+h|t + êt+h|t = ŷt+h|t + Zt+1β̂. (8)

3 Data and large VARs

3.1 G7 data set, individual forecasts, combinations

Our goal is to apply the VAFEM procedure to the G7 data set provided by Stock and

Watson (2004). The set covers quarterly data between 1959:I and 1999:IV for up to 43

time series, for each of the G7 countries Canada, France, Germany, Italy, Japan, the

UK and the USA. A detailed list of the time series involved (including various asset
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prices, wages and prices, selected measures of real economic activity and the money

stock) is compiled in Stock and Watson (2004, Table Ia). To cope with specific data

characteristics (seasonality, outliers, stochastic trends), the authors provide adequate

data transformations.

Besides the raw data, we also borrow individual forecast models and some combi-

nation forecasts from the original article. The target variable yt+h represents output

growth over the next h quarters (expressed at an annual rate) and is measured either

in terms of real GDP or Industrial Production (IP). For each country, the ith indi-

vidual forecast, ŷt+h|t,i, is based on a single country-specific predictor variable, say xt,

and is obtained using h-step-ahead projections for the quarterly horizons h = 2, 4, 8.

Formally, the country’s ith forecast is made by using the h-step-ahead regression model

yt+h = β0 + β1(L)xt + β2(L)yt + ut+h, (9)

where ut+h represents the error term and β1(L), β2(L) appropriately specified lag poly-

nomials. Apart from these predictor-based individual forecasts, we additionally use a

multistep autoregressive (AR) forecast, which—as in the original article—serves as the

benchmark forecast in our application below.

Stock and Watson (2004) present a comprehensive collection of forecast combina-

tion schemes, which they subsume under the categories ’simple combination forecasts’,

’discounted MSE forecasts’, ’shrinkage forecasts’, ’factor model forecasts’, and ’time-

varying-parameter (tvp) combination forecasts’. In our out-of-sample analysis, we con-

sider only two types of time-t combination forecasts: (i) the mean 1/M
∑M

i=1 ŷt+h|t,i of

the M individual forecasts, and (ii) a selection of time-varying-parameter combination

forecasts. In order to compute the latter, the authors essentially apply a methodology

suggested by Sessions and Chatterjee (1989) and LeSage and Magura (1992), but in-

troduce the parameter ϕ ∈ {0.1, 0.2, 0.4} to control for the degree of time variation.

We refer to these time-varying-parameter combination forecasts as tvp(0.1), tvp(0.2)

and tvp(0.4).
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3.2 Large VARs

The inclusion of a large number of individual forecast models in our VAFEM ap-

proach necessarily involves the handling of high-dimensional VARs. Recently, large

VARs containing more than 100 dependent variables have been analyzed with respect

to estimation and forecasting issues (Canova and Ciccarelli, 2009; Banbura et al.,

2010; Koop, 2013; Koop and Korobilis, 2016). Koop and Korobilis (2013) establish a

computationally feasible Bayesian framework for large time-varying parameter VARs

based on forgetting factors and Dynamic Model Averaging (DMA). We briefly review

their methodology, in which the DMA part draws on technical details from Raftery et

al. (2010).

We consider the following state-space generalization of our VAFEM Eq. (4),

et+h|t = Zt+hβt+h + ϵt+h, (10)

βt+h+1 = βt+h + ut+h+1, (11)

where (i) ϵt+h and ut+h are i.i.d. N(0,Σt+h) and N(0,Qt+h), respectively, and (ii) ϵt

and us are independent of one another for all s and t. Obviously, setting the M(1 +

pM)×M(1+pM) matrixQt+h ≡ 0 in transition Eq. (11), and Σt+h ≡ Σ in observation

Eq. (10) renders the state-space representation equivalent to VAFEM Eq. (4), in which

the parameter vector β is constant. We refer to (i) the generalized state-space model

as the heteroscedastic VAR with time-varying parameters, and (ii) the special case in

VAFEM Eq. (4) as the homoscedastic VAR with constant parameters.

The key idea is to estimate the VAR in a Bayesian framework involving the Kalman

filter, but assuming simplifying covariance structures in Eqs. (10) and (11). The prior

on the parameter vector βt+h is a Minnesota prior with a large variance for the in-

tercepts in ν, and only one fixed scalar γ ∈ [0, 1] representing the precision of the

coefficients in βt+h. The Minnesota prior is defined as γ/r2, where r is the lag of

the parameter. Given the information set et+h−1|t−1 ≡ {e′t+h−1|t−1, . . . , e
′
t+h−p|t−p},

the update and prediction steps in Kalman filtering are based on βt+h−1|et+h−1|t−1 ∼
N(βt+h−1|t+h−1,Vt+h−1|t+h−1) and βt+h|et+h−1|t−1 ∼ N(βt+h|t+h−1,Vt+h|t+h−1), respec-

tively. The estimated covariance matrix in Eq. (10) at date t is the lagged covariance
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matrix at time t−1, multiplied by a fixed scalar κ ∈ [0, 1], plus the residual covariance

matrix multiplied by 1−κ, i.e. Σ̂t+h = κΣ̂t+h−1+(1−κ)ϵ̂t+hϵ̂
′
t+h. The covariance ma-

trix in the Kalman filtering formulae is reduced to Vt+h|t+h−1 =
1
λ
Vt+h−1|t+h−1, where

the fixed scalar λ ∈ (0, 1] is a so-called forgetting factor.

Theoretically, we could estimate βt+h involving the Kalman filter by Markov Chain

Monte Carlo (MCMC) methods (e.g. Primiceri, 2005). In that case, we would have to

set priors on Σt+h and Qt+h, rather than using the simplifying covariance structures

described above. Owing to the normal distributions specified in Eqs. (10) and (11),

this would produce MSE-minimizing parameter estimates, and would thus correspond

closely to our motivation of the VAFEM approach in Section 2. However, due to

computational burdens arising in the MCMC estimation of high-dimensional VARS, we

resort to the approximate (DMA) grid-approach from Koop and Korobilis (2013), which

consists of repeating the Kalman filter for different values of the scalars γ, λ and κ. Each

Kalman-filter repetition is viewed as a model on its own and, ultimately, all models thus

created are combined by DMA with model-specific weights that basically correspond to

their predictive likelihoods from the Kalman filter. More precisely, the DMA procedure

uses the predictive likelihoods raised to the power of a second forgetting factor, α ∈
[0, 1]. Thus, for α = 1 this reduces to (recursively estimated) Bayesian model averaging,

whereas smaller α-values assign less weight to past predictive likelihoods.

4 VAFEM combination forecasting results

In this section, we analyze forecasting accuracy gains, obtainable by our VAFEM pro-

cedure, for mean and tvp(·)-combination forecasts when used to predict output growth

in the G7 data set. We implemented the entire VAFEM procedure, including the

Bayesian large-VAR estimation methodology, in R.

4.1 Timing and in-sample VAR estimation

We adopt the in-sample/out-of-sample timing from Stock and Watson (2004), includ-

ing their Formula (3) for computing recursive mean-squared-forecast errors (MSFEs).

All observations prior to 1973:I are used for estimating the individual forecasting re-

gressions in Eq. (9). The computation of the original (non-VAFEM) individual fore-
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casts starts in 1973:I, while the (pseudo) out-of-sample forecasts of the non-VAFEM

combination forecasts are calculated from 1981:I+h onwards. For our in-sample VAR

estimation, we use a recursively expanding estimation window, which we initialize for

1973:I to 1981:I (shortest in-sample estimation window). Throughout the expanding

window, we keep the VAR lag-length p constant [VAFEM(p)]. Our adapted individual

VAFEM forecasts, plus the VAFEM combination forecasts obtained from them, are

then available from 1981:I+h onwards.

Table 1 about here

For our (recursively expanding) Bayesian in-sample VAR estimation, we adopt the

grid values from Koop and Korobilis (2013): α = 0.99, γ ∈ {0.0001, 0.001, 0.005, 0.01,
0.05}, κ ∈ {0.94, 0.96, 0.98}, λ ∈ {0.97, 0.98, 0.99, 1}.3 In our estimation procedure, we

encounter a technical problem, stemming from high forecast-error correlation among

the individual forecast models. Typically, an ’excessively large’ forecast-error corre-

lation renders the inversion of the covariance matrix Vt+h|t+h−1 in the Kalman fil-

ter infeasible. To enhance numerical stability, we reduce the number of individual

forecast models at the outset of the VAFEM procedure via the following mechanism.

(i) We compute pairwise forecast-error correlation coefficients among all original in-

dividual forecast models. (ii) We randomly eliminate from the analysis one (of the

two) individual forecast models with a forecast-error correlation coefficient exceed-

ing a certain threshold value. For the four distinct forecast-error correlation thresholds

CT ∈ {0.85, 0.90, 0.95, 0.99}, Table 1 displays the number of individual forecast models

that remain in our VAFEM analysis after executing this model-reducing mechanism.

Table 2 about here

Table 3 about here

Table 4 about here

3The G7 data set and the data used in the Koop and Korobilis (2013) analysis are of a similar
type and have the same data frequency (quarterly observations of macroeconomic variables).
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Table 5 about here

Table 6 about here

Table 7 about here

4.2 Out-of-sample evaluation of VAFEM mean combinations

Tables 2–7 report the country-specific out-of-sample forecasting results grouped by the

two target variables (real GDP, Industrial Production) and the three forecast horizons

h = 2, 4, 8 quarters. The six tables present results for 39 cases: seven countries, two

target variables, three forecast horizons, except for France for which the real GDP

series is too short. The country-specific out-of-sample forecast periods are given in the

table headings. In Block (1), the tables display the root-mean-squared forecast errors

of the benchmark autoregressive model (AR RMSFE, in decimal values of the h-period

growth). The MSFEs of all other forecasts in Blocks (2)–(4) are expressed relative to

their corresponding AR MSFE (the squared AR RMSFE). The entries in Blocks (1)

and (2) were compiled from Stock and Watson (2004, Tables II–VII). In Blocks (3)

and (4), we report the MSFEs of distinct VAFEM mean combination forecasts. These

differ in their in-sample VAR specifications, which were used to compute the adapted

individual VAFEM forecasts in the vector ˜̂yt+h|t according to Eq. (8).

In Block (3), we report the MSFEs of two VAFEM mean combination forecasts ob-

tained from a rigidly standardized in-sample VAR specification with correlation thresh-

old CT = 0.85 and VAR lag-length p = 4 for each of the 39 cases. We estimated two

in-sample VAR variants: (i) a homoscedastic VAR with constant parameter vector

β, and (ii) a heteroscedastic VAR with time-varying parameter vector βt. We label

the MSFE of a VAFEM mean combination forecast with *’s, whenever it outperforms

its corresponding original, non-VAFEM mean combination forecast from Block (2) in

terms of a percentage MSFE reduction exceeding 0% (*), 5% (**), or 10% (***).4

4It might seem appealing to report statistical significance for the improvements of the VAFEM
mean combinations on the non-VAFEM mean combination forecasts. In principle, two types of sta-
tistical tests could be applied to each of the 39 cases separately. (i) We could define the non-VAFEM
mean from Block (2) as the benchmark forecast against which we compare all VAFEM mean combi-
nation forecasts via the methods proposed in White (2000), and with Hansen’s (2005) test for superior
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Throughout the 39 cases analyzed in Block (3) of Tables 2–7, we find that under

the constant-parameter in-sample VAR specification (line ’β (homoscedastic VAR)’)

the VAFEM mean combination outperforms its non-VAFEM counterpart from Block

(2) in 16 out of 39 cases (41,0%). Among these 16 improvements, we observe 3 ’*’,

1 ’**’, and 12 ’***’ MSFE reductions. Prima facie, this first result appears modest.

An initial and substantial improvement can be achieved when using a time-varying

parameter in-sample VAR specification (line ’βt (heteroscedastic VAR)’). Here, the

VAFEM mean combinations outperform their non-VAFEM counterparts in 21 out of

39 cases (53.9 %), with 5 ’*’, 2 ’**’, and 14 ’***’ MSFE reductions. Among this total

of 21 MSFE reductions, we have 11 out of 26 (42.3%) accuracy gains for the short- and

medium-term forecast horizons h = 2, 4, while for the longer-term horizon h = 8, we

observe substantial VAFEM gains in 10 (2 ’*’, 2 ’**’, 6 ’***’) out of 13 cases (76.9 %).

Table 8 about here

Table 8 provides an overview of VAFEM accuracy gains by means of an overall

performance ranking involving all combination forecasts from Tables 2-7. The upper

part of Table 8 ranks the alternative (non-VAFEM and VAFEM) combination forecasts

according to their overall average losses aggregated over the 39 cases.5 The reference

combination forecast is the non-VAFEM mean (Rank 7) with average loss 0.609. The

VAFEM mean combination using the rigid (CT = 0.85, p = 4)-β (constant-parameter)

in-sample VAR specification performs worse than the non-VAFEM mean, in terms of

a 3.9% higher average loss (Rank 8). By contrast, the VAFEM mean combination

induced by the (CT = 0.85, p = 4)-βt (time-varying parameter) in-sample VAR speci-

fication clearly outperforms the non-VAFEM mean in terms of a sizable 5.1% accuracy

predictive ability. (ii) We could compare all (non-VAFEM and VAFEM) mean combination forecasts
without focusing on a benchmark, using the model confidence set from Hansen et al. (2011). However,
in the subsequent Tables 8 and 10, we condense the information from Tables 2-7 by ranking the alter-
native non-VAFEM and VAFEM combination forecasts according to their average losses (aggregated
over the 39 cases). No statistical tests for comparing these average losses are currently available in
the literature, leaving this an important issue for future research.

5The concept of this ranking is from Stock and Watson (2004). The authors suggest computing
the aggregated losses over all 39 cases as weighted averages of the single combination forecast losses,
with weights equal to the inverse of the full-sample standard deviation of the two target variables (real
GDP and Industrial Production).
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gain (Rank 5).

Table 8 addresses additional VAFEM mean combinations exhibiting a large accu-

racy improvement on the non-VAFEM mean. These VAFEM mean combinations refer

to Block (4) of Tables 2-7, where we report out-of-sample MSFEs of VAFEM means

obtained from (CT, p)-flexibilized in-sample VAR specifications, each estimated as

constant-parameter (’β (homoscedastic VAR)’) and time-varying parameter (’βt (het-

eroscedastic VAR)’) variants. More precisely, for all 39 cases and both VAR-parameter

variants, we disclose the MSFEs of the best VAFEM mean combinations, obtained

from ex-post searching for that tuple (CT, p) ∈ {0.85, 0.90, 0.95, 0.99} × {1, 2, 3, 4}
producing the (case-specific) minimal out-of-sample MSFE. (The optimizing tuple is

displayed in the lines ’Specification (CT, p)’ in Block (4).) In Table 8, we denote these

two in-sample VAR specifications as (CT, p)-β (constant-parameter VAR) and (CT, p)-

βt (time-varying parameter VAR). The table shows that the (CT, p)-β VAFEM mean

combination yields a 7.6% accuracy gain (Rank 4), compared to the non-VAFEMmean.

The (CT, p)-βt VAFEM mean combination even outperforms the non-VAFEM mean

combination forecast in terms of a 13.6% loss reduction (Rank 2). Additionally, we

consider the VAFEM mean combination forecasts under those scenarios, in which—for

each of the 39 cases—we ex post select the better of the two in-sample VAR specifica-

tions (CT, p)-β and (CT, p)-βt. Here, the VAFEM mean combinations outperform the

non-VAFEM means by nearly 18% (Rank 1).

We note that the latter three VAFEM specifications (Ranks 1, 2, 4) are susceptible

to hindsight-criticism. In practice, it appears infeasible ex ante to select that in-

sample VAR specification ultimately producing the best VAFEM mean combination

forecast. Therefore, we interpret the accuracy gain of approximately 18 % as a practical

upper bound for the accuracy gain in the mean combination forecast, achievable via

our VAFEM approach for the G7 data set. In the next section, we reconsider this

point and discuss in-sample VAR model selection issues within the VAFEM framework.

Overall, it is worth highlighting that even the simple, rigidly standardized in-sample

VAR specification (CT = 0.85, p = 4)-βt leads to a 5.1% accuracy gain for the mean

combination forecast (Rank 5).

Besides analyzing mean combination forecasts, Table 8 also reports on the three
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original (non-VAFEM) time-varying-parameter combination forecasts tvp(0.1), tvp(0.2)

and tvp(0.4), as in Stock and Watson (2004, Table VIII). In their analysis, the non-

VAFEM tvp(0.1)- and tvp(0.2)-combination forecasts (Ranks 3, 6) both outperform

the non-VAFEM mean (Rank 7). We note that several VAFEM mean combinations

now outperform the non-VAFEM tvp(·)-combination forecasts. In particular, the rigid

(CT = 0.85, p = 4)-βt VAFEM mean (Rank 5) outperforms the non-VAFEM tvp(0.2)

combination, while the (CT, p)-βt VAFEM mean combination on Rank 2 beats all 3

non-VAFEM tvp(·) combination forecasts (as does the idealized VAFEM mean combi-

nation forecast on Rank 1).

Table 9 about here

Finally, Table 8 provides a ranking of several out-of-sample forecasts stemming

directly from VARs (of different dimensions), which include alternative macroeconomic

and financial time series from the G7 data set.6 We estimated (in-sample) constant- and

time-varying-parameter VARs, each with fixed lag-length p = 4, containing alternative

sets of variables. In the lower block of Table 8, the ending ’ small’ indicates the smallest

set of variables used in the VAR, while VARs with the endings ’ medium’ and ’ large’

contain additional time series. The ending ’ DMA’ represents VARs resulting from

DMA among the corresponding small, medium and large VARs. Table 9 gives an

overview of the economic and financial variables (and their transformations involved)

that we included in the VAR specifications. Obviously, these direct out-of-sample VAR

forecasts, obtained from 8 alternative specifications, all vastly underperform any of the

9 non-VAFEM and VAFEM combination forecasts from the upper block of Table 8.

4.3 VAR selection issues and tvp(·)-combination forecasts

As mentioned above, the in-sample VAR specifications associated with the VAFEM

mean combination forecasts for the Ranks 1, 2, and 4 in Table 8 can be criticized

on the grounds of their ex-post nature, since the practitioner—being equipped solely

with information as of date t—does not know ex ante which explicit in-sample VAR

6This direct VAR forecasting methodology is adopted from Koop and Korobilis (2013).
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specification will produce the lowest MSFEs for future observations at t+ 1, t+ 2, . . ..

Viewed from this angle, we interpret the out-of-sample forecasting results for these

in-sample VAR specifications as a guideline to the maximal accuracy gains obtainable

from VAFEM mean combination forecasting (with the G7 data set), provided that

the practitioner had accurate knowledge of the data-generating process. The question

of whether such potential accuracy gains are generally exploitable via our VAFEM

approach to real-world data sets is closely related to providing practical criteria for (in-

sample) VAR model selection. Within the VAFEM approach, the two crucial quantities

are the correlation threshold CT and the VAR lag-length p, where the latter can be

integrated naturally into the Bayesian estimation framework from Section 3.2. More

precisely, the DMA approach was represented as a grid over the parameters γ, λ, κ,

resulting in a total of γ · λ · κ models. Adding the lag-length to this grid increases

the number of models in the DMA procedure by the factor p, which does not impose

serious computational problems.

By contrast, the appropriate selection of the correlation threshold CT turns out to

be far more problematic. According to Table 1, distinct CT-values generally lead to

substantially differing numbers of individual forecast models to be included in the in-

sample VAR. Koop and Korobilis (2013) execute DMA over different VAR dimensions,

where model averaging is based on the predictive likelihood of a set of variables included

in a baseline VAR of minimal dimension. The baseline set of variables, which are known

from past research to have a macroeconomic predictive content, are also included in

VARs of higher dimensions. The forecasts of the baseline-set variables obtained from

the VAR of minimal dimension are then averaged with their own forecasts obtained

from VARs of higher dimensions. The averaging weights are built upon the predictive

likelihoods from the VARs of different dimensions, but applied only to the baseline-set

of variables. Proceeding in this fashion, the additional variables from the higher-

dimensional VARs implicitly improve the forecasts of the baseline-set variables. Two

aspects are worth mentioning at this point. (i) Determining the number of higher-

dimensional VARs used in the averaging procedure is left to the econometrician (and

is thus somewhat arbitrary). (ii) The procedure rests on an ordering of the variables

according to their predictive ability.
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Generally, our VAFEM framework does not offer any clear-cut set of undisputed

baseline forecast models, whose forecast-error series could take on the role of the

baseline-set variables. In particular, the heuristic nature of our CT-forecast-model

selection mechanism allows for the (realistic) scenario that a specific individual forecast-

error series, which has predictive content, is excluded from the in-sample VAR spec-

ification under a given (comparably low) CT value. Apart from that, a reasonable

ordering of the variables is also difficult to justify, so that DMA over different VAR

dimensions, as performed by Koop and Korobilis (2013), cannot easily be applied to

our setting. A straightforward alternative could consist of directly integrating our VAR

variables (the forecast error series) into a DMA procedure. However, this leads rapidly

to substantial computational challenges, since a number of M individual forecast series

would imply 2M model constellations to consider in DMA.7

Table 10 about here

We present a final empirical result, demonstrating that our VAFEM approach has

the potential to produce large accuracy-gains, even without ’optimizing’ the in-sample

VAR specification. Table 10 displays the average MSFEs of several non-VAFEM and

VAFEM time-varying parameter forecast combinations (relative to autoregression) ag-

gregated over all 39 cases of the G7 data set. Block (1) reports the results for the

non-VAFEM tvp(0.1)-, tvp(0.2)- and tvp(0.4)-combination forecasts (Stock and Wat-

son, 2004, Table XI). Blocks (2) and (3) display the average (aggregated) MSFEs

of the corresponding VAFEM tvp(·)-forecast combinations under the rigid in-sample

VAR specifications (CT = 0.85, p = 4)-β and (CT = 0.85, p = 4)-βt. Based on these

simple VAR specifications—which are not subject to hindsight criticism—our VAFEM

approach provides far larger aggregated accuracy gains for tvp(·)-combination fore-

casts than for mean combination forecasts (see Table 8). In particular, the constant-

parameter (CT = 0.85, p = 4)-β specification produces aggregated accuracy gains

7Recently, Onorante and Raftery (2016) proposed a heuristic approach to (practically) handling a
large number of model combinations in DMA. Their main idea is to restrict attention to an adequately
defined subset of models and to dynamically optimize the choice of models at each point in time.
Checking this procedure for validity, within our VAFEM framework, should be tackled in future
research.
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between 12.1% [tvp(0.1)] and 17.6 % [tvp(0.4)]. Interestingly, the accuracy gains un-

der the time-varying-parameter (CT = 0.85, p = 4)-βt specification are slightly lower,

but—ranging between 7.7% [tvp(0.1)] and 16.7 % [tvp(0.4)]—are still substantial.

5 Concluding remarks

We establish a new forecasting approach (VAFEM) aimed at reducing the future fore-

cast errors of M individual forecast models by exploiting structural interrelationships

among the M individual forecast-error series, estimated from past observations. We

formally motivate and empirically implement a 3-step procedure that estimates the in-

terrelationships among the M individual forecast-error processes as high-dimensional

VARs (within a Bayesian framework using forgetting factors and DMA). The objective

is to exploit these estimates to obtain refined predictions on future forecast errors,

which we then use to obtain new individual forecasts, adapted to the information

on the forecast-error interrelationships. These M adapted individual forecasts can

subsequently be merged into combination forecasts, and potential accuracy gains be

analyzed.

In the empirical part, we evaluate our VAFEM approach in an out-of-sample fore-

casting analysis using the G7 data set on output growth, as introduced into the forecast

combination literature by Stock and Watson (2004). Focusing on two types of combi-

nation forecasts, the simple average and time-varying parameter combinations, we find

substantial accuracy gains for both combination schemes. On the basis of the data, we

argue that our 3-step procedure has the potential to reduce the (aggregated) MSFE of

the mean combination forecast by 5.1 to 17.9%, depending on the selected in-sample

VAR specification. For the time-varying parameter combinations, we find substantial

MSFE reductions, ranging between 12.1 and 17.6% under a simply-structured (non-

optimized) in-sample VAR specification.

Our analysis leaves a number of issues to be tackled in future research. A first

important point concerns the lack of statistical tests for comparing the aggregated losses

among alternative VAFEM and non-VAFEM combination forecasts from Tables 8 and

10 (see Footnote 3). These aggregated results appear particularly useful, since they may

quantify overall VAFEM accuracy gains, collected over a broad range of characteristics
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(inter alia, over different forecast horizons). A second conceptually appealing extension

could consist of investigating alternative methods for selecting ’optimal’ in-sample VAR

specifications. In Footnote 6, we mention the heuristic approach of Onorante and

Raftery (2016) for dealing with a large number of model combinations in DMA. Their

approach merits careful analysis within a simulation framework.
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Tables and Figures



Table 1: Number of individual forecast models

Correlation Threshold (CT) Canada France Germany Italy Japan UK USA

Forecast horizon: h = 2, target variable: real GDP growth
0.85 8 6 6 8 3 8
0.90 12 14 11 8 6 10
0.95 21 25 21 17 17 22
0.99 32 32 24 26 29 27
Total 41 41 41 33 31 63

Forecast horizon: h = 4, target variable: real GDP growth
0.85 10 13 9 8 14 12
0.90 11 16 11 11 17 19
0.95 16 25 16 20 24 31
0.99 32 32 27 29 31 32
Total 40 39 31 33 31 63

Forecast horizon: h = 8, target variable: real GDP growth
0.85 8 11 7 7 10 9
0.90 10 15 15 12 13 16
0.95 13 23 20 23 20 30
0.99 27 31 29 32 30 30
Total 40 39 31 33 31 63

Forecast horizon: h = 2, target variable: Industrial Production (IP) growth
0.85 7 9 9 4 9 4 7
0.90 12 14 11 10 15 7 16
0.95 19 20 22 13 25 18 29
0.99 32 22 30 28 31 30 32
Total 41 41 41 31 33 31 63

Forecast horizon: h = 4, target variable: Industrial Production (IP) growth
0.85 7 6 11 6 11 13 11
0.90 12 9 16 10 20 18 20
0.95 21 12 20 17 23 24 38
0.99 31 21 29 29 30 30 40
Total 40 25 39 31 33 31 63

Forecast horizon: h = 8, target variable: Industrial Production (IP) growth
0.85 8 8 13 9 11 9 13
0.90 13 10 18 13 11 14 23
0.95 23 17 22 20 18 19 36
0.99 30 19 28 24 31 29 39
Total 40 25 39 31 33 31 63

Note: The first three rows of each block indicate the numbers of individual forecast models used in
computing the VAFEM combination forecasts, after randomly eliminating one of the two individual
forecast models with pairwise forecast-error correlation coefficients exceeding the thresholds 0.85, 0.90,
0.95, and 0.99, respectively. The row ’Total’ indicates the number of all individual forecast models
provided by the G7 data set.
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Table 2: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of two-quarter growth of real GDP (h = 2)

Canada France Germany Italy Japan UK USA
Forecast Period 81:III – 81:III – 81:III – 81:III – 81:III – 81:III – 81:III –

98:IV 98:IV 98:IV 98:IV 98:IV 98:IV 98:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSFE 0.016 0.013 0.011 0.013 0.010 0.011

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 0.90 0.92 0.99 0.99 0.95 0.95
tvp(0.1) 0.79 0.86 0.76 0.80 0.99 0.96
tvp(0.2) 0.78 0.86 0.70 0.81 1.04 0.99
tvp(0.4) 0.76 0.87 0.70 0.83 1.05 1.04

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 0.76∗∗∗ 0.95 0.75∗∗∗ 0.96∗ 1.07 1.05
βt (heteroscedastic VAR) 0.75∗∗∗ 1.02 0.76∗∗∗ 1.01 0.93∗ 0.99

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.90, 1) (0.99, 1) (0.90, 1) (0.99, 3) (0.99, 4) (0.99, 3)
β (homoscedastic VAR) 0.73∗∗∗ 0.89∗ 0.67∗∗∗ 0.87∗∗∗ 0.95 0.98

Specification (CT, p) (0.95, 2) (0.85, 4) (0.99, 1) (0.95, 3) (0.85, 2) (0.95, 3)
βt (heteroscedastic VAR) 0.73∗∗∗ 1.02 0.68∗∗∗ 0.87∗∗∗ 0.86∗∗ 0.91∗

Notes:
(i) In Block (1), AR RMSFE denotes the root-mean-squared forecast error of the benchmark autoregressive model

(in decimal values of the h-period growth, i.e. not an annual rate) computed over the out-of-sample forecast periods, as
indicated in the table heading. All other MSFEs in the table are expressed relative to the AR MSFEs.

(ii) In Block (2), ’mean’ and ’tvp(·)’ denote the simple average and the time-varying-parameter combination forecasts
of the original M individual forecasts. All these MSFEs were compiled from Stock and Watson (2004, Table II).

(iii) The Blocks (3) and (4) contain the MSFEs of the VAFEM mean combination forecasts computed on the basis
of Eq. (8). In Block (3), both in-sample VARs [constant- (homoscedastic) and time-varying-parameter (heteroscedastic)
specifications] use the fixed correlation threshold CT = 0.85 and the VAR lag-length p = 4. Block (4) displays the
MSFEs of the (ex post) best VAFEM mean combination forecasts. These are obtained by searching (ex post) for
that tuple (CT, p) ∈ {0.85, 0.90, 0.95, 0.99} × {1, 2, 3, 4} in the constant- and time-varying-parameter in-sample VAR
specifications, which produces minimal MSFEs.

(iv) *, **, and *** indicate that the VAFEM mean combination forecast outperforms its corresponding non-VAFEM
mean combination forecast from Block (2) in terms of a percentage MSFE reduction of more than 0%, 5%, and 10%,
respectively.
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Table 3: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of four-quarter growth of real GDP (h = 4)

Canada France Germany Italy Japan UK USA
Forecast Period 82:I – 82:I – 82:I – 82:I – 82:I – 82:I – 82:I –

98:IV 98:IV 98:IV 98:IV 98:IV 98:IV 98:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSE 0.025 0.018 0.019 0.023 0.018 0.016

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 0.96 1.05 1.06 0.98 0.94 0.89
tvp(0.1) 0.85 0.91 0.55 0.63 1.11 0.98
tvp(0.2) 0.97 0.98 0.49 0.63 1.27 1.15
tvp(0.4) 1.07 1.11 0.52 0.65 1.33 1.41

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 0.90∗∗∗ 1.19 0.52∗∗∗ 0.80∗∗∗ 1.17 1.03
βt (heteroscedastic VAR) 0.73∗∗∗ 1.07 0.51∗∗∗ 0.83∗∗∗ 1.04 1.03

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.90, 1) (0.99, 1) (0.90, 1) (0.85, 3) (0.90, 2) (0.90, 3)
β (homoscedastic VAR) 0.83∗∗∗ 1.03∗ 0.46∗∗∗ 0.79∗∗∗ 1.08 0.99

Specification (CT, p) (0.95, 3) (0.85, 4) (0.95, 3) (0.85, 3) (0.85, 4) (0.90, 3)
βt (heteroscedastic VAR) 0.72∗∗∗ 1.07 0.40∗∗∗ 0.82∗∗∗ 1.04 0.90

Notes: Analogous to the notes to Table 2.
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Table 4: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of eight-quarter growth of real GDP (h = 8)

Canada France Germany Italy Japan UK USA
Forecast Period 83:I – 83:I – 83:I – 83:I – 83:I – 83:I – 83:I –

97:IV 97:IV 97:IV 97:IV 97:IV 97:IV 97:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSE 0.046 0.030 0.038 0.046 0.034 0.025

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 1.00 1.05 0.96 0.99 1.06 0.98
tvp(0.1) 0.87 1.01 0.32 0.65 1.53 1.15
tvp(0.2) 1.08 1.24 0.37 0.69 1.94 1.41
tvp(0.4) 1.22 1.46 0.45 0.69 2.31 1.72

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 1.12 1.13 0.30∗∗∗ 0.79∗∗∗ 1.66 1.55
βt (heteroscedastic VAR) 0.71∗∗∗ 0.90∗∗∗ 0.32∗∗∗ 0.82∗∗∗ 1.38 0.92∗∗

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.85, 1) (0.99, 1) (0.85, 1) (0.99, 1) (0.85, 4) (0.85, 1)
β (homoscedastic VAR) 0.94∗∗ 0.44∗∗∗ 0.30∗∗∗ 0.74∗∗∗ 1.66 1.12

Specification (CT, p) (0.95, 4) (0.90, 4) (0.90, 4) (0.85, 4) (0.85, 4) (0.90, 2)
βt (heteroscedastic VAR) 0.65∗∗∗ 0.87∗∗∗ 0.23∗∗∗ 0.82∗∗∗ 1.38 0.90∗∗

Notes: Analogous to the notes to Table 2.
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Table 5: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of two-quarter growth of IP (h = 2)

Canada France Germany Italy Japan UK USA
Forecast Period 81:III – 81:III – 81:III – 81:III – 81:III – 81:III – 81:III -

98:IV 98:IV 98:IV 98:IV 98:IV 98:IV 98:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSE 0.031 0.018 0.026 0.028 0.026 0.018 0.019

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 0.93 1.08 0.90 1.00 1.02 0.98 0.89
tvp(0.1) 0.92 0.97 0.88 0.93 0.92 0.97 0.89
tvp(0.2) 0.92 0.93 0.86 0.88 0.88 0.97 0.90
tvp(0.4) 0.94 0.96 0.84 0.87 0.90 0.98 0.91

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 0.90∗ 1.18 0.98 0.95∗∗ 0.88∗∗∗ 1.16 0.99
βt (heteroscedastic VAR) 0.91∗ 1.24 1.03 0.96∗ 0.89∗∗∗ 1.20 0.93

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.85, 4) (0.99, 1) (0.99, 4) (0.99, 2) (0.99, 1) (0.95, 3) (0.99, 4)
β (homoscedastic VAR) 0.90∗ 0.98∗∗ 0.91 0.81∗∗∗ 0.72∗∗∗ 1.01 0.96

Specification (CT, p) (0.99, 1) (0.85, 1) (0.90, 1) (0.95, 1) (0.99, 1) (0.95, 2) (0.85, 4)
βt (heteroscedastic VAR) 0.85∗∗ 1.09 1.00 0.85∗∗∗ 0.87∗∗∗ 0.95∗ 0.93

Notes: Analogous to the notes to Table 2.
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Table 6: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of four-quarter growth of IP (h = 4)

Canada France Germany Italy Japan UK USA
Forecast Period 82:I – 82:I – 82:I – 82:I – 82:I – 82:I – 82:I –

98:IV 98:IV 98:IV 98:IV 98:IV 98:IV 98:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSE 0.047 0.031 0.037 0.041 0.052 0.026 0.029

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 0.96 1.16 0.98 1.03 1.02 0.95 0.86
tvp(0.1) 0.95 0.92 0.93 0.85 0.83 0.95 0.88
tvp(0.2) 1.02 0.89 0.90 0.81 0.80 0.98 0.92
tvp(0.4) 1.17 0.95 0.91 0.86 0.85 1.04 1.02

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 1.03 1.28 1.10 0.77∗∗∗ 0.83∗∗∗ 1.06 1.17
βt (heteroscedastic VAR) 1.05 1.40 1.06 0.82∗∗∗ 0.87∗∗∗ 1.08 1.41

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.85, 4) (0.99, 4) (0.99, 1) (0.95, 1) (0.99, 1) (0.85, 4) (0.95, 2)
β (homoscedastic VAR) 1.03 1.01∗∗∗ 0.97∗ 0.74∗∗∗ 0.78∗∗∗ 1.06 0.96

Specification (CT, p) (0.85, 4) (0.95, 4) (0.90, 4) (0.90, 4) (0.85, 2) (0.95, 1) (0.95, 4)
βt (heteroscedastic VAR) 1.05 1.17 0.94∗ 0.77∗∗∗ 0.85∗∗∗ 0.90∗∗ 0.93

Notes: Analogous to the notes to Table 2.
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Table 7: MSFEs of VAFEM mean combination forecasts
(relative to autoregression):

out-of-sample forecasts of eight-quarter growth of IP (h = 8)

Canada France Germany Italy Japan UK USA
Forecast Period 83:I – 83:I – 83:I – 83:I – 83:I – 83:I – 83:I -

97:IV 97:IV 97:IV 97:IV 97:IV 97:IV 97:IV

(1) Benchmark forecast (Stock & Watson, 2004)

AR RMSE 0.070 0.050 0.054 0.059 0.111 0.041 0.042

(2) Non-VAFEM combination forecasts (Stock & Watson, 2004, balanced panel subset)

mean 1.00 1.04 0.99 0.98 0.99 1.03 0.89
tvp(0.1) 1.00 0.82 0.90 0.68 0.59 1.13 0.93
tvp(0.2) 1.16 0.95 0.91 0.79 0.56 1.37 0.97
tvp(0.4) 1.39 1.10 0.96 1.00 0.62 1.85 1.04

(3) VAFEM mean combination forecasts: CT = 0.85, p = 4

β (homoscedastic VAR) 1.32 1.00∗ 1.07 0.87∗∗∗ 0.45∗∗∗ 1.89 1.18
βt (heteroscedastic VAR) 0.99∗ 0.98∗∗ 0.97∗ 0.87∗∗∗ 0.45∗∗∗ 1.41 1.02

(4) VAFEM mean combination forecasts: best (ex post) in-sample VAR specification

Specification (CT, p) (0.90, 2) (0.85, 2) (0.95, 4) (0.99, 4) (0.85, 4) (0.85, 1) (0.95, 1)
β (homoscedastic VAR) 1.25 0.99∗ 1.06 0.76∗∗∗ 0.45∗∗∗ 1.67 0.33∗∗∗

Specification (CT, p) (0.90, 4) (0.95, 3) (0.99, 1) (0.95, 2) (0.85, 4) (0.99, 1) (0.90, 2)
βt (heteroscedastic VAR) 0.86∗∗∗ 0.81∗∗∗ 0.85∗∗∗ 0.59∗∗∗ 0.45∗∗∗ 0.96∗∗ 0.93

Notes: Analogous to the notes to Table 2.
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Table 8: Combination forecasts ranked by average losses:
both output measures (real GDP, IP), all horizons (h = 2, 4, 8)

Rank VAFEM specification VAFEM / Average loss Deviation from loss
(of mean combination forecast) / Non-VAFEM of non-VAFEM mean
Forecast combination combination (in %)

1 Best of (CT, p)-βt and (CT, p)-β VAFEM 0.500 −17.9
2 (CT, p)-βt VAFEM 0.526 −13.6

(heteroscedastic VAR)
3 tvp(0.1) Non-VAFEM 0.558 −8.4
4 (CT, p)-β VAFEM 0.563 −7.6

(homoscedastic VAR)
5 (CT = 0.85, p = 4)-βt VAFEM 0.578 −5.1

(heteroscedastic VAR)
6 tvp(0.2) Non-VAFEM 0.603 −1.0
7 mean Non-VAFEM 0.609
8 (CT = 0.85, p = 4)-β VAFEM 0.633 3.9

(homoscedastic VAR)
9 tvp(0.4) Non-VAFEM 0.665 9.2

Direct VAR forecasting:
VAR specification

10 VAR(βt, p = 4) DMA 0.794 30.4
11 VAR(βt, p = 4) small 0.803 31.9
12 VAR(β, p = 4) small 0.807 32.5
13 VAR(β, p = 4) medium 0.838 37.6
14 VAR(βt, p = 4) medium 0.886 45.5
15 VAR(β, p = 4) DMA 0.924 51.7
16 VAR(β, p = 4) large 0.989 62.4
17 VAR(βt, p = 4) large 1.926 216.3

Notes:
(i) The average losses are weighted averages of the losses of the VAFEM and non-VAFEM combination forecasts

across all countries, horizons and target variables (a total of 39 cases). The weighting is obtained from the inverse of
the full-sample standard deviation of the target variable (real GDP, IP) being forecasted.

(ii) The VAFEM mean combination forecasts are denoted according to their in-sample VAR specifications from
Tables 2–7. (CT = 0.85, p = 4)-βt and (CT = 0.85, p = 4)-β refer to the in-sample VAR specifications from Block (3)
of Tables 2–7, (CT, p)-βt and (CT, p)-β refer to those from Block (4) of Tables 2–7. ’mean’ and ’tvp(·)’ denote the
non-VAFEM combination forecasts from Block (2) of Tables 2–7.

(iii) ’Best of (CT, p)-βt and (CT, p)-β’ represents the VAFEM mean combination forecasts with the (ex post) smaller
MSFE, when specifying the in-sample VAR either as (CT, p)-βt or (CT, p)-β.

(iv) In the Block ’Direct VAR forecasting’, VAR(β, p = 4) and VAR(βt, p = 4) denote VAR specifications with
constant and time-varying parameters, respectively, each with fixed VAR lag-length p = 4. The ending ’ small’ indicates
the smallest set of time series used in the VAR, as shown in Table 9. VARs with the ending ’ medium’ contain some
additional variables, while VARs with the ending ’ large’ include the largest set of variables. Country-specific details
on the time series used are given in Table 9. VARs with the ending ’ DMA’ are the result of Dynamic Model Averaging
among the corresponding small, medium, and large VARS.
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Table 9: Time series used in small, medium and large VARs

Series Country
Canada France Germany Italy Japan UK USA

rgdp 5 s, m, l s, m, l s, m, l s, m, l s, m, l s, m, l
cpi 6 s, m, l s, m, l s, m, l s, m, l s, m, l s, m, l s, m, l
ip 5 s, m, l s, m, l s, m, l s, m, l s, m, l s, m, l s, m, l
rovnght 2 s, m, l s, m, l
rtbill 2 s, m, l
rbndm 2 s, m, l
rbndl 2 s, m, l s, m, l
comod 5 m, l m, l m, l m, l m, l m, l m, l
stockp 5 m, l m, l m, l m, l m, l m, l m, l
mon1 6 m, l l
mon2 6 m, l m, l
mon3 6 m, l l
oil 5 l l l l l l l
unemp 1 l
unemp 2 l l l l l
gold 5 l l l l l l l
capu 1 l
emp 5 l l l l l
pgdp 5 l l l l l l
ppi 5 l l l l
earn 5 l l l l

Note: The identifiers of the time series (string in front of ’ ’) were adopted from Stock and
Watson (2004, Table Ia). The digit behind ’ ’ indicates the transformation of the time series
used. ’1’ means no transformation (series in levels). ’2’ represents the first difference, ’5’
the series in logs, ’6’ the first-difference of the logarithm. ’s’, ’m’, and ’l’ indicate that the
series is used in small, medium and large VAR specifications.
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Table 10: Average (equally weighted) MSFEs of tvp(·)-combination
forecasts relative to autoregression over all 39 cases

(forecast period: 90:III – 99:IV)

tvp(·)-combination Average MSFE Deviation from MSFE of non-VAFEM
tvp(·)-combination (in %)

(1) Non-VAFEM tvp(·)-combination forecasts, balanced panel (Stock & Watson, 2004)

tvp(0.1) 0.91
tvp(0.2) 0.99
tvp(0.4) 1.08

(2) VAFEM tvp(·)-combination forecasts:
In-sample VAR specification: (CT = 0.85, p = 4)-β (homoscedastic VAR)

tvp(0.1) 0.80 −12.1
tvp(0.2) 0.83 −16.2
tvp(0.4) 0.89 −17.6

(3) VAFEM tvp(·)-combination forecasts:
In-sample VAR specification: (CT = 0.85, p = 4)-βt (heteroscedastic VAR)

tvp(0.1) 0.84 −7.7
tvp(0.2) 0.86 −13.1
tvp(0.4) 0.90 −16.7

Notes:
(i) In Block (1), the MSFEs of the non-VAFEM time-varying-parameter combination forecasts of the original indi-

vidual forecasts were compiled from Stock and Watson (2004, Table XI).
(ii) In Blocks (2) and (3), the in-sample VAR specifications are denoted as in Tables 2–8.
(iii) The percentage deviations in Column 3 are computed as pairwise deviations between the MSFEs of the VAFEM

tvp(ϕ)-combination forecasts from Blocks (2) and (3), and the MSFEs of the corresponding non-VAFEM tvp(ϕ)-
combination forecasts from Block (1) with the same degree-of-time-variation ϕ ∈ {0.1, 0.2, 0.4}.
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